MIMD IMAGE ANALYSIS WITH LOCAL AGENTS

James J. Clark and Robert P. Hewes

Division of Applied Sciences
Harvard University
Cambridge, MA

ABSTRACT

Complex systems that are typically thought of as ex-
hibiting “life-like” qualities are observed to have many
aspects in common with MIMD parallel computing sys-
tems. We present a computational model of a class of
MIMD systems based on this observation. We describe
the application of the model to the parallelization of im-
age analysis tasks. We describe an example of our ap-
proach applied to the problem of extracting the circuit
design from the layout image of a CMOS integrated
circuit.

1. INTRODUCTION

In the quest for increased rates of computation com-
puter scientists and engineers have turned toward par-
allel computing systems. Such systems speed computa-
tional tasks by dividing the task into parts, and execut-
ing each part in parallel with separate computational
engines. Early parallel computers were of the Single-
Instruction-Multiple-Data (SIMD) form [2], wherein each
processing element executes the same computations on
different data. The effectiveness of these types of paral-
lel computers are limited by the extent to which an ar-
bitrary task can be divided into a set of equivalent sub-
tasks. The large majority of computational tasks, how-
ever, are very difficult to partition into sets of equiva-
lent sub-tasks. Implementing these tasks in SIMD com-
puters will result in a very inefficient use of computa-
tional resources. A more general, and powerful, class of
parallel computers are the Multiple-Instruction-Multiple-
Data computers [2]. These computers consist of a set of
processing elements that can execute different compu-
tations on different data. MIMD computers, however,
have the drawback that they can be very difficult to
program efficiently, due to the need for the processors
to act independently yet cooperate on the execution of
a task.

This research was supported in part by the Brown-Harvard-
MIT Center for Intelligent Control Systems, under A.R.O. grant
number DAA103-86-K-0170.

681

0-8186-6950-0/94 $4.00 © 1994 IEEE

One way to simplify the task of MIMD program-
ming is to constrain the space of possible programs by
providing a template which the programmer can use
to specify a program. This template is equivalent to a
model of a class of MIMD systems, and systems that
are well described by this model will be straightforward
to program using the template.

The question which is thus left is what should be
the form of the model? We approach this question by
observing that many natural systems have the charac-
teristics of MIMD systems. Natural systems are “pro-
grammed” by evolution, but programmers of a compu-
tational system that is based on this natural model can
adapt algorithms developed in nature for use in their
programs.

Thus, our goal is to develop a computational model
that will allow natural systems to be analyzed and sim-
ulated, and that will ease the task of programming
a MIMD computer through the applications of con-
straints derived from the observation of natural MIMD
systems.

Significant characteristics of such natural complex
systems include:

o Encapsulation: Parts of the system can be com-
bined, or encapsulated, into distinct units (which
we will call agents), hiding the complexity of the
unit’s constituents.

o Diversity: The atomic units have differing char-
acteristics.

e Embeddedness: The agents are embedded in an
environment with which they can interact.

o Locality: Communication between agents and be-
tween agents and their environment are local. There
is no global controller telling the agents what to
do (apart from the data space).

o Sparseness: The agents, taken together, do not
cover the environment with their loci of commu-
nication.

e Mobility: The agents are able to move about the
environment,.

e Mutability: The behavioral description of the agents

can change in response to changes in their inter-
nal state or to environmental stimuli.

e Reproduction: Agents can be created and destroyed.

Similar systems have been developed by biologists
seeking to simulate and model biological systems [5, 6].
However, complex systems with the above characteris-
tics are by no means restricted to biological systems. A
collection of mobile robots interacting on a factory floor
is a non-biological example of such a system. Thus,
in addition to modeling biological systems, we want to
use our model to help design and simulate artificial sys-
tems, such as groups of autonomous robots, nanotech
assemblers, virtual reality systems, and computational
applications such as VLSI design and image analysis.

Many image analysis tasks, such as image filtering
and pointwise feature detection, are efficiently carried
out by SIMD parallel computers. Other tasks, such as
edge tracing and linking, are inefficient when mapped
to SIMD machines. These tasks can be parallelized
more effectively with MIMD computers, and with par-
allel machines that have more flexible interconnectiv-
ity than the standard SIMD machine. One of the most
significant costs of moving from a SIMD parallel ma-
chine to a MIMD machine is the increase in the dif-
ficulty in specifying programs for the machine. In the
MIMD setup, the processors must cooperate effectively
in performing computations and communicating infor-
mation. The architecture implied by the MASE model
promise to ease the burden of programming parallel
versions of such tasks.

2. THE MASE COMPUTATIONAL MODEL

We present in this section a computational model that
specifies the form of the MIMD systems that we will
allow. The constraints on the allowable MIMD systems
are both explicit and implicit in our model. The ex-
plicit constraints on the MIMD systems manifest in the
form of a program template. This template dictates, in
a quite restrictive manner, the nature of the allowable
programs, while retaining enough freedom to permit a
wide range of programs to be implemented.

The two major elements of our computational model
are the agents and the environment. A formal defini-
tion of these elements can be found in [3]. We will
provide only an informal definition here.

The environment is a set and a mapping that as-
sociates elements of some object space to each ele-
ment of the set. This mapping can be changed by the

682

agents. An example of an environment is a finite two-
dimensional lattice, where at each point of the lattice
Is associated an integer between 0 and 255 (i.e. a digi-
tized image).

The environment acts as a shared memory for the
agents, thereby allowing the agents to interact. The
environment also serves as an input/output channel,
allowing data (such as images) to be communicated
to/from systems external to the MASE system.

An agent consists of a processor, a local memory
unit, a collection of five routines, which are continually
executed in sequence. FEach agent has access to the
environment, which acts as a shared memory for the
system. The agents have localized access to the envi-
ronment. This local area of the environment is called
the receptive field of the agent. The five agent sub-
programs are:

¢ ¢, : READ. This function reads in data objects
located in the receptive field into the agent’s local
memory.

¢ ¢, : UPDATE. This function maps the current
agent state (local menory values) into a new state.

e ¢, : WRITE. This function writes out some of
the agent’s local variables to locations in the agent’s
receptive field.

e ¢, : ALTER. This function determines a new set
of the five sub-programs for the agent.

¢ ¢m : MOVE. This function changes the receptive
field of the agent.

Programming, or specification of, a MIMD system based
on this model involves specifying, for each agent, the
five functions as well as the initial state.

3. UTILITY BALANCING

The agent programs must be designed to exhibit the
behaviour that will result in the desired task being ef-
ficiently executed. In any multi-processor system the
most important measure of performance is the speedup
in completing a given task obtained by using a number
of processors over using a single processor. The two
most important measures of a processor’s utility are
redundancy and irrelevance. A MIMD system, to be
efficient, must apportion out tasks to its constituent
processors in such a way as to minimize redundancy
and irrelevance. This process is called load balancing
and is one of the most important facets of MIMD sys-
tem design [1]. Our MIMD model, based as it is on
natural systems, can use load balancing strategies that
have been developed by natural systems. One of the

most important of these strategies, aimed at reducing
redundancy, is dominance, wherein the dominant agent
gets to perform a certain activity while other agents are
inhibited from doing so. The dominance can be based
on fixed agent characteristics, such as an identification
code, or can be based on variable agent attributes, such
as age, time spent performing a task, or value of an in-
ternal state variable (e.g. health).

4. USAGE OF THE MASE MODEL

The MASE model is a model of a certain class of MIMD
systems. It is not a good model for existing MIMD
parallel computers. It does, however, imply a type of
MIMD computer which, if constructed, would directly
implement programs specified by the model. Until such
a machine is built, we must content ourselves with the
use of our model as a simulation and algorithm de-
velopment tool. Note, however, that there are many
existing, non-computer, systems where our model can
be used directly, such as assemblies of mobile robots.

We have implemented in software a C++ based
object oriented simulator that allows the user to ex-
ecute a specification of a MIMD system adhering to
a restricted version of our computational model. This
simulator is an experimental testbed for demonstrating
and analyzing the performance of solutions to computa-
tional problems that utilize our framework. In order to
demonstrate the ease and efficiency with which a com-
plex image analysis task can be implemented using our
model, we applied the model to the task of extracting
a circuit netlist from a fabrication mask level descrip-
tion of a VLSI layout. This requires a complex image
analysis process. The VLSI layout extraction process
produces a circuit netlist, which is a listing of circuit el-
ements and their connectivity, from a description of the
masks used in the fabrication of the integrated circuit
graphical description format. As input to our extractor
program we take a rasterized version of the CIF repre-
sentation [4] of the layout. The output of the program
is a series of statements indicating the parameters of
each transistor and their connectivity.

The image shown in figure 1 depicts a layout of a
simple four-transistor digital NAND circuit. The cir-
cuit contains eighteen contacts. Shown are the recep-
tive fields of the agents of different types.

4.1. MASE VLSI Extraction Algorithm

There are many MASE algorithms that could conceiv-
ably be written to solve the VLSI layout extraction
problem. We will present one such algorithm here, but
make no claims as to its optimality. We will, however,

683

Figure 1: The Simulator view of the layout for a CMOS
NAND circuit and the agent receptive fields.

apply whenever possible, utility balancing techniques
based on the principles described earlier.

The layout extraction problem can be broken down
into a number of subtasks, enumerated as follows, 1)
Find wire boundaries. 2) Trace and label wire bound-
aries such that each wire has only one label and each
label is attached to at most one wire. 3) Locate the
transistors. 4) For each transistor, trace the transistor
boundary to measure the gate length and width and
to compile the labels for the gate, source, and drain
terminals. Output a transistor description statement.
5) Find contact areas. For each contact, determine the
labels of the wires that overlap the contact area, and
output a node equivalence statement.

To carry out these tasks, our algorithm employs the

following seven types of agents, layer finder, node_labeller,

fet_labeller, fet_output, contact_finder, node_director,
and node_propagator.

layer finder: The task of agents of the layer_finder type
is to search the environment for the boundaries of un-
labelled wires of metal, poly, or diff layers. The search
pattern used is a raster scan. Our algorithm labels
wires only on their boundaries. If no layer boundary
is found at the current position of the agent, the agent
continues to the next position in its scan. If an unla-
belled boundary has been detected the agent alters it’s
type to that of a nodelabeller agent. To reduce the
number of layer_finder agents when most of the wires
have been found a layer finder agent is caused to turn
into a node_propagator if a node_propagator agent is

in the agent’s receptive field at that same time a label
written by a node_director agent is also in the agent’s
receptive field.

node_labeller: The job of the nodelabeller is to trace
the boundary of the wire, while writing a unique la-
bel to the environment along the wire’s boundary. The
uniqueness of the label can be assured if we use the
agent ID number as the label and if we ensure that
a node_labeller that completes the labelling of a wire,
as well as any of its descendents (i.e. agents with the
same ID number), cannot change into a layer_finder.
The tracing time can be cut by up to 50% if two agents
cooperate in the labelling operation. As the agents
have only local access to the environment, they will
not know that there are other agents that are attempt-
ing to label the same wire. Eventually, however, an
agent, in the course of it’s tracing, will encounter a
portion of the wire that has been labelled by another
agent. At this point we invoke a dominance strategy.
A seniority based dominance strategy is used. With
this strategy, as an agent writes the node label it also
writes the time at which it started labelling the wire.
If the agent encountered a label written by another
agent it would check the start time written by the other
agent. If the other agent’s start time was greater than
the current agent’s start time the other agent’s label
would be overwritten and the agent would continue
tracing and labelling the wire boundary. If, however,
the other agent’s start time was less than the current
agent’s start time, the current agent would reverse di-
rection and start labelling with the other agent’s label
and start time.

When an agent encounters a label that is equal to
its current label it does one of two things, depending
on whether or not the label is equal to its ID or is that
of another agent. If the label is that of another agent,
then the agent changes into a layer_finder. If the label
is that of the current agent, then the entire perimeter
of the wire has been labelled with that label. The agent
then turns into a node_director agent, unless the wire
being labelled is a DIFF wire, in which case the agent
turns into a fet_labeller agent.
fet_labeller: The job of a fet_labeller agent is to find all
occurences of the boundary of transistors along a DIFF
wire, and to label these transistor boundaries as such.
The label is used to indicate that the node label for the
DIFF wire is stable and can be used by the fet_output
agents in composing the transistor output statements.
fet_output: The role of the fet_output agents is to gain
dominance of a transistor boundary, measure the length
and width of the gate region of the transistor, and wait
for the labels written to the DIFF and POLY wires on
the boundary to become stable. Once all the labels are

684

stable, the labels are written out to a file, along with
the transistor gate length and width, and the agent
changes to a node_propagator.
contact finder: A contact_finder agent is created when
a node_propagator detects the presence of a contact
region which has not already been captured by an-
other contact_finder. The contact_finder’s role is to
capture the contact region, thereby establishing domi-
nance, and to wait until the wires overlapping the con-
tact area become labelled (through propagation of the
labels by the node_propagators). Once the wires have
been labelled, the contact_finder agent outputs the la-
bels of the two wires to a file in the form of an equiv-
alence statement. If the contact_finder is in a contact
region that has already been captured by another con-
tactfinder, or when it has output a node equivalence
statement, it turns into a node_propagator agent.
node.director: The purpose of the node_director agents
is to retrace the boundary of a traced wire. This re-
tracement 1s neccessary to signal the node_propagator
agents to fill in the wire interior areas with the wire
label. This filling in of the wire interior cannot begin
until the wire boundary has been completely traced, as
it is not until that time that a label on any point on
the wire boundary is guaranteed to be the unique node
label for that wire. There is only one node_director
on every wire, as they are created from the dominant

node_labeller agents on each wire. When the node_director
agent completes it’s retrace it turns into a node_propagator

agent,

node_propagator: The purpose of the node_propagator
agent is to propagate the label written on the boundary
of a wire (by the node_director agents) into the interior
of the wire so that the labels can be used by the con-
tact finders. The node_propagator agents also look for
transistor regions that have been marked by fet_labeller
agents but not yet been examined by fet_output agents.
If such a transistor is found, the node_propagator turns
into a fet_output agent and begins examining the tran-
sistor. Also, if an unlabelled contact area is found, the
agent turns into a contact_finder agent.

4.2. Agent Interaction

Agents interact in two primary ways. The first way
is the modification of an agent’s processing via mes-
sages written to the environment by other agents. This
could, for example, be an activity such as moving in a
certain direction in response to a particular message.
The second form of interaction occurs when an agent of
one type turns into an agent of another type, based on
internal state variable values or, again, on the values of
external environmental messages. The agent interac-
tions in the layout extractor algorithm are summarized

node
labeller

)

node
propagator

Figure 2: Interaction between agents of different types.
Straight lines indicate transitions between agent types.
Curved lines indicate the facilitatory (indicated by a
’+7) or inhibitory (indicated by a ’-*) effect of different
agents on the agent transitions.

' contact
| | tinder
-\

in figure 2. The straight lines indicate possible changes
of one type into another. The curved line indicate the
effects agents of various types have on the probability
of a given transitions.

In figure 3 is shown the agent populations over time
for the case of a D-flip-flop containing 32 transistors
and 120 contacts. In this plot one can see the dynamics
of the utility balancing aspect of the algorithm.

5. SUMMARY

We have presented a model for MIMD systems, based
on observations of natural systems. This model al-
lows the straightforward specification, via a template,
of MIMD parallel programs. An example of the ap-
plication of this model to an image analysis task was
described, that of extracting a circuit from the bit-
plane images of the fabrication mask layout of an inte-
grated circuit. This example illustrated the use of load-
balancing techniques to allow processors in a MIMD
system to cooperate in the detection, labelling, and
linking of features in an image.

180

r-"_‘
abeller —e—
ma -
rector
»—
-—
lor 8—
g
a
2
k]
-3
£
2
1400 1800

Figure 3: The number of each type of agent as a func-
tion of time for the D-flip-flop layout.

6. REFERENCES

[1] I. Ahmad and A. Ghafoor, “Semi-distributed load
balancing for massively parallel multicomputer sys-
tems,” IEEE Transaclions on Software Engineer-
ing, Vol. 17, No. 10, October 1991, pp 987-1004

[2] M.J. Flynn, “Very high speed computing systems,”
Proceedings of the TEEE, Vol. 54, No. 12, 1966

3] R. P. Hewes, A Mobile-Agent and Shared-
Environment Model of Parallel Computation, Ph.D.
thesis, Division of Applied Sciences, Harvard Uni-
versity, 1994

[4] C. Mead and L. Conway, Introduction to VLSI Sys-
tems, Addison-Wesley, 1980

[5] H. B. Sieburg, “The cellular device machine: Point
of departure for large-scale simulations of complex
biological systems,” Computers and Mathematical
Applications, Vol. 20, No. 4-6, 1990, pp 247-267

[6] C. E. Taylor, D. R. Jefferson, S. R. Turner, and
S. R. Goldman, “RAM: Artificial life for the explo-
ration of complex biological systems,” in Artificial
Life, C.E. Langton. ed., Volume VI, Santa Fe In-
stitute Studies in the Sciences of Complexity, pp
275-295, Addison-Wesley, 1988

