On Local Detection of Moving Edges

Ten-lee Hwang

James J. Clark

Division of Applied Sciences

Harvard University
Cambridge, MA 02138

Abstract

Optical flow is traditionally found by working on
two or more input images in a time sequence. On
the other hand, most edge detectors locate edges
only on static images. In this paper, we therefore
propose a detection framework with multiple veloc-
ity channels for moving edges based on a generaliza-
tion of Canny’s edge detector[6]. Finite state ma-
chines (FSM’s) are set up at discrete lattice points in
the image plane and operate based on the outputs of
all velocity channels. The outputs of the FSM’s de-
note whether there are edges at their corresponding
positions and their states record the edge velocities.
In the temporal dimension, statistics are attached
to the edges to aid in removing phantom edges.

1 Introduction

People have proposed various algorithms in edge detection.
Most of them operate on a single static image or a snapshot
only. Another important low-level vision task is motion de-
tection. The proposed algorithms mainly operate on two
images sampled at different but close time epochs. On the
other hand, biological motion models are basically built on
the spatio-temporal domain, not just on two image snap-
shots only. As we possess more computational power, it
is natural to consider edge detection and velocity flow ex-
traction in the spatio-temporal domain and to develop com-
putational algorithms compatible with the spatio-temporal
biology models.

Assuming that the input images are so densely sampled in
both the spatial and the temporal domains that the sam-
pling artifacts are smoothed out in the spatio-temporal fil-
tering, there are three different kinds of algorithms estimat-
ing the velocity flow of the moving edges. The first kind

employs Gabor-like filters where the velocities of the image
patches are extracted without regard to the image features,
e.g., [5]. The second kind deals with the velocities of the zero
crossings which can be considered as special edges, e.g., [2]-
The third kind specifically extracts the velocities of the mov-
ing edges. For example, Haynes and Jain[4] employ the edge
detection in one image and used two consecutive images to
determine the edge motion. Kahn[8] proposed a moving

CH2898-5/90/0000/0180$01.00 © 1990 IEEE

180

velocity estimation

pre-filtering

N

post-processing

edge detection

Figure 1: The data-fusion framework detecting moving
edges consists of four modules conceptually.

edge detection mechanism based on a fixed triad tessella-
tion and a careful spatio-temporal arrangement. Crowley
et al.[3] track the movement of edge lines in the two di-
mensional image plane by Kalman filtering. All these three
algorithms of the third kind use temporal information to
calculate the velocity of the image edges, but none of them
explicitly use temporal information to aid edge detection.

We propose a data-fusion framework solving edge detection
and velocity estimation together using temporal informa-
tion. As shown in Figure 1, the framework conceptually con-
sists of four modules. The pre-filtering module uses the gen-
eralized Canny’s edge detectors[6] on two independent two-
dimensional spatio-temporal planes (computationally more
efficient than using the three-dimensional spatio-temporal
filters directly) and then provides relevant spatio-temporal
information to both the edge detection module and the ve-
locity estimation module. The generalized Canny’s edge
detectors are optimal only when they are exactly tuned to
the velocity of the one-dimensional edge. Therefore, several
edge detectors tuned to different velocities and employed
at the same time in the pre-filtering module appear nec-
essary to detect the edges moving with different unknown
velocities. Because the causal optimal filters are recursively
realizable in the temporal domain, two-dimensional spatio-
temporal causal edge detectors are used.

Conceptually, the edge detection module has to signal the
velocity estimation module where the edges are approxi-
mately located. A moving real (versus phantom) edge should
move consistently, so the velocity estimation module can
predict the location of the moving edge in the next time
epoch. By using this information, the edge detection mod-
ule is able to throw away the phantom edges. As shown
in Figure 1, both the edge detection module and the veloc-

ity estimation module share information and interact with
each other. We are able to remove unnecessary assump-



tions made by each module and increase the confidence of
the solutions to both problems. We will use finite state ma-
chines (FSM’s) for the edge detection module and the ve-
locity estimation module to clarify the algorithm and pro-
mote the expandability of the framework. The inputs to
the FSM’s come from the pre-filtering module. The post-
processing module combines the results on two independent
two-dimensional spatio-temporal planes and calculates the
location and the normal velocity of the moving image edges.
We leave the aperture problem unsolved as it is persistent
unless some sort of global operations are used.

Because hypothesis testing is used in both the edge detec-
tion module and the velocity estimation module as an es-
timation technique, our framework employs both linear fil-
tering and statistical classification approaches in the three-
dimensional spatio-temporal domain. In contrast to our ap-
proach, Bouthemy modeled the moving edges in an image
sequence as planar patches in the three-dimensional spatio-
temporal domain[1]. A likelihood ratio test was used to de-
tect edges and to simultaneously estimate the velocity com-
ponents perpendicular to the edges. Hence, his approach
uses both surface fitting and statistical classification tech-
niques.

2 A FSM Model

For a perfect one-dimensional step edge located at z = 0
moving with a velocity vy at some time epoch, the convolu-
tional outputs from N edge detectors tuned to N different
velocities, v1 < vy < ... < vy, are maximized at z = 0 in
the spatial domain if there is no noise. Figure 2 shows an
example where N = 3. As the edge moves from z = 0 to
T = z, the outputs are also shifted z; to the right. As a
result, the output shape around z = z, changes from a ba-
sically monotonically decreasing curve, to a convex hill, and
then to a basically monotonically increasing curve. These
three different shapes suggest three different edge (closest
to o) positions at different time epochs, that is, the edge
position was less than zg, around 2, and then larger than
zo. At any discrete position, say o, we can then utilize the
computed filter outputs tuned to the N different velocities
and send a signal to the corresponding finite state machine
(FSM) which records the transition of the N convolutional
output curves at zg.

Specifically, the local curve shape of the filtered outputs at
each sampled point, say zo, could be a HILL (a convex
hill), a DEC (a monotonically decreasing curve), a INC (a
monotonically increasing curve), or a VALLEY (a concave
valley). It is locally determined by the average slopes at
the right and the left sides of the point zp, within a win-
dow of size 2w, + 1 centered at zo [7]. Other shapes of the

outputs, in-between DEC and INC, or not strong enough
to be HILL or VALLEY, would be claimed as TRAN's
(transitions). Within the window of size 2w, + 1 centered at
g, there would be N - (2w, + 1) local output shapes deter-
mined from the outputs of N velocity channels. The final
curve shape used as the input to the FSM at zo is decided
by a winner-take-all scheme(7]. Notice that we report only a
HILL or a VALLEY within the window to achieve the best
edge localization. If the final curve shape at zois a HILL or
a VALLEY and v is the velocity channel with the largest

181

(a)

1”” 1

0 zozyz9

11

Figure 2: (a) A noise-free step edge moving with vy > 0;
Illustrations on the expected outputs of the edge detectors
tuned to three different velocities (b) v, > wg; (c) va > v
(d) v3 < vg.

output, the input to the FSM at zo would be (HILL,k)
or (VALLEY,k). Otherwise, the final curve shapes, e.g.,
DEC, would be the inputs to the corresponding FSM’s.

Recall that a FSM is characterized by M = (K,Y, Z, g, 6,
) where K is a finite set of states; Y is a finite set of in-
put symbols; Z is a finite set of output symbols; go € K is
the initial state; 8, the state transition function, is a func-
tion from K x Y to K; and ¢, the output function, is a
function of its next states only, i.e., from K to Z. In this
context, let us define the elements of a FSM at z¢ as K =
{Qany; Qot, -, Qon, Qs -, @1, Qat, @st, Quaty Qasty Qad, @sas
Q24,Qusa}; Y = {(HILL,1),...,(HILL,N),(VALLEY,
1),(VALLEY,N),DEC,INC,TRAN}; Z = {0,1}; and
g0 = Qany. The states in the set K represent different
temporal situations. For example, @,y is an initial state
and the resting state when there is not enough information.
Qojsj = 1,...,N, means there is a light edge (the inten-
sity increases as « increases) at zo and its velocity is closest
to v;. Please see [7] for detailed explanations of the other
states and the state transition function 6. Notice that we
are conservative in most situations, e.g., the machine goes
to the state Quny if the current inputs are very unlikely to
happen. Also, we would rather report phantom edges than
miss any possible edges, because it is easier to remove extra
edges than to add new edges in later processing. As far as
¢, the machine outputs 1 if and only if the next state is
Qoj or Q1; (dark edges), j = 1,...,N. In other words, the
machine at a particular position outputs 1, if and only if
there would be an edge at that position.

There are many different ways in setting up the structure
of the above state machine. We will mention two possible
modifications toward two different directions corresponding
to two different design philosophies. In the first modifica-
tion, we suggest a simpler and faster realization. The state
machine M can be simplified to M’ = (K',Y’, Z,¢},8',¢")
where K' = {Q’an;'p Qot, -, Qon, Qu1, -y Qin} and V' =
{(HILL,1), ...,,(HILL,N), (VALLEY, 1), ...,(VALLEY,
N), OTHERS}. ¢ = @, and Z = {0,1}. The state @,
therefore includes the situations which were represented by

Qat; @siy Qza1, Qusi, Qad, Qsay Q23d; Qusa in addition to
Qany in M. Evidently, OTHERS in M' is equivalent to
other three input symbols, DEC, INC, and TRAN in M.

The new transition function ¢’ is

0 zoryz,

8" | (HILL,k) | (VALLEY,k) | OTHERS
any Qox Qi ny |
Qo; Quok - |
[ :ﬂy Qi Q;_WJ




' is 1 if and only if the next state is Qg;j or Q15,7 =1, ..., N.
In the second modification, the FSM’s can be extended
to stochastic FSM’s (SSM’s). Because the SSM’s capture
stochastic temporal transition information, they are better
test beds for investigating the temporal behaviors of edges.
It is very likely that the outputs from the pre-filtering mod-
ule presented to the SSM’s and the states of the SSM’s would
be defined differently. Actually, it is possible to use other
pre-filters, depending on the defined edge shape and other
proposed criteria.

Once an edge e with a velocity v; is claimed by the FSM at
some point z;, we will check if e is also claimed as an edge
at the FSM at z; + v, - T at next time epoch, where T is the
sampling period of the image sequence. If e does, it is ex-
actly tracked. Due to measurement noise and quantization
errors on the input images, if e appears at z; +v, - T+ 1
(z1 + v, - T £ 2), it is partially (weakly) tracked. If not so,
we will say e is lost. In this case, e disappears from the
image plane; errors in ; or v are too large; or e is just a
phantom edge. e would be considered as a real edge if e is
either exactly or partially (weakly) "tra,cked until it is lost.
An improvement is to use EJv] = 5""‘—"', instead of v, if e
is tracked for consecutive n images to reduce the velocity
estimation errors. Initially, we give e a confidence measure
Conf = 1.0. At each time epoch that follows, Conf is in-
creased by 0.2 if e is exactly tracked, decreased by 0.2 (0.4)
if e is partially (weakly) tracked. If there is a consistent
velocity estimation error, Conf would finally fall below 0.5
and then we would claim e is lost. Edges have to be tracked
at least for N; consecutive times to be reported as edges.
When n is larger than another threshold, say N,, we will
set n to be Ny with E[v] unchanged. This hysteresis would
accommodate the velocity changes while keeping reporting
the existence of the edges.

To extend the edge detection and velocity estimation from
one spatial dimension to two spatial dimensions, let us pick
up two independent vectors in the two-dimensional image
plane as two coordinate axes. If the proposed algorithm
in the previous section is employed along these two axes
independently, we would have two FSM’s running at each
lattice point in the image plane. If we define the edge points
are located at the lattice points where the outputs of two
FSM’s are both 1, the edges points would form more straight
but less uniformly distributed lines. If we claim the lattice
points as the edge points when either of the FSM outputs
or both are 1, the edge points form less straight but more
continuous lines[7]. Suppose the edge velocities detected in
two independent axes u;, u; at a particular point are v,

and vy respectively, then the final velocity of the point is
sin

V= , where ¢ is the angle between u; and
Vi +vE-2viv2coé

uz. The angle between the normal velocity v and the axis

uy is cos™' 2[7}.

3 Implementation

We choose the optimal filter[6] with a spatial size of 11,
c=1 a =3 and 7 = 1. Five optimal filters are used
simultaneously, tuned to -2 (pixels/timeframe), -1, 0, 1, and
2 respectively, namely N = 5. The output of any optimal
filter has to be greater than thr = ;2% to be claimed as
a real edge. This means that g is the minimum absolute
abrupt intensity change to be an edge{6]. We set w, =3 in
detecting the output curve shape.

182

First, we ran the algorithm over one dimensional synthetic
edges corrupted by white noise with different maximum
amplitude[7]. Let vy be the ratio between the edge inten-
sity and the maximum noise amplitude. We found that as v
decreases, more phantom edges are detected, even if we use
a larger ao. By checking consistency (N; = 2 and N, = 5),
most spurious edges are removed and the locations and ve-
locities of the real edges are more accurate.

We tested the algorithm on both synthetic and real images
with ao fixed at 80. The lattice points are claimed as edge
points when either of the FSM outputs, or both, are 1. The
edge velocities are collected in a 3 X 3 window. Each of
the synthetic one-byte (0-255) images is of size 150 x 150,
corrupted by uniformly random noise with a maximum in-
tensity 10. The real images are taken by a Panasonic WV-
CD50 camera. The original 485 x 512 one-byte images are
blown down to 242 x 256 for faster processing.

As shown in Figure 3, four blocks moves with different ve-
locities. Between two consecutive frames, the upper-left
small block does not move at all; the upper-right small
block moves one pixel to the left; the central block moves
one pixel to the right and one pixel to the bottom; the
bottom-right block moves two pixels to the left. The inten-
sity of the background, the upper-left, upper-right, central,
and the bottom-right block are 10, 170, 180, 230, and 110
respectively. The detected edge positions shown by little
boxes are accurate within one pixel. The estimated displace-
ments shown by lines are five times of the average velocities
between two consecutive frames so far. Due to the aper-
ture problem, the normal velocities are correctly recovered.
As another example, a sequence of synthetic images with a
moving circle are created, as shown in (d) in Figure 3. The
circle moves one pixel to the right and one pixel to the bot-
tom between two consecutive image frames. The intensity
of the background and the circle are 140 and 250 respec-
tively. The detected edge positions are accurate within one
pixel. Due to the aperture problem, the bottom-right and
the upper-left parts of the circle exhibit the largest normal
velocities; the bottom-left and the upper-right parts have a
zero velocity; and some local movements different from the
global velocities are reported at some parts of the circle.
We moved the camera towards a telephone and took a se-
quence of real images, as shown in (e) and (f) in Figure 3.
The bottom and the left parts of the scene go outward, so
do the recovered velocities. If we overlap the pictures, we
will see the edge velocities are correctly estimated. As an-
other example, we took the pictures of the Harvard Head,
as shown in Figure 4. The camera was moved to the right,
so the recovered estimated displacements are running to
the left. Some horizontal edges on the bottom-left of the
input pictures are reported by Canny’s edge detector but
not by our algorithm, because they are too noisy and not
straight enough (the translation is horizontal). The smaller
ag is, the more detailed the recovered edges are. We are
currently tracing the edge points based on a double thresh-
olding scheme in order to improve the results.

4 Summary

In [6], a set of optimal (under Canny’s original criteria) edge
detectors are derived in the spatio-temporal domain. As-
suming that densely sampled images are available, a flexi-
ble framework with multiple velocity channels are then pro-



(@) (b)

e)

g ¢
! §
.,\ &

a,/’”

N
//,m\\mﬁv\\\\w

Figure 3: (a) and (b) are the 5th and the 10th frames of
the input four-block synthetic images respectively. The de-
tected edge positions and the estimated displacements for
the four-block [one-circle] image sequence for the next 5
frames at the 10th frame are shown in (c) [(d)]. (e) is the
10th frame of a real image sequence and (f) shows the the
detected edge positions and the estimated displacements at
the 10th frame for the next 5 frames.

posed to fuse the edge detection and edge velocity estima-
tion which are traditionally separately dealt with. The cor-
respondence problem is inherently solved but only the ve-
locities perpendicular to the edges are recovered. We de-
scribe how to set up state transition machines at discrete
lattice points and how the state machines operate based on
the outputs of all velocity channels. The outputs of the
state machines denote whether there are edges at their cor-
responding positions and the states of the state machines
record the edge velocities. To record real edges (moving
or not) and to remove spurious edges more confidently, the
mean of the edge velocity within a certain period of time is
attached to the edges. If the edges move according to their
associated velocities, they are considered as real edges, oth-

183

(C)

mw..vm: Mv-wg
k2 . 5
gWI“WH i §
Lw-«-!‘ gv—nag ‘éﬂ'““‘f ‘g\-ﬁ.\%

(f)

; }.&o—o-l Ll d

1 el o emeemt e

R R e o
v o wne d vekaaotn

..

erwise, they are treated as phantom edges. This is found to
be very effective. Some implementation results on synthetic
and real images are shown and compared with Canny’s edge
detectors. Last but not the least, the whole algorithm is uni-
form, local, and therefore implementable in SIMD machines
or VLSI technologies.

5 Acknowledgement

Comments from Alan Yuille are appreciated. This work
was supported by the Brown/Harvard/MIT Center for In-
telligent Control Systems under Army Research Office grant
DAA103-86-K-0171.

References

(1] P. Bouthemy, A Mazimum Likelihood Framework for
Determining Moving Edges, IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. PAMI-11, No.
5, pp. 499-511, May. 1989.




o o
= 1;‘ — ;‘I, et 1
SR

Figure 4: (a) is the 10th frame of the Harvard Head image.
(b) shows the detected edges up to the 10th frame by the
algorithm using ao = 15. (c) and (d) are the detected edge

maps by Canny’s edge detector on the 10th frame only, with [5] D. Heeger, Optical Flow Using Spatio-temporal Filters,
a noise margin 50% and 40% respectively. (e) and (f) show International Journal of Computer Vision, pp. 279-302,
the detected edge positions and the estimated displacements 1988.

for the next 5 frames at the 10th frame with ao = 30 and (6] T. Hwang and J. Clark, A Spatio-temporal General-

ao = 15 respectively. ization of Canny’s Edge Detector, Proceedings in com-
puter vision, ICPR, June, 1990.

T. Hwang and J. Clark, On Local Detection of Mov-
ing Edges, TR, no. 89-6, Harvard Robotics Laboratory,

[2] B. F. Buxton and H. Buxton, Computation of Optical 1989.

Flow from the Motion of Edge Features in Image Se- .. .
quences, Image and Vision qumputing, vol. 2, i’ilo. 2 [8] P. Kahn, Local Determination of a Moving Contrast
pp. 59-75, May 1984. ’ Edge, IEEE Trans. on Pattern Analysis and Machine
’ Intelligence, vol. PAMI-7, No. 4, pp. 402-409, July,
[3] J. L. Crowley, P. Stelmaszyk, and C. Discours, Mea- 1985.
suring Image Flow by Tracking Edge-Lines, The sec-

ond International Conference on Computer Vision, pp.
658-664, 1988.

[4] S. M. Haynes and R. Jain, Detection of Moving Edges,
Computer Graphics and Image Processing, vol. 21, pp.
345-367, 1983.

[7

184



