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Abstract

The human impression of the color of en object is
the same when . viewed foveally or peripherally, despite
the non-uniformily of the spatial distribution of pho-
toreceptors on.the retina. We propose that this non-
uniformity can be used to atiain color constancy, the
perception of a constant surface color under varying il-
lumination. We develop a multi-sensor Bayesian tech-
nigue that solves for the surface reflectance und lighting
parameters of a bilinear model by sequentially acquiring
measurenments from independent sensors. We present
two cases: (1) two sets of sensors, each with different
spectrul sensitivies, (i) a continuous vaeriction in the
spectral sensitivities across the sensor array.

1. Introduction

A striking characteristics of the human retina is its
non-homogeneity. It is well known that the spatial
distribution of photoreceptors on the retina is non-
uniform. Less well-known is the fact that the retina has
a marked non-homogeneity in the spectral sensitivity of
its photoreceptors. Part of this non-homogeneity arises
from the fact that the macular pigment, which is a yel-
lowish jelly that covers the macula, absorbs up to 50%
of the light in the short wavelength range [1], causing a
significant shift in the color sensitivity of foveal recep-
tors. In spite of these non-homogeneities, the human
perception of color is remarkably invariant to eye posi-
tion. We have the subjective impression that the color
of an item in the world is the same when viewed periph-
erally -as when viewed foveally. Clark and O'Regan [3]
proposed that the human visual system uses a stable-
world assumption in developing position invariant color
perception. In their approach, it is precisely the chang-
ing retinal signal resulting from moving the eye when
viewing a stable colored surface patch that determiness
the perceived color.
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We propose that color constancy, the perception of a
constant color across variations in llumination, can be
explained by a process similar to the Clark-O'Regan ex-
planation of color stability across eye movements. The
approach that we take follows the Bayesian approach
of Brainard and Freeman [2). Our method extends
their technique to the use of a large set of indepen-
dent sensors (corresponding to the photoreceptors at
different retinal locations) from which measurements
are obtained sequentially (corresponding to moving the
gaze across a surface patch). We present two cases, one
in which there are only two sets of seusors, each having
a different spectral sensitivity characteristic. and one
in which there is a smooth variation in the spectral
sensitivity across the sensor array.

2. The Bayesian Approach

Our color constancy algorithin builds on the
Bayesian technique of Brainard and Freeman [2]. Their
algorithm uses the bilinear mode! of Maloney and Wan-
dell [7] to provide a parametrization of the surface
and illuminant spectra. The bilinear model can be
surnmarized as follows. Describe the light arriving at
a location  on an array of sensors by the function
E{X\) 8°(A), where E(}X) is the spectral power distri-
bution of the ambient light in the scene. while 5%(A)
is the surface spectral reflectance. Let us assume that
we have p classes of sensors at each location x, each
with a different relative wavelength sensitivity, Rg(A).
Then the sensor responses are given by

pz=/E(,\) ST(A) Re(A) d\, k=1,2,...,p. (1)

S and E can each be represented as linear models:

5% = ZU} SJ()‘) E()\) = 26;’ El(,)\) (2)



In both cases, the basis functions are fixed. Therefore,
finding the surface reflectance and ambient light in-
volves recovering the basis function weights o7 and €.
The sensor responses are seen to be bilinear functions
of the unknown basis function weights. This bilinear-
ity implies that the problem of finding the weights is
ill-posed, as different choices of ¢ and o, can produce
same the sensor measurements.

Brainard and Freeman used a Bayesian technique
to regularize the problem of computing the values of
the illuminant and surface parameters as follows. Let
the vector of surface and llumination model weights
be denoted as &, and the sensor responses by y. We
can obtain a statistical model for z by the conditional
posterior density function, p(x|y), of x given the mea-
suremnent: -

plylz) p(t)
ply)

p(y|z) is the likelihood which models the relation be-
tween the illuminant spectrum model, the surface spec-
tra models and the sensor responses. p(x) represents
the prior information on the model parameters. In
the Brainard-Freeman forinulation, the prior is esti-
mated through principal component analysis (PCA)
techniques where the principal components are built
from the surface reflectances of a fixed set of Munsell
color patches [4]. The likelihood p(y|c) is also repre-
sented by a normal distribution.

plely) = ~ plylz) plz)- (3)

3. The Sequential Multiple Sensor Ap-
proach

In this paper, we introduce a strategy that is an ex-
tension to the Brainard-Freeman Bayesian approach, in
which ouly one sensor was modeled. In our approach,
measurements are acquired from a large set of indepen-
dent sensors, each with its own spectral sensitivities.
The inherent, ill-posedness of the problem is therefore
addressed through the introduction of more sources of
information. Measurements are acquired sequentially
from each sensor, much as when a person’s gaze moves
across a surface in the scene. Color stability is achieved
through the accumulation of evidence from the various
sensors through a sequential Bayesian estimation pro-
cess.

As in the Brainard and Freeman appraoch, we repre-
sent evidence for the lighting and surface color param-
eters of various surface patches in a scene by a con-
litional probability density function, given the sensor
incasurements. This probabilistic evidence is then ac-
cunmilated sequentially over sensors with different spec-
tral sensitivities through a Bayesian chaining approach.

We model two cases: (i) one in which there are only two
different types of sensors, and (ii} one in which there is
a smooth variation in spectral sensitivity curves across
the sensor array. In practice, this multi-sensor formu-
lation can be modeled through the placement of a filter
with the appropriate absorption characteristics onto a
single camera lens. In this case, evidence can be ac-
cumulated spatially over the pixels of the image of the

"scene (see Section 4).

- 3.1. The Binary Formulation
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We first consider the case where measurements of
a scene are acquired by two sensor types, each with a
different spectral sensitivity. We will agsumne that each
individual sensor actually produces three independant
measurements, which we will refer te as R, G, and B.
RGB measurements of a particular surface obtained
from sensors of type 1 will be denoted RGB:,, and
those from sensors of type 2 as RGBgn, where n refers
to the surface patch being viewed. Let us denote the
surface spectral model weight vector by a,, and the il-
luminant spectral model weighits vector by b. Consider
the case of three surface ‘patches in a scene. Suppose
that surfaces 1 and 3 are visible to sensor type 1 alone,
while surface 2 is visible to both sensor types. Let
{RGB} denote the total set of measurements of the
scene:

{RGB} £ RGB1\, RGB13, RGByy, RGByy, RGBys.

The conditional posterior density function for the pa-
rameters, @), az, az and b, given the set of measure-
ments of the scene,{ RGB}, is given by:

plar, a2, us, {RGB})
= p({RGB}|u1,u;, a3,b} plar, as. as.b)
=~ p{RG By, RGByjlu, a3, )
p(BGBs1, RGBaz, RGBiyslay, ay, a3, b)
plu. az. b) plaz)
/2 pnar,ds, blRGBll . RGB13) P(RGB]]_ |(11 . b)
p(RG Byslaz, b) p(RG Byslas, b) plaz) (4)
In obtaining this formulation, various simplifying as-
sumnptions are made. First. it is assumed that the prior
probabilities for each surface reflectance weight-a,, are
statistically independent of each other and of the spec-
tral function weights of -the illuminant, b.- Next, the
measurements are assumed to be conditionally statis-
tically independent. Finally, it is assumned that there is
no interreflection between surfaces, and therefore the
spectral reflectance for a surface and the lighting vec-
tors are sufficient statistics for the measurement of that



surface. This leads to a simplification:

p(RGBzQIﬂ]_‘_ €. 23, b) = P(RGBQQ'H-)_, b)

From equation 4, we can conclude that the posterior for
the entire scene is a function of the posterior for one
sensor (sensor A), the likelihood of the RGB measure-
ment of the other surface (sensor B} and the prior of
its spectral function weights. These manipulations in-
dicate that the active Bayesian formulation is, in fact,
recursive, where the posterior for each sensor acts as a
vrior for the next sensor. Given the assumptions above,
the posterior for sensor A can be obtained by:

play, a3, blRGBy,, RGB3)

= p(RGB11, RGBy3lay, as. b) plar, a3, b)

w2 p(RGBuila1,b) p(RGBs|us, b) plar) plaa) p(b)
~ play, b|RG B ) p(RGBy3lus. b) ples)

Note that this posterior is a function of the likelihood
and prior for surface 3, and the posterior for surface 1,
The recursive nature of the strategy can be seen once
again as, for each sensor, the posterior for each surface
patch acts as a prior for the next surface patch.

3.2. The Non-Uniform Formulation

Next, we consider the case where there is a smooth
variation in the spectral sensitivities across the sensor
array. The formulation is once again described by con-
sidering three surfaces in the scene. Surfaces 1, 2, and
3 have N, M and K sensor response functions, respec-
tively. Thus, the sensor respouses can be denoted as
{RGB}n..ip = RGByuy, RGBys.... . RGB,, for each
surface . where p is the number of sensor responses
for that surface. Based on the assumptions made in
the previous section. the posterior for the entire scene
is again recursive and cau be formulated as:

plut,az. a3, 0{BGB} 1. an. {RGBYn 221, {RGB}s;..

= pluy, w2, {RGB} 11 an. {RGB}ar. 2ar)
p({ RGB}a1 . 3xc|us. b) plas)

This hnplies that the posterior is computed by mul-
tiplying the prior and likelihood for the third surface
by the posterior from the first two surfaces, i.e. these
posteriors becoise priors for the third surface. Simi-
larly, the posterior for the first two surfaces is simply
the product of the likelihood and prior for the second
surface and the posterior for the first, taking care at
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the transition between surfaces:

play, ez, 5|{RGBh..an, RGBa)
~ p({RGB}1. 1~. BGBa ey, a0, b) play,uz, b)
= p({RGBM1..1n|u1, a2, b) p(RG Bailay, az, b)
pla1) plaz) p{b)
= pla1, b|{ RGBh...~n) p(RG By |az, b) play).

Note that the subjective prior term {(e.g. p(a:)} only
comes in at the start of the recursion for each surface.
The posterior for each surface is simply a recursive,
sequential update of the posterior given each of the
sensor responses for that surface:

plar )[{RGBhi..an)
& play, B{RGB}1.a~-1) p(RGBinlay, b)

For both of the cases described here we obtain a sequen-
tial update of the posteriors given each of the sensors
in turn. The result is that, for each surface patch, each
new sensor response leads to an increase in information
regarding the color of the surface patch and the illu-
mination. The addition of more surface patches in the
scene provides even more information regarding the il-
lumination and thus, in turn, about the surface colors
themselves.

4. Simulations

To demonstrate our approach, a series of simulations
were performed. We constructed “Mondrian™ scenes
consisting of several surface patches illuinated by a
single light source. The multi-sensor enviromment is
modeled through the simulated placement of an opti-
cal filter onto the (simulated) cainera lens, which non-
uniformly modifies the spectrum of the light falling on
the sensors. We simulated the binary case. in which
half of the filter is tinted yellow with the other half left
transparent, and also simulated the non-uniform case,
in which a filter with a Gaussian absorption profile is
used; the center is tinted deep yellow, and the color
fades smmoothly towards the periphery.

The RGB components of each seusor’s response were
simulated by multiplying the spectrum of the light
passing through the optical filter by .the sensor spec-
tral sensitivity curves denoted Ri(A). For the pur-
poses of this paper, we used the Stockinan and Sharpe
estimates for the sensitivities of the cones in the hu-
man retina [6. We used randomly selected Munsell
color patches and random combinations of the Parkki-
nen and Silftsen daylight and skylight spectra [5] 10
generate the spectrum of the light falling on the sen-
sor array. The likelihoods in our Bayesian formula-
tions were computed using the model predictions of



the sensor measurement. - The basis functions for the
surface spectrum model were taken to be the principal
components of the spectra of the 1250 Munsell color
patches as measured by Parkkinen et al. [4]. The ba-
sis functions for the light source spectrum model were
taken to be the principal components of a set of day-
light and skylight spectra as xrleaSUred by Parkkinen
and Silfsten {5]7 The likelihoods are assumed to have
Gaussian distributions. The prior distributions for the
spectral model parameters are assumed to be indepen-
dent and Gaussian. The means and variances of the
priors are computed from the distribution of weights
corresponding to the 1250 Munsell spectra and the 37
different skylight and daylight spectra that were used.
These weights were obtained by projecting the mea-
sured spectra onto the basis function sets.The location
of the maximum of the posterior distribution was esti-
mated by a standard MATLAB optimization package,
resulting in a set of estimated surface and light spectra
weight vectors.

Experiments with several surface patches in the
scene (as described in Section 3) were performed, and
the resulting estimates for the model and the actual
spectra (Munsell, patch 300} for one surface in the
scene as well as the spectra for the light source can
be found in Figures 1 and 2, respectively. The figures
illustrate the spectra for the two different types of op-
tical filters as compared to the case with no filter. The
results indicate that there is considerable improvement
with the introduction of the multi-sensor method. In
fact, the more sensors introduced, the better the esti-
mates. This can also be seen by examining the RMS
errors depicted in Table 1.
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Figure 1. The estimated and actual (Munsell
patch 300) surface spectra in the cases of (a)
no filter, (b) binary filter, (¢) Gaussian filter are
plotted for the relevant wavelength range.

5. Summary

In this paper we have proposed an active Bagesien
strategy that is an extension to the Brainard-Freeman
Bayesian approach to color constancy. Here, evidence
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Figure 2. Tﬁe estimated aﬁd actual illuminant
spectra in the cases of (a) no filter, (b) binary
filter, (c) Gaussian filter.

Case | No Filter | Binary Filter | Gaussian Filter
Surf 0.315 0.2232 0.1931
Tllum 0.1143 0.0867 0.0634

Table 1. RMS error for the surface and illu-
minant spectra for the ’no filter’, binary and
Gaussian filter cases.

for the parameters of the surface and illuminant spec-
tral models, in the form of conditional probability den-
sity functions, is sequentially accumulated over a multi-
sensor environment. We develop two types of multi-
sensor environments, one with a binary and one with
smoothly varying spectral absorption curves.
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