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ABSTRACT

In unconstrained environments, head pose detection can be
very challenging due to the joint and arbitrary occurrence
of facial expressions, background clutter, partial occlusions
and illumination conditions. Despite the wide range of head
pose literature, most current methods can address this prob-
lem only up to a certain degree, and mostly for restricted sce-
narios. In this paper, we address the problem of head pose
classification from real world images with large appearance
variation. We represent each pose with a probabilistic and
spatial template learned from facial codewords. The infer-
ence of the best template representing a test image is achieved
probabilistically and spatially at the codebook. The experi-
mental results are obtained from 5500 video frames collected
under different illumination and background conditions. Our
probabilistic framework is shown to outperform the current
state-of-the-art in head pose classification.

Index Terms— Head pose, unconstrained environment,
uncontrolled environment, codebook, local invariant feature.

1. INTRODUCTION

In recent years, the range of applications for video surveil-
lance technology has increased substantially. Considering
the massive size of surveillance data collected from uncon-
strained environments, fast and accurate automatic systems
are in high demand. In this paper, we consider the particular
problem of automatically inferring head pose from face im-
ages from video surveillance data collected in unconstrained
environments. Developing an automatic head pose classifi-
cation system for video surveillance data is not a trivial task,
given the challenges of unconstrained conditions present in
the real world, which include: arbitrary face scale, nonuni-
form illumination conditions, arbitrary partial occlusions and
background clutter as well as a wide variability in possible
face image quality (see Figure 1 and Figure 5).

Currently head pose estimation methods from 2D images
can be divided into several groups, namely appearance tem-
plate methods [1, 2], manifold embedding methods [3, 4],
tracking methods [5], and geometric methods [6] (for details
see the survey by [7]). However, most of the approaches in the
literature are not built for unconstrained environments. For

Fig. 1. Sample images (with original face scales preserved)
from in-house unconstrained environment face database.
Color coding shows the assigned head pose: —90° (red),
—45° (green), 0° (blue), +45° (yellow), +90° (magenta).

example, most approaches assume that the entire set of facial
features from a frontal view is visible. Most approaches are
trained and tested on images which do not exhibit any kind of
appearance variation, such as facial expressions and illumi-
nation. The databases tested on mostly contain images with
solid or constant background, limited facial expression, no
random illumination, and with limited or no facial occlusion.
Estimation of head pose from uncontrolled environments has
recently been receiving some attention. Orozco et al. [1] and
Tosato et al. [4] address the problem of head pose classifi-
cation in low-resolution video images of crowded scenes un-
der poor lighting, where they treated the problem as a multi-
class discrete pose classification problem. The current state-
of-the-art for estimating head pose from a higher resolution
single 2D face image from uncontrolled environment is pro-
vided by Aghajanian and Prince’s probabilistic patch-based
framework [8]. Our experimental results indicate that the ap-
proach in [8] requires a good face localization to be able to
avoid background clutter and correctly divide a face image
into non-overlapping patches.

In this paper, we propose a novel probabilistic approach to
infer discrete head pose from 2D face images obtained from
an in-house video data set (see Figure 1 and 5) collected un-
der different unconstrained environments. We represent the



face images with a codebook, i.e. a set of local invariant
features, namely codewords. The motivation behind the use
of local invariant features is due to their high degree of ro-
bustness to various transforms, such as the changes in scale,
viewpoint, rotation, translation, and occlusion. The proposed
methodology learns a “probabilistic spatial codebook tem-
plate” for each head pose (Figure 2). These templates are
inspired by the anatomical face regions (e.g. nose, mouth, ear
and eyes) since the spatial distribution of the anatomical face
regions is very unique for each head pose (Figure 2). Our
methodology obtains pose information not only from code-
words, but also from the inferred anatomical regions. Our
novel approach differs from current methods in several as-
pects. Current “templates” usually consist of a set of train-
ing images (or tailor made deterministic images) with corre-
sponding pose labels to which a test image is compared to
by image-based comparison techniques. Thus, they are not
well suited for the images from unconstrained environments.
The proposed probabilistic templates, on the other hand, are
spatial codebook maps learned from training data where each
codeword contains the probability density functions for head
pose class and anatomical labeling (see Figure 2). To our
knowledge, the proposed approach provides the first adapta-
tion of the codebook representation, prevalent in object detec-
tion and classification, to the problem of head pose inference.
Furthermore, as opposed to the common bag-of-features ap-
proach, our approach assigns spatial and functional (anatom-
ical labeling) information to each codeword. In addition, the
proposed codebook-based Bayesian formulation allows arbi-
trary partial occlusions unlike most approaches available in
the current literature. Over a large dataset of 5500 uncon-
strained video frames, our approach provides a higher accu-
racy rate in head pose classification compared to the current
state-of-the-art [8].

2. METHODOLOGY

The proposed methodology (Figure 3) first detects the faces
in our training and testing images via a face detection algo-
rithm, and then learns the local invariant feature based code-
book which represents face from different poses. The terms
used in the proposed formulation are as follows:

F={f1, f;, R f;\/} is a codebook containing /N code-
words. Each f; has the following attributes: {0i,1;,a;} where
0; 1s the occurrence of i-th codeword, a; is the anatomical
region labeling and /; is the location on the face image.

Y = {y1,92,...,yx } are K < N measurements, local
invariant features extracted from a test image. We perform the
inference task based on these measurements.

O = {¢1,¢2,...,07} is the set of possible head pose
angles.

Assume that there is a function g which maps measure-
ments from test image to the learned codebook, ¥ — F.
Thus, rather than building the head pose inference on Y, we
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Fig. 2. The use of anatomical regions for head pose. The first
row: how the anatomical regions effect head pose even in the
presence of the occlusion. The second row: average face im-
ages from training database (FERET) for the five pose classes
and the manual labeling of anatomical regions. The third row:
the inferred head pose templates where each color is assigned
to a different anatomical region. Note that the higher the
brightness is, the higher the probability p(a;|l;, 0;, @) is.

can build it on the codebook F'. The function g identifies cor-
respondences between elements of Y and F'. If y; € Y is

matched to ﬁ € I we have o; = 1. In this work, we used the
algorithm in [9] to obtain the function g.

2.1. Head Pose Inference

The posterior probability of the pose class given the observed
codebook from an image, i.e. p(¢|F’), can be written as:

p(F|p)p(9)
p(F)

where the general Bayesian MAP classification task is to
infer the most probable pose angle based on:

p(9|F) = (1)

¢ = glggpwlF)- (2)

Since the denominator in Equation (1) is just a normaliz-
ing factor, one can write:

p(¢|F) < p(F[¢)p(¢) 3)

where p(¢) is the a priori probability on the pose class
value, p(F'|¢) is the likelihood for the pose class over all the
codewords observed in the image. Given the strong possi-
bility of occlusion and the fact that an individual codeword
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Fig. 3. Flowchart of the algorithm.

is not necessarily providing information about another code-
word given the pose, one can make the conditional indepen-
dence assumption of observed codewords given ¢:
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Using the definition of ﬁ one can write p( f,|¢) as
p(a;, l;, 0;|¢). This leads to:

K
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Using the chain rule one can further expand it as:

K

i=1

Here p(0;|¢) models the probability of observing the i-
th codeword for a specific pose ¢. This probability is esti-
mated by observing the number of times the i-th codeword
appears when every training image with the given ¢ is sub-
jected to procedure. p(l;]o;, @) is the spatial density of fea-
tures around location /; for all training images with the given
¢ in which i-th codeword has been detected. p(a;|l;, 04, @)
models the probability of observing an anatomical label a;
around location /; in all training images with the given ¢ in
which i-th codeword has been detected. Obtaining p(I;|o;, ¢)
and p(a;|l;, 0;, ¢) requires learning the spatial density of fea-
tures and the probabilistic distribution of the anatomical re-
gions over a face image for each head pose class ¢, namely
head pose specific probabilistic codebook maps, i.e. “tem-
plates” (see Figure 2 and Figure 3). In this work we con-
sider five head poses, & = {—90°, —45°,0°, +45°,+90°},

and thus we create five templates. Figure 2 shows the learned
codebook-based probabilistic anatomical region models for
each pose. To calculate the probabilistic models p(a;|l;, 0;, @)
and p(l;]o;, ¢), we used histogram estimation followed by the
kernel density smoothing in the vicinity of codeword location.

3. EXPERIMENTS

Experimental Setup: For testing purposes, we collected
5500 video frames from 50 videos each of which was col-
lected from a unique subject and under different illumination
and background conditions, where each subject was free in
his/her movements, resulting in various face expressions,
viewpoints, scales and occlusions (Figure 1 and 5). Although
there are several face detectors developed for unconstrained
environments, we used the Object Class Invariant Model [9]
to detect faces and create SIFT [10] based face codebook
since it was shown to robustly model and detect facial fea-
tures in a viewpoint invariant manner in cluttered scenes.
(We thank Dr. Toews for providing assistance in adapting
the OCI model into our system.) For training purposes, we
built a face database from 1000 FERET images (Figure 2)
from 200 unique subjects containing equal number of images
from each of the five head poses. It is crucial to note that this
database was collected under controlled illumination condi-
tions and subjects presented only the head pose change in the
yaw angle whereas in the testing the proposed approach has
to be able to tackle small angular changes in pitch and roll
(Figure 5). The training database was used to learn 1) the
OCI model to localize faces and create codebook, and 2) the
spatial and anatomical region probabilistic pose templates.

Head pose classification via alternative approaches:
On the 5500 test images from our in-house test data set (see
Figure 1 and 5), we first compare the performance of the pro-
posed head pose classification approach against the work by
Aghajanian and Prince [8] which is the current state-of-the-
art for our problem in this paper. We use the implementation
and the training parameters learned from 10,900 “real world”
training images, which are provided by the authors of [8].
Thus, our results were not affected by any error in imple-
mentation or in algorithm learning step. Since the algorithm
in [8] provided continuous estimation of the head pose, we
needed to discretize their pose space into 5 head pose classes
to be able to compare their accuracy with the proposed ap-
proach. As done in [8], test images were transformed to a
60x60 template using a Euclidean warp. Setting the patch
grid resolution to 10x10, we tested the algorithm in [8] with
three different values of o (standard deviation): 11.25, 45 and
90 degrees, as suggested by authors. The best average ac-
curacy (47.91%) was obtained by 10x10 grid resolution and
o = 11.25. The corresponding confusion matrix is shown in
Figure 4(a).

Head pose classification via the proposed approach:
We tested the proposed approach on 5500 images from our
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Fig. 4. Confusion matrix obtained by (a) the algorithm in [8],
(b) the proposed approach.

in-house test data set, and achieved an average head classi-
fication accuracy of 67.2%, which is higher than the current
state-of-the-art. The corresponding confusion matrix for our
approach can be found in Figure 4(b). The obtained classifi-
cation accuracy is due to the multi-inference approach em-
bedded in the Bayesian formulation. To make a decision,
the proposed approach not only uses the head pose infor-
mation attached to the individual codewords (p(o0;|¢)), but
also the head pose information available in the spatial and
anatomical region probabilistic pose templates (p(a;|l;, 0;, @)
and p(l;|0;, ). Comparing the confusion matrices in Fig-
ure 4, we see that the proposed approach outperforms the cur-
rent state-of-the-art for most of the pose classes. We observed
that this could be due the distinctiveness of the ear in perform-
ing head pose classification. That is, observing any feature
associated with an ear is a good evidence of non-frontal (non-
0°) pose. Furthermore, it is observed that the proposed ap-
proach was able to robustly classify images with decent vari-
ations in pitch and roll angles (see images in Figure 5). How-
ever, our algorithm needs to be improved to better distinguish
between half ({—45°, +45°}) and frontal ({0°}). Most of the
wrong classifications are due to the images with in-between
poses between half and frontal.

4. CONCLUSIONS AND FUTURE WORK

We have proposed a novel probabilistic approach to infer head
pose from 2D face images collected under unconstrained en-
vironments. The experimental results have shown that our
probabilistic and spatial codebook based head pose represen-
tation significantly outperforms the state-of-the-art. We are
currently investigating how to extend our classification for-
mulation in order to do continuous head pose inference. Fur-
thermore, our in-house unconstrained face database will be
available for academic use soon. To obtain a copy of the
data set, please visit authors’ website or send an e-mail to
demirkus@cim.mcgill.ca.

Fig. 5. Sample video frames from the unconstrained face
video database, and the corresponding codewords (red dots)
for each frame which are used by the proposed approach to
infer the posterior pose distribution p(¢|F') (shown as a plot).
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