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ABSTRACT

When a bandlimited signal is time warped by composition
with a monotone function, the resulting signal is generally not
bandlimited. Nevertheless, it has been observed that such sig-
nals can be reconstructed from sample sets of finite density.
This paper examines the sampling and reconstruction problem
for time-warped bandlimited signals and discusses its relation-
ship to the more general sampling problem for non-bandlimited
signals.

I. INTRODUCTION

Standard Shannon or Nyquist sampling theory forms a cor-
nerstone of modern digital signal processing by providing a
mechanism for sampling and reconstruction of bandlimited sig-
nals. In [1], it was observed that this theory extends to allow
reconstruction of certain non-bandlimited signals from sets of
non-uniformly spaced samples. This paper examines the space
of signals to which this observation applies.

II. TIME-WARPED BANDLIMITED SIGNALS

In the following sections, B will denote the set of real-
valued, finite-energy (L?) signals defined on (—o0,c0) with
spectra F' that vanish outside the interval [, 2). I will rep-
resent the collection of all real-valued monotone functions on
(—00, 00). Note that each v € I' has an inverse 7~ with the
property that v~'(y(t)) = v(y~'(¢)) = t for all ¢ € (—o0, 00).

With this notation, the observation contained in [1] is as
follows: If f € B and v € I', then the time-warped sig-
nal b = f o~ formed by composing f with v [ie., the signal
with values A(f) = f(y(t))] can be reconstructed from samples
hn 2 h(y~'(nT)) where T denotes the Nyquist sampling inter-
val for f. This reconstruction is possible because the samples
ho = by~ (nT)) = f(y(y~'(0T)) = f(nT) are in fact Nyquist
samples of f. Thus f can be reconstructed from the samples
h,, and then composed with «y to yield the desired signal h.

Denoting the collection of signals that can be formed by
time warping of a bandlimited signal as Bo I, it is immediately
apparent that 5 C Bo I'. In fact, it follows immediately from
the shifting and scaling properties of the Fourier transform that
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time warping of a bandlimited signal by any affine function v
(ie., 7(¢) = at+b with a # 0) results in a bandlimited signal. The
following section shows that Bo I" indeed contains many signals
that are not bandlimited, but does not contain every L? signal.
The remaining sections of this paper deal with the problem of
approximating an arbitrary L? signal by a signal in BoI" and the
demodulation problem of approximately decomposing a given
signal into the form f oy for some f € Bandy € I'.

IIL. SOME PROPERTIES OF BANDLIMITED SIGNALS

There are numerous approaches to demonstrating that Bo I"
contains signals that are not bandlimited. An example given
in [1] shows conceptually that it is possible to produce a non-
bandlimited signal by time warping a bandlimited one. Two
more rigorous examplés, following classical work in harmonic
analysis, are based upon two properties of bandlimited functions.

The first of these properties is that a bandlimited function
cannot approach zero as ¢ — oo faster than the function e~*
does. Mathematically, every bandlimited function f must satisfy

lim sup |e* f(¢)] = o0 n

This property, which may be thought of as a stronger form of
the well known feature that a bandlimited function cannot be
time limited, follows from a theorem due to Levinson (see [5]
or [6], Theorem XXII) and motivated by the work of Paley and
Wiener [7].

This property allows construction of simple examples of
non-bandlimited functions in 5 o I

Example 1 The function f with values

Fit)= sin(t)

€)

is well known to be bandlimited. However f(e') cannot be
bandlimited because

lixtn sup €' f(e")| = limsup |7 f(7)| = limsup |sin(7)| =1 (3)
A second property of bandlimited functions of the form

n
f@t)y= [ . Fw)etdw “)
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is that they are entire [8] if ¢t is considered as a complex vari-
able [9]. Because the only entire function that is zero on any
interval of the real line is identically zero, a broad class of non-
bandlimited functions in 3 o I is established:

Theorem 1| If f € B and v is affine on any interval, then
fovy & B unless v is affine on (—oo, o).

Proof Suppose 7(¢) = at + b with a # 0 on some interval 7, but
not on all of (—oo, 00). If g(t) = f(at + b) then g € B, but the
signal [f o y] — g is not bandlimited because it is zero on 7.
Therefore g ¢ B.

In particular, this theorem implies that a piecewise-linear
time warping of a bandlimited function cannot be bandlimited.
It also shows that signals in B are sensitive to arbitrarily small
time warpings:

Example 2 Define a monotone function v by

the 0<t<1
1= { t otherwise ©)

Then sup |v(t)—t| and [ |v(t)—t|dt can both be made arbirrarily
small by choice of €. But, if ¢ #0, foy ¢ I3 forany f € B.

These properties suggest that, not only are there many cases
where a time-warped bandlimited signal is not bandlimited, but
that this is the typical situation. This is expressed in [2] as a
conjecture:

Conjecture V If f € Band vy € I, then fo~ € B if and only
if v is affine.

1V. TIME-WARPED BANDLIMITED SIGNALS IN L?

The previous two sections establish that a broad class of
non-bandlimited signals can be reconstructed from sets of non-
uniformly spaced samples having finite sample density [1]. How-
ever, the space B3 o I" does not contain every L? signal. The

signal
pe{ L -Lsi<
(&)= 0 otherwise

(6)

cannot be expressed in the form g = foyfor f € Bandy € T,
for example.

Approximation of L? Signals

Although not every g € L? is in B o I, it is possible to ap-
proximate every such g by a time-warped bandlimited function
h = f o~ so that the total-square error

g = hIP2 [ g - et @

is arbitrarily small. That such an approximation is always pos-
sible follows from the Plancherel theorem [8] which shows that
any g € L? can indeed be approximated by a bandlimited signal
f. Therefore, any such g has an approximation as f o ¥ where
f € B and v(¢) = ¢. This is equivalent to the statement that any
L? signal can be reconstructed with arbitrary accuracy from uni-
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formly spaced samples by making the sampling rate sufficiently
high.

Representational Ambiguity

Having shown that each g € L? can be approximated by
a time-warped bandlimited signal, it is important to note that
there will generally be several approximations in this form of
equal quality. One reason that this is true is because every
time-warped bandlimited signal has infinitely many equivalent
representations of the form f o~y with f € B and v € I
Suppose, for example, v, is affine and 7, is- monotone, and
denote v3 =y, 0 72. Then if f € B, the signal g = f o 7; may
also be expressed as g = ¢ 0 v, where ¢ = fo vy, € 5.

This representational ambiguity may be eliminated by con-
sidering the collection By, of all f € B with Fourier trans-
forms F having support interval [0, 1] (see [8]). In other words,
Bio,1) consists of signals whose band is contained in the inter-
val 0 < w < 1 but is not contained in any smaller interval.
Any f € B can be expressed uniquely as the time warping
of some A € By, by an affine function ¥(t) = at + b with
a > 0. Furthermore, as argued in [2], if Conjecture 1 holds and
g = fiom = fro72 with f; € Bj,j and ; monotone increasing
for : = 1,2, then f; = f> and 1 = v2 (ie., this representation
is unique). With this in mind, bandlimited signals f will be as-
sumed to be in By, and monotone functions will be assumed
to be increasing for the remainder of this paper.

Approximation with Non-Affine Warpings

Even in the absence of the representational ambiguity dis-
cussed above, there will generally be several approximations of
a signal in L? by time-warped bandlimited signals that will yield
total-square less than a given upper bound. Suppose, for exam-
ple, g = fi 0, is a non-bandlimited L* signal formed by time
warping a bandlimited signal. Then, as discussed above, g may
be approximated with arbitrary accuracy by a bandlimited sig-
nal h = f; 0y, where 7y, is affine. Thus, given any total-square
error threshold € > 0, the representations f, oy, and f, 0 ¥,
are both satisfactory approximations of g. There are also non-
bandlimited approximations of g of the form f o~y with f # f;
and v # v, that satisfy the same total-square error bound.

Because the underlying purpose of the approximation is to
sample g, a reasonable criterion for deciding among the nu-
merous approximations of g that yield acceptable reconstruction
errors is to choose one that minimizes the sample density. If a
non-bandlimited signal g is approximated as f o~y with v affine,
reconstruction error will generally go to zero only as the sam-
pling rate approaches infinity. If g is actually a time-warped
bandlimited signal, it is desirable to determine the functions f
and 7 of which g is composed because:

L. The representation, and the corresponding sampling and
reconstruction processes, are exact; and

2. The number of samples required to achieve a reconstruc-
tion of acceptable accuracy may be smaller.

If g ¢ BoI, sample density is minimized by an approximation
foy with f € B[o,l] and



s(t) £ 11(t) - 2(-)|

having order [8] as small as possible.

V. SAMPLING OF NON-BANDLIMITED SIGNALS

In [2], the process of time warping a bandlimited signal is
likened to a generalized phase modulation in which the bandlim-
ited signal f is regarded as a carrier signal and the time-warping
function y as modulating function. In these terms, the problem
of decomposing an arbitrary g € L? into the form f o~y may be
regarded as a generalized demodulation problem. The sampling
and reconstruction scheme discussed in the first section of this
paper assumed that the modulating function v was known. In
practice, the modulating function is often not known and the
sampling technique requires that implicit estimates of both f
and v be made using measurements involving only the values
of g.

As discussed in the same reference, finding an exact de-
modulation for an arbitrary L2 signal is a difficult problem. It
may be expressed as an ill-posed inverse problem that can be
approached by regularization into the form of an energy func-
tional minimization problem, but this approach offers little hope
for practical applications.

On the other hand, it is relatively easy to devise ad hoc
approaches for approximate demodulation. Suppose g is to be
approximated by a function of the form f o v where f has
unit bandwidth. If the bandwidth of g is estimated locally at
each ¢ to yield an estimate B(t) of the “local bandwidth” of g
[4], then v may be estimated by observing that v'(¢) should be
proportional to B(t). In practice, B may be obtained from f in
a variety of ways — such as time-windowed spectral estimation.
An appealing aspect of this perspective is that it satisfies the
intuitive notion that the appropriate sampling rate for a signal
with time-varying local bandwidth should vary in the same way
that the local bandwidth does.

VI. CONCLUDING REMARKS

The authors believe that the approach discussed in this short
paper provides significant potential for efficient sampling of cer-
tain non-bandlimited signals, particularly those that are “bursty”
in nature. The current topics of emphasis in our continuing work
in this area include:

1. Establishing the validity of the “folk theorem” of Conjec-
ture 1. We are pursuing an approach that appears promis-
ing, involving the representation of bandlimited functions
as everywhere-convergent power series at a single point
in the time domain;

. Developing and empirically evaluating practical demodu-
lation and implicit sampling techniques; and

. Formulating this perspective on sampling as part of a gen-
eralized theory of run-length encoding [3].
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