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ABSTRACT

We present a recursive estimation scheme for deter-
mining surface shape and depth. This technique relies
on the control over the way in which shadows are cast
in scenes, through variation of the position of illumi-
nant. The estimation process is based on the iterated
extended Kalman filter, with a near-optimal control of
the movement of the light source to reduce the sensi-
tivity of the state estimate to the sensory noise.

1. INTRODUCTION

Vision tasks often involve the recovery of object shape
and depth in the scene. Traditional methods such as
shape from shading and stereo are among the com-
mon approaches. Active determination of such param-
eters has received much attention as well. For exam-
ple, Clark [2] presents shape from active photometric
stereo; Aloimonos and Shulman [1] has treated active
shape from z problem as a whole.

Shape from shadows is another area of surface in-
formation extraction. The advantage of using shadows
is quite obvious: no surface reflectance map is needed.
Instead of collecting shading information (such as in
photometric stereo and shape from shading), a bina-
rization of the image which divides the image into shad-
ows and non-shadows is all that is required. This makes
both generating and analyzing image information much
easier. Shafer and Kanade [8] use identified shapes of
shadow to generate constraints giving rise to surface
orientation; Kender and Smith [6] extract surface shape
information based on object self-shadowing under mov-
ing light sources; and Raviv et. al. [7] reconstruct visi-
ble and invisible surfaces by analyzing shadowgrams.

We have proposed a method for locally recovering
both surface shape and depth information from a series
of images of surface shadows [9], based on the controlled
motion of a nearby point light source. Shadow regions
are assumed to have been identified, see [5] for an way
of doing this task.
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These techniques, however, employ seq 1ences of pre-
viously taken images upon which analyses ire based. In
this paper we present a new method to recursively es-
timate shape and depth from moving shadows. How
a new image is taken is dependent upon intermediate
results, under a near-optimal control whi:h minimizes
the uncertainty in the output of the estimetion process.

2. SHAPE AND DEPTH FROM SHADOW

In [9] we proposed an active vision technic ue for recov-
ering object shape and absolute position information.
We will summarize this technique below.

Under perspective projection for a pinhole camera,
the movement of a nearby point light sou :ce generates
a sequence of shadow images. Figure 1 depicts the
geometric model for part of this sequenie, where we
assume a planar surface for the background patch and
a quadratic surface for the foreground patch, and asso-
ciate the superseript i (i = 1,..., k) with the ¢*® light
source position.

In the camera coordinate system we denote r as
a position vector, z a image vector, and n a normal
vector of a surface. We let subscript p denote a point
on the cast shadow boundary, ¢ a poin: on the self
shadow boundary, and [ the light source. .\ symmetric,
positive definite matrix, M, and a vector ¢, describe
shape of the quadratic patch. The focal length of the
camera is f.

Each light source position gives rise tc a set of con-
straint equations that describe the geometric relations
among vectors of points on the surfaces aad in the im-
age plane. With measured and known system param-
eters ip, 3, and r;, we seek the least number of such
equations from which we can solve for 'he unknown
parameters: rp, 7, 1y, t,, and M. These constraints
arise from the following different aspects cf the geomet-
ric model:

o surface patch: inf-p =-1& 'quM 'rq-{—qut,, =
lv
e image formation: [1.7""] = —;L [ri’”] and for
tpy P LTy



terms at which 4" vanishes, there will be either no so-
lution or infinitely many solutions, and it is not possible
to recover the object surface (M).

When A is non-singular # has unique solution

M = —x [0 —0?) (€ - €) - (! - oY) (€ - &)

M = 7500 =) € - €)= (- ) (- )
rqz _ —fA [("“’2773 - w3ﬂ2) El + (_wl,rlli +winl) 62
+ (' - W) €17,

where ni =- i:,,w’. and A % det A. It can be easily

seen that the unique solution exists so longs as any pair
of the light source positions do not fall on the same
radial line from the origin. The rest of the shape and
depth quantities can be found using these values.

Figure 1: Geometry of the Shape Recovery Scheme 3. RECURSIVE ESTIMATION

The performance of the proposed active shadowing al-
q, gorithm can significantly deteriorate due to measure-
ment errors which arise in the measurement of positions
of the shadow boundaries (2, and 4,) as well as the po-
sitions of the light source (r;). The sensitivity of the
o light ray tangent to quadratic surface: ng = 2Mr,+  algorithm to the noise in the measurement drives the
t,. error in the output of the algorithm to an unacceptably
high level. It has been shown in [9] that temporal inte-
gration of independent solutions by means of weighted
least square or median filters alleviate the measurement
errors only to a certain extent.

Better estimates for the shape and depth of & point
over time can be achieved by the use of a recursive
estimator, such as the Kalman filter. The Kalm.an fil-
ter is a common powerful tool for incremental estima-
tion in dynamic systems. Let x, be the state vari-
ables to be estimated at every time step k and vecu,
be the control vector (= ;). Then given the measure-
ments z;, = hy (2, vecu, ) + fiu, where hy(z,, vecu,) =
i,, and Ay, o< N(0, R;), we use an iterated extended
Kalman filter [3] to produce estimates which have the
least expected errors due to measurement noise:

o iluminant collinear with shadow boundaries: ||r,—
7ol +llrg = 7ill = |Irp — mill, and

It can be shown that the above constraints lead to
a nonlinear system of great complexity even in the two
dimensional space, and is therefore constructive to con-
sider some special cases which are reasonable both in
the sense of solving real-world problems and of reduc-
ing the degree of difficulty in finding a solution.

Such a special case, for example, considers some
knowledge of the object shape a priori. In the world we
live in objects often have edges. Hence it is reasonable
to assume that the objects in our scheme have the same
property, without greatly reducing the applicability of
our scheme to real-world situations.

Under such a “sharp-edge” assumption, it can be
shown that in two dimensions we need only solve the
following linear system:

B i1 = St K ilm—hy (80— Hig(84 :0(E1 -2 )],
Az = v, (1)

Ul/f wl 1

where A = nz/f w2 1], 2= (npx:npzl 1/rqz)T’

where K ; = Png(ik,i)[Hk(ik,i)PkHZ’(i‘k,i)+Rk]—1
and Pk+1 = [I—Kk,l'm;ka(ik,im.x)]Pk‘ fori = 1, 2, o ,7:
In the above, &, , = &,_; = (k— 1) estimate of

max*

3 3 . ) ;

) '72 /J; T“’ 1 o ; the state, K, is the Kalman gain matriz, P, the state
and v = (£,£°,€°) . The quantities v’ and £ are estimate error covariance matriz, and H,(2,) is ob-
in.‘ terms ?f thei m?asurfments iand s;i_rstem‘_pararinetel'SI tained by linearizing h around the current estimate,
w = (f’"{, + ?9‘”'7.’")/7 and { = (t,,,,- - ’qz)/‘Y , with :E:: hy(zy, vecu,) = hk(ik,vecuk)+glk(i'k,vecuk)(a:k—
v = friz + iper;,- When 7' = 0, depending on the &)+ ---, where Hy(&,vecu,) = #(z,vecuk)]rzik.
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We assume that the prior is such that Efz,] = £, and
Covlz,] = P,.

4. NEAR-OPTIMAL CONTROL OF
NEXT-LOOK

In active vision, one should strive to utilize the ac-
tive agent to control the geometric parameters of the
sensory apparatus and thence gather more information
useful for the solution process. In other words, instead
of having the agent move randomly or follow a pre-
determined path, one should move it to a point which
is “optimal” in some sense.

In the Kalman filter the level of uncertainty in the
state estimate is measured by the covariance matrix:
Tr(P,) < Tr{E[(z — £,)7 (z — #;)]}." Then it is nat-
ural to find, for each k, vecu; such that this uncertainty
is minimized. This is equivalent to

max §, = Tr(K H,P,_,).

vecuy (2)

A gradient descent on §; would usually solve a non-
linear optimization problem like this one [4], seeking
the maximum of §, at each time step. However, prac-
tical limitations on the light source motion prevents
the maximum being attained at each time step. For
example, the light source cannot move behind the fore-
ground object, or make the cast shadows move out of
the image plane, or the robot manipulator which is
placing the light source has its own limit on the extent
of workspace. Hence we are solving a constrained op-
timization problem, which is usually very difficult. We
are then forced to make approximations to the solu-
tions, thereby settling for near-optimal solutions.

We use a variant of the gradient descent on é;: at
each time step k, we move the light source in the gra-
dient direction by a small amount. The local minimum
of é, may never be attained this way since é, changes
from one time step to the next due to the change in the
Kalman gain matrix K as new observations are made.
This again, will give us a near-optimal solution. If the
constraint on the change in the control vector is such
that the allowable change is small, and if the bound-
ary of the region of allowable control vectors is convex,
then it is likely that the optimal control vector will lie
on the boundary formed by the constraints, and a gra-
dient step to the boundary will therefore provide the
optimal change.

1In practice, this measure is given by weighting the diag-
onal elements with the inverse squares of their correspond-
ing current state values to offset the effect of different units
and scales.
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If we let uy ;= vecu, +C7,, 6, where C describes
the magnitude of each move, it can be shown that

=2Tr (K,c —%ﬁf* Pk>

a5,
Ou,

13

®)
for each component u; of vecu,.

5. SIMULATIONS

Based on the results and analyses above ‘ve perform a
series of simulations on the algorithm fo: the two di-
mensional case in which the object has a sharp edge. In
the following, all length measurements ars in millime-
ters and all angle measurements are in deg ees, and sur-
face normals are unitless, unless otherwis: stated. We
set the scene as follows: the background hes a normal of
(-=107%,-107%) and goes through the pcint (0,1000),
the shadowing object has its sharp edge at (42, 750) in
front of the camera.

Noise comes from mainly two sources: quantization
noise in the image measurements and sys'ematic noise
in the light source placements. Since tie resolution
of the image cannot be better than one pixel we at-
tach to all image measurements a uniforrr noise with a
standard deviation (o) of one pixel width for the worst
case.

In the following we allow the noise level in the light
source position to have a standard deviation of 0, 0.1,
0.3, and 1. Each plot below show the log of relative
errors of estimate for each state. In Figures 2 and 3,
the plots are arranged as follows: from left to right,
top to bottom, o, = 0,0.1,0.3,and 1. Pl>tted are the
diagonal entries of the error covariance matrices. These
values are estimates for the variances in +he estimates
of the state variables.

In the iterated extended Kalman filter we let the
light source follow a circular trajectory. This yields
the plots shown in Figure 2.

The constrained optimization problem produces the
trajectories for the light source along which the error
covariance of the state estimate is nearly minimized at
every step. In general, this leads to faster and bet-
ter convergence than those of the previous two scenar-
ios. The exception occurs when the unceitainty in the
light source position is high; in that case the trajec-
tory, based as it is on noisy information, will be quite
different than the optimal one determine:l using exact
information.

A worst case of about 10% error is aciieved. More
importantly, a much faster convergence («rop-off) rate

2The camera has the parameters of that in cur lab: f = 50
and pixel size = 17u.
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Figure 2: Log of Relative Estimation Error: IEKF (left
to right, top to bottom): ¢, =00, =0.1, 0, = 0.3,
o, =1
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Figure 3: Log of Relative Error with Control (left to
right, top to bottom): ¢, =0, ¢, = 0.1, 0, = 0.3,
o, =1
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is realized for every case, making it a much more ef-
ficient recursive estimator. Since the Kalman filter is
optimal when the measurement noise is Gaussian, the
increasing error in the state estimate is to be expected
here.

6. CONCLUSIONS

We present an algorithm to recover shape and depth
from a sequence of shadow images generated by a near-
optimal placement of an illuminant. Unlike traditional
image sequence analysis which applies algorithms to
a set of pre-taken images, each new image in our al-
gorithm is dependent upon the intermediate results of
the algorithm.

A constrained near-optimal optimization problem
is solved recursively based on the iterated extended
Kalman filter. This new technique uses vision as part
of the control loop to minimize uncertainty level in the
state estimate.
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