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This paper introduces a non-uniform filter formulation into the Brainard and Freeman Bayesian color
constancy technique. The formulation comprises sensor measurements taken through a non-uniform fil-
ter, of spatially-varying spectral sensitivity, placed on the camera lens. The main goal of this paper is two-
fold. First, it presents a framework in which sensor measurements obtained through a non-uniform filter
can be sequentially incorporated into the Bayesian probabilistic formulation. Second, it shows that such
additional measurements obtained reduce the effect of the prior in Bayesian color constancy. For the pur-
poses of testing the proposed framework, we use a filter formulation of two portions of different spectral
sensitivities. We show through experiments on real data that improvement in the parameter estimation
can be obtained inexpensively by sequentially incorporating additional information obtained from the
sensor through the different portions of a filter by Bayesian chaining. We also show that our approach
outperforms previous approaches in the literature.

� 2009 Published by Elsevier Inc.
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1. Introduction

Color constancy is the ability of a vision system to compute a
measure of a surface’s color that is independent of the spectrum
of the light incident on the surface. The human visual system has
an effective, if imperfect, color constancy mechanism. Studies of
the human color constancy system have led to the development
of many color constancy methods for machine vision applications.
None of the existing color constancy techniques function perfectly
in all situations, and most fail outside of a limited domain of appli-
cability. The difficulty in solving the color constancy problem lies
in the bilinear nature of the underlying relation between the illu-
minant and surface reflectance spectra and the measurements pro-
vided by the photoreceptors. Perhaps the most successful methods
of dealing with the inherent ambiguity induced by the bilinearity
of the problem employ regularization techniques. A notable exam-
ple of this can be found in Brainard and Freeman’s Bayesian tech-
nique [1].

One of the advantages of the Bayesian approach to solving the
color constancy problem is that it permits a straightforward inte-
gration of multiple sources of information. A drawback of any
Bayesian method is the need to specify a prior distribution on
the solution space, and the bias induced by the particular choice
of prior. If more information, in the form of additional independent
measurements, is provided, the influence of the prior is reduced.
Studies of the human visual system reveal a possible source for this
87
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extra information. In looking at the structure of the retina, it is
clear that the spectral sensitivity of the photoreceptors is not uni-
form across the retina. Because of the effects of the macular pig-
ment, as well as the varying path length of light rays through the
lens material, the foveal photoreceptors are less sensitive to blue
wavelengths than the photoreceptors in the periphery. Despite
this, the human perception of color is invariant to eye position.
This means that we perceive the same color of an item both periph-
erally and foveally. One explanation for this invariance of color
perception across the retina is that the visual system is applying
a perceptual-stability constraint. A theory of how this could be
accomplished was proposed by Clark and O’Regan [2]. They sug-
gested that moving the eye results in a variation in the retinal sig-
nal. This variation, under the assumption that the world itself is not
changing, allows for the generation of a signal for adaptation,
which can be used to drive learning of invariance. Once invariance
is learned, the system will produce the same percept of color no
matter on which part of the retina the stimulus falls.

We incorporate the intuition provided by the Clark–O’Regan
color stability theory into the Brainard and Freeman Bayesian tech-
nique. A non-uniform filter with spatially-varying spectral sensi-
tivity can be used to represent the photoreceptors at different
retinal locations. Measurements can be obtained sequentially by
moving the gaze across a surface in the scene. These measurements
can be used to update the inference resulting from our Bayesian
formulation. Moreover, we propose to acquire multiple images of
the same scene by moving the camera. This camera motion also al-
lows for acquiring additional measurements which can be used to
reduce the effect of the prior in the Bayesian formulation. A major
advantage of our approach is that it does not require all surface
roach to color constancy using non-uniform filters, Comput. Vis. Image
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patches in the scene to be viewed through the whole filter. In other
words, some patches can be viewed through one portion of the fil-
ter but not another.

All color constancy approaches, including the proposed one,
have a limited domain of applicability which is usually defined
by a set of assumptions. In this paper, we also have a set of
assumptions that are stated up front to make it simpler for the
reader to follow through the derivations later on in this paper.
First, it is assumed that the surfaces are Mondrian [3]. A Mondrian
is a planar surface composed of several, overlapping, matte,
patches named after the style of painting produced by the artist
Piet Mondrian. Also, the surface patches are uniform and are
uncorrelated from each other. Next, it is assumed that the sensor
measurements obtained through the different portions of the filter
are statistically independent from each other. In the case of obtain-
ing measurements through different portions of the filter for the
same surface, the independence assumption is still applied. In this
case, one can think of the different parts of the surface viewed
through different portions of the filter as different surfaces. The
fact that they have the same underlying spectra does not necessar-
ily imply that they are parts of the same surface. Moreover, it is as-
sumed that each sensor measurement comprises three statistically
independent measurements for the three sensor types: Red ðRÞ,
Green ðGÞ, and Blue ðBÞ. Furthermore, the light illuminating a Mon-
drian scene is assumed to be locally constant; that is the spectral
characteristics of the light vary slowly. Therefore, the spectrum
of light falling on the lens does not vary with viewpoint for one
surface patch, and any change in measurements after moving the
sensors would be due to noise. However, it is assumed that these
measurements are constant. Note that assuming constant illumi-
nation across a scene is a common practice in color constancy ap-
proaches [4]. Moreover, since the surface patches are flat in nature
and they are placed on a flat surface, there are no interreflections
between them. This means that a surface spectral reflectance and
the illuminant spectrum vectors are sufficient statistics for the
measurements of the corresponding single surface patch. Further-
more, it is assumed that segmentation and correspondence tasks
have already been run on the images, and therefore we know
which surface patches are viewed through which portions of the
filter. Finally, note that while the assumptions stated above may
impose practical limitations, we show in this paper that our ap-
proach can still be applied successfully to real image data.

This paper is organized as follows. First, color constancy ap-
proaches which use linear model representations for surface and
illuminant spectra are summarized in Section 2. The Bayesian ap-
proach is detailed in this section as well. Next, the proposed ap-
proach is explained and derived in Section 3. For the purposes of
testing the proposed approach on real data, a filter formulation
of two spectral sensitivities is used. Section 4 shows experimental
results on real data where improvement in illuminant and surface
spectral estimation is attained by incorporating additional sensor
measurements through filter portions of different spectral sensitiv-
ities. Section 5 compares the proposed approach to state-of-the-art
approaches in the literature. The paper is concluded in Section 6.
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2. Linear color constancy algorithms

Many color constancy algorithms lie in computing surface and
illuminant spectra, which are represented by linear models. Such
representations appear in Brill and West’s work [5] on von Kries
adaptation [6], which is the oldest algorithm for color constancy.
These representations also appear in Buchsbaum’s [7] and Gershon
et al.’s work [8], who proposed variants of the gray world algo-
rithm, which assumed that the average of the surface reflectances
in the scene is gray. Since this assumption can be easily violated,
Please cite this article in press as: S. Skaff et al., A sequential Bayesian app
Understand. (2009), doi:10.1016/j.cviu.2009.03.014
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these approaches do not perform well in practice. Linear model
representations also appear in Maloney and Wandell [9,10] and
Yuille’s work [11], in which the assumption of having more photo-
receptor responses than the number of surface and illuminant
spectra basis functions is required. This is a serious limitation,
especially in estimating surface spectra. It implies that no more
than three basis functions can be used in the event that the rod
photoreceptor response is used in addition to those of the cones.
D’Zmura and Lennie [12] and D’Zmura and Iverson [13,14] also
used linear model representations for surface and illuminant spec-
tra. The authors in [13,14] proposed a model check algorithm to
determine necessary and sufficient conditions for unique recovery
of surface and illuminant spectra. Another approach is Ho et al.’s
[15], which estimates surface and illuminant spectra using linear
model representations from the color signal as opposed to the pho-
toreceptor response. This signal, which is the product of the illumi-
nant and surface spectra, needs to be measured using a
spectroradiometer if the approach were to be applied on real data.

The issues in all the approaches mentioned above led us to base
our work on Brainard and Freeman’s approach [1], which estimates
surface and illuminant spectral basis function weights from photo-
receptor responses. This approach, explained in Section 2.1, im-
poses no restrictions on the number of surface spectra basis
functions compared to the number of photoreceptor responses.
The novelty of our approach lies in showing how surface and illu-
minant spectra can be used to inexpensively accumulate informa-
tion obtained from the sensor through filter portions, of different
spectral sensitivities, using the Bayesian framework.

2.1. Bayesian color constancy

Brainard and Freeman used a regularization technique to solve
the problem of computing the values of the illuminant and surface
reflectance spectra parameters [1]. The regularization technique
used is based on Bayesian inference [16,17]. The advantage of using
the Bayesian model is that it embeds all possible uncertainties as
probability distributions, and that it performs inference based on
all the information available in the data. For a given problem, the
Bayesian approach makes use of a priori information about likely
physical configurations of the solution. It is this prior information
that helps in resolving ambiguities in the problem. Therefore, in this
sense, the Bayesian approach can be thought of as a regularizer of
the problem to obtain the solution in question. On the other hand,
the drawbacks of using the Bayesian method should be taken into
consideration. First, it may be difficult to specify a prior distribu-
tion. Also, in the event of maximizing the posterior, it may be diffi-
cult to specify a suitable cost function for the optimization process
and, furthermore, this function may be difficult to maximize.

The surface and illuminant spectra in the Bayesian color con-
stancy approach are parametrized using Maloney and Wandell’s
bilinear model [10]. The authors in [10] proposed an algorithm
for computing the model parameters from sensor measurements
of the light reflected from a set of surface patches. They start by
describing the spectrum of light arriving at location x on an array
of sensors by the function:

IxðkÞ ¼ EðkÞSxðkÞ; ð1Þ

where EðkÞ is the spectral power distribution of the ambient light in
the scene, SxðkÞ is the surface spectral reflectance, and k denotes the
wavelength. Assuming that there are p sensors at each location x,
and the relative wavelength sensitivity of the kth sensor is RkðkÞ,
the response recorded at each location is given by

qx
k ¼

XM

k¼1

EðkÞSxðkÞRkðkÞdk; k ¼ 1;2; . . . ;p; ð2Þ
roach to color constancy using non-uniform filters, Comput. Vis. Image
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where M denotes the dimensionality of the spectra. S and E are rep-
resented as linear models with n and m basis functions,
respectively:

SxðkÞ ¼
Xn

j¼1

rx
j SjðkÞ; ð3Þ

EðkÞ ¼
Xm

i¼1

�iEiðkÞ: ð4Þ

In both cases, the basis functions are fixed and are assumed to be
known. The basis functions for the surface reflectances, SjðkÞ, are
computed using principal components analysis (PCA) on a set of
150 Munsell color chips. Munsell patches can be found in the Mun-
sell Book of Color [18]. The basis functions of the light spectra EiðkÞ
are computed using PCA on a set of 622 different spectra of natural
daylight. Therefore, to find the surface reflectance and ambient
light, the basis function weights rx

j and �i should be computed.
The sensor responses can be viewed as bilinear functions of the un-
known basis function weights. This bilinearity means that various
choices of � and rx can produce identical sensor measurements
and, therefore, that the problem of finding the weights is ill-posed.

Substituting Eqs. (3) and (4) into Eq. (2) yields the following
equation:

qx
k ¼

Xn

j¼1

rx
j SjðkÞ

Xm

i¼1

�iEiðkÞRkðkÞdk; k ¼ 1;2; . . . ; p: ð5Þ

Maloney and Wandell assumed that a surface spectrum can be
modeled by only two basis functions although this is a severe con-
straint. The authors require such an assumption because their algo-
rithm requires more sensors than surface basis functions, and there
are only three sensors: red, green, and blue. This assumption limits
the results when the algorithm is presented with surfaces that can-
not be represented accurately by only two basis functions. For
example, Parkkinen et al. showed that Munsell patch spectra need
as many as eight basis functions to achieve an accurate representa-
tion [19]. However, taking into account the fact that the first few
principal components contain the most information in general, this
assumption might not pose a problem in some cases.

Bayesian inference theory is comprised of three probability
density functions: the prior, the posterior, and the likelihood. We
denote the vector of the surface and illumination spectra model
weights as ~w, and the sensor responses as ~y. We can obtain a sta-
tistical model for ~w by the conditional posterior density function of
~w given the measurement ~y as pð~wj~yÞ such that

pð~wj~yÞ ¼ pð~yj~wÞpð~wÞ
pð~yÞ / pð~yj~wÞpð~wÞ: ð6Þ

pð~yj~wÞ is the likelihood which models the relationship between the
illuminant and surface spectra model weights and the sensor re-
sponses. pð~wÞ represents the prior information on the model param-
eters. pð~yÞ represents the probability of the sensor responses or the
measurements and is a normalization term that does not affect the
shape of the posterior distribution. In the Brainard–Freeman formu-
lation, the prior is represented by a normal distribution on the
weights of the illuminant and surface reflectance spectra. These
weights are computed by projecting these illuminant and surface
reflectance spectra vectors on the illuminant and surface reflectance
spectra basis functions. The illuminant data set is composed of day-
light spectra with temperatures ranging from 3000 to 25,000 K,
while the surface data set is composed of Munsell reflectance spec-
tra. The likelihood pð~yj~wÞ is also represented by a normal distribu-
tion. Given the posterior pð~wj~yÞ, they compute a loss function
which they call the Bayesian expected loss:

Lð ~~wj~yÞ ¼
Z
~w

Lð ~~wj~wÞpð~wj~yÞdw: ð7Þ
Please cite this article in press as: S. Skaff et al., A sequential Bayesian app
Understand. (2009), doi:10.1016/j.cviu.2009.03.014
This function computes the penalty for choosing a single estimate ~~w
when the actual parameters are ~w [16]. Brainard and Freeman
choose an estimate for ~w such that the loss is minimal. They discuss
three types of loss functions: the Maximum A Posteriori (MAP), the
Minimum Mean Squared Error (MMSE), and the Maximum Local
Mass (MLM). For simplicity in this paper, we choose to use the
MAP function.
E
D

P
R

O
O

F

3. The sequential non-uniform filter formulation

We introduce a technique that builds upon Brainard and Free-
man’s Bayesian approach in which only one sensor response is ac-
quired. Our technique acquires sensor measurements through
different filter portions, each having its own spectral sensitivity.
Therefore, the inherent ill-posedness of the problem is addressed
through the introduction of more sources of information. This
acquisition of measurements is similar to when a person moves
his/her gaze across a scene and is inspired by Clark and O’Regan’s
theory of color stability [2]. This theory states that the human’s per-
ception of color is invariant to eye position. The acquisition of
information is sequential and can be modeled through a sequential
Bayesian estimation process. Note that this process is computa-
tionally feasible as its complexity lies in the multiple computations
of the probability density functions of the Bayesian formulation.

We had shown in simulation in [20] that there is improvement
in the surface patch spectra estimates with the placement of a non-
uniform filter on the camera lens. Two types of filters were consid-
ered: one with two portions, each having a different spectral sen-
sitivity characteristic, and one with more than two portions. The
latter formulation was chosen to be Gaussian as it mimics the var-
iation in the spectral sensitivity of the photoreceptors across the
retina. This Gaussian formulation could be constructed with a drop
of food coloring placed on transparent glass. Therefore, this filter
would have spectral transmittance that is maximum in the center
and that decreases gradually toward the peripheries. However,
constructing such a filter is beyond the scope of this paper. There-
fore, in order to show how acquiring additional measurements im-
proves on spectral estimation, we use a filter of two portions with
two corresponding spectral sensitivities here.

As in the Brainard and Freeman approach, evidence for the
lighting and surface color parameters of either one or many surface
patches in a scene is represented by a conditional probability den-
sity function given the sensor measurements. Since there are two
distinct portions of the filter, X and Y, this probabilistic evidence
is then accumulated sequentially over X and Y. In practice, this for-
mulation can be modeled by placing a filter with the appropriate
absorption characteristic onto half of the camera lens. We shall re-
fer to this model as a binary filter, which has one transparent part
and one filter part. Therefore, evidence can be accumulated over
the pixels of the image of the scene. The three sensor responses ob-
tained through one portion of the filter will be denoted as RGB. In
practice, the RGB response (or measurement) for a single patch
would be the average of all its pixel sensor responses. We shall
start with the derivations for the single surface patch case before
developing the case for more surface patches. Finally, we discuss
how the case of a two portion filter, or binary filter, can be
straight-forwardly generalized to the case of a multiple portion
filter.

3.1. A single patch

Let us consider a simple case where there is only one surface
patch in the scene, illuminated by a single light source. For this sur-
face patch, the RGB sensor responses or measurements through fil-
ter portion X will be denoted as RGBX1, and those through filter
roach to color constancy using non-uniform filters, Comput. Vis. Image
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portion Y will be denoted as RGBY1. The surface spectral model
weights vector is denoted by a1 and the illuminant spectral model
weights vector by b. Suppose that the patch is visible through both
filter portions as shown in Fig. 1 ða1Þ. Note that the mentioned fig-
ure contains three-surface patches; however, it is assumed that
only patch 1 is in the scene for now for illustration purposes.

To accumulate probabilistic evidence of the scene patch and
illuminant spectra over different filter portions, we derive the con-
ditional posterior density function, pða1; bjfRGBgÞ, for the parame-
ters a1 and b given the set of measurements of the entire scene,
fRGB1g , RGBX1;RGBY1. Using Bayes’ rule:

pða1; bjfRGB1gÞ / pðfRGB1gja1; bÞpða1; bÞ: ð8Þ

Therefore,

pðfRGB1gja1; bÞ ¼ pðRGBX1;RGBY1ja1; bÞ
¼ pðRGBX1ja1; bÞpðRGBY1ja1; bÞ; ð9Þ

by the statistical independence of the measurements assumption
(explained in Section 1). Substituting pðfRGB1gja1; bÞ into Eq. (8),
we obtain

pða1; bjfRGB1gÞ / pðRGBX1ja1; bÞpðRGBY1ja1; bÞpða1; bÞ: ð10Þ

By Bayes’ rule, we can state

pða1; bjRGBX1Þ / pðRGBX1ja1; bÞpða1; bÞ: ð11Þ

Therefore, by substituting pða1; bjRGBX1Þ from Eq. (11) into Eq. (10),
we get

pða1; bjfRGB1gÞ / pða1; bjRGBX1ÞpðRGBY1ja1; bÞ: ð12Þ

From Eq. (12) we can conclude that the posterior of the parameters
a1 and b is the product of the posterior for one filter portion (in this
case X), pða1; bjRGBX1Þ, and the likelihood of the RGB measurement
from the other filter portion (in this case Y), pðRGBY1ja1; bÞ. There-
fore, the extension to Brainard and Freeman’s approach is the addi-
tional likelihood term (in this case pðRGBY1ja1; bÞ) resulting from the
measurement (in this case RGBY1) from the tinted portion of the fil-
ter. This gives more information used to compute the unknown ba-
sis function weights thus resulting in better estimates. Note that
this formulation assumes X and Y are interchangeable.

3.2. Multiple patches

We now wish to describe the more complex case where it is
assumed that there is more than one surface patch in the scene,
illuminated by a single light source. RGB measurements for surface
patch number n obtained from filter portions X and Y will be de-
noted as RGBXn and RGBYn, respectively. The surface spectral model
U
N

C 431
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436436
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440440
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443443

Fig. 1. Static camera. Three patches in the scene, illuminated by a single light source
viewed by a sensor through a two portion or binary filter, which has one
transparent part and one part tinted blue–green (represented with the hashed
part), for example. a1; a2, a3 and b are the weights in the spectral linear models for
patches 1, 2, 3 and the illuminant, respectively. (For interpretation of references to
color in this figure legend, the reader is referred to the web version of this article.)
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weights vector for patch n is denoted by an and the illuminant
spectral model weights vector by b. Two cases are considered in
this situation. The first one is when the image is acquired once, that
is when the camera is static. The second one is when the image of
the scene is acquired several times, from different positions, that is
when the camera is moved.

3.2.1. Static camera
Consider a scene with three-surface patches. Suppose that sur-

face patches 1 and 3 are visible through both portions of the filter,
while surface patch 2 is visible through filter portion Y alone, as
shown in Fig. 1.

Let fRGBg denote the total set of measurements of the scene:

fRGBg , RGBX1;RGBX3;RGBY1;RGBY2;RGBY3: ð13Þ

The conditional posterior density function for the parameters,
a1; a2; a3 and b, given the set of measurements of the scene,
fRGBg, is denoted by pða1; a2; a3; bjfRGBgÞ. First, using Bayes’ rule:

pða1; a2; a3; bjfRGBgÞ / pðfRGBgja1; a2; a3; bÞpða1; a2; a3; bÞ: ð14Þ

The no interreflection assumption implies that the prior probabili-
ties for the surface reflectance weights an are statistically indepen-
dent of each other and of the spectral function weights of the
illuminant, b:

pða1; a2; a3; bÞ ¼ pða1; a3; bÞpða2Þ: ð15Þ

Consequently, substituting pða1; a2; a3; bÞ from Eq. (15) into Eq. (14),
it becomes

pða1; a2; a3; bjfRGBgÞ / pðfRGBgja1; a2; a3; bÞpða1; a3; bÞpða2Þ: ð16Þ

The statistical independence of the measurements assumption
(explained in Section 1) implies

pðfRGBgÞ ¼ pðRGBX1;RGBX3;RGBY1;RGBY2;RGBY3Þ
¼ pðRGBX1;RGBX3ÞpðRGBY1ÞpðRGBY2ÞpðRGBY3Þ:

Therefore, the likelihood in Eq. (14) can be expressed as

pðfRGBgja1; a2; a3; bÞ
¼ pðRGBX1;RGBX3;RGBY1;RGBY2;RGBY3ja1; a2; a3; bÞ
¼ pðRGBX1;RGBX3ja1; a2; a3; bÞpðRGBY1ja1; a2; a3; bÞ
� pðRGBY2ja1; a2; a3; bÞpðRGBY3ja1; a2; a3; bÞ:

By the no interreflection assumption, the surface spectra model
weights of patches 1 and 3, for example, do not affect the sensor
measurements of surface patch 2. Therefore,

pðRGBY2ja1; a2; a3; bÞ ¼ pðRGBY2ja2; bÞ: ð17Þ

Applying the same assumption to the scene in Fig. 1, we can write

pðRGBX1;RGBX3ja1; a2; a3; bÞ ¼ pðRGBX1;RGBX3ja1; a3; bÞ;
pðRGBY1ja1; a2; a3; bÞ ¼ pðRGBY1ja1; bÞ;
pðRGBY3ja1; a2; a3; bÞ ¼ pðRGBY3ja3; bÞ:

Consequently,

pðfRGBgja1;a2;a3;bÞ
¼pðRGBX1;RGBX3ja1;a3;bÞpðRGBY1ja1;bÞpðRGBY2ja2;bÞpðRGBY3ja3;bÞ:

Substituting the latter equation of pðfRGBgja1; a2; a3; bÞ into Eq. (16)
we get

pða1;a2;a3;bjfRGBgÞ/pðRGBX1;RGBX3ja1;a3;bÞpðRGBY1ja1;bÞ
�pðRGBY2ja2;bÞpðRGBY3ja3;bÞpða1;a3;bÞpða2Þ:

Applying Bayes’ rule for the first term and the second to last we get

pða1;a3;bjRGBX1;RGBX3Þ/pðRGBX1;RGBX3ja1;a3;bÞpða1;a3;bÞ: ð18Þ
roach to color constancy using non-uniform filters, Comput. Vis. Image
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Therefore,

pða1; a2; a3; bjfRGBgÞ / pða1; a3; bjRGBX1;RGBX3ÞpðRGBY1ja1; bÞ
� pðRGBY2ja2; bÞpðRGBY3ja3; bÞpða2Þ: ð19Þ

From Eq. (19), we can conclude that the posterior for the entire
scene pða1; a2; a3; bjfRGBgÞ is a function of the posterior for one filter
portion ðXÞ, the likelihood of the RGB measurements taken through
the other filter portion ðYÞ and the prior of the spectral function
weights of the surface patches viewed through only the latter
portion ðpða2ÞÞ. In turn, the posterior for filter portion X can be
expressed as

pða1;a3;bjRGBX1;RGBX3Þ
/ pðRGBX1;RGBX3ja1;a3;bÞpða1;a3;bÞðby Bayes’ ruleÞ
¼ pðRGBX1;RGBX3ja1;a3;bÞpða1;bÞpða3Þ
� ðby the no interreflection assumptionÞ
¼ pðRGBX1ja1;a3;bÞpðRGBX3ja1;a3;bÞpða1;bÞpða3Þ
� ðby the statistical independence of the

measurements assumptionÞ
¼ pðRGBX1ja1;bÞpðRGBX3ja3;bÞpða1;bÞpða3Þ
� ðby the no interreflection assumptionÞ
/ pða1;bjRGBX1ÞpðRGBX3ja3;bÞpða3Þðby Bayes’ ruleÞ: ð20Þ

Note that this posterior is a function of the posterior for surface
patch 1 and the likelihood and prior for surface patch 3. The sequen-
tial nature of the strategy can once again be observed here as for
each filter portion: the posterior for each surface patch acts as a
prior for the next surface patch. We would like to add that there
are a number of different ways to write the posterior, depending
on the order of filter portions considered. However, all these ways
are equivalent as they give rise to the same value of the posterior
function. Once again, note in Eq. (19) the likelihoods resulting from
the additional measurements for surface patches 1 and 3 (RGBY1 and
RGBY3) obtained from the tinted filter portion Y. This addition to the
formulation results in an improvement in the estimates of the
parameters a1; a3, and b.

3.2.2. Moving camera
Humans constantly move their eyes thus accumulating evi-

dence to acquire more knowledge of the world. This fact motivated
us to move the camera to acquire multiple images of the same
scene, thus placing the surface patches of the scene in different
positions with respect to the portions of the filter. This allows for
accumulating more measurements for some surface patches in
the case of a binary filter. In the following sections, we study two
cases: one in which the camera is moved once and one in which
the camera is moved twice.

3.2.2.1. One move. We begin by examining the case where the cam-
era is moved once such that two images of the same scene are ta-
ken from two different positions. This places the surface patches in
different locations with respect to the filter as shown in the first
move (equivalently the first two snapshots) in Fig. 2. The posteri-
ors, two in this case, are derived in a similar way as in the previous
section. The first posterior is P1, which is that obtained from the
first image after gathering the first set of measurements. The sec-
ond is P2, which is that obtained from the second image after the
camera is moved and thus more measurements are gathered. We
will demonstrate the sequential nature of this probabilistic infer-
ence once again in this section.

At the initial stage, that is before the camera is moved, the total
set of measurements denoted by fRGBg is given by

fRGBg , RGBX1;RGBX2;RGBX3;RGBY1: ð21Þ
Please cite this article in press as: S. Skaff et al., A sequential Bayesian app
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The posterior can be derived given the set of measurements fRGBg
from the scene in a similar way to that of Eq. (19) (in Section 3.2.1):

P1 ¼ pða1; a2; a3; bjfRGBgÞ
/ pða1; a2; a3; bjRGBX1;RGBX2;RGBX3ÞpðRGBY1ja1; bÞ: ð22Þ

The next step involves the movement of the camera and gathering a
new set of RGB measurements which is given by

fRGBg , RGBX1;RGBX2;RGBX3;RGBY1;RGBY2: ð23Þ

We will show how P1 acts as a prior for P2, which can now be com-
puted given the new RGB measurements:

P2 ¼ pða1; a2; a3; bjfRGBgÞ
/ pðfRGBgja1; a2; a3; bÞpða1; a2; a3; bÞ
¼ pðRGBX1;RGBX2;RGBX3;RGBY1;RGBY2ja1; a2; a3; bÞpða1; a2; a3; bÞ
� ðby Bayes’ ruleÞ
¼ pðRGBX1;RGBX2;RGBX3ja1; a2; a3; bÞpðRGBY1;RGBY2ja1; a2; a3; bÞ
� pða1; a2; a3; bÞðby the statistical independence of the

measurements assumptionÞ
¼ pðRGBX1;RGBX2;RGBX3ja1; a2; a3; bÞpðRGBY1ja1; a2; a3; bÞ
� pðRGBY2ja1; a2; a3; bÞpða1; a2; a3; bÞðby the statistical

independence of the measurements assumptionÞ
¼ pðRGBX1;RGBX2;RGBX3ja1; a2; a3; bÞpðRGBY1ja1; bÞpðRGBY2ja2; bÞ
� pða1; a2; a3; bÞðby the no interreflection assumptionÞ
/ pða1; a2; a3; bjRGBX1;RGBX2;RGBX3ÞpðRGBY1ja1; bÞpðRGBY2ja2; bÞ
� ðby Bayes’ ruleÞ ¼ P1pðRGBY2ja2; bÞ: ð24Þ

Therefore, we conclude once again that the posterior computation is
sequential and that it is a function of the posterior obtained from
the first image and the likelihood obtained from the second image.

3.2.2.2. Two moves. We then consider the case where the camera is
moved twice such that three images of the scene are taken from
three different positions (Fig. 2). This places the surface patches
in three different locations, as opposed to two in Section 3.2.2.1,
with respect to the filter. Therefore, more measurements for a
patch may be acquired depending on the filter positions. The mea-
surements in this case are the ones used for computing P2 as well
as an additional measurement obtained for surface patch 3 when
viewed through portion Y of the filter. In this case, three posteriors
are obtained: one from the set of data of each image.

For simplicity, we assume that the first move is similar to the
first move in the previous section. This means that the first two
images captured in this case are the same as the two images cap-
tured in the previous case. Therefore, P1 and P2 can be derived in a
similar way and using the same assumptions as in Eqs. (22) and
(24). As explained in the previous section, P1 acts as a prior for
P2. In this section the camera is moved a second time, and a new
set of data is gathered to obtain the posterior P3. Therefore, a
new set of RGB measurements is obtained in addition to the old
ones that were obtained from the two initial movements. This
new set of RGB measurements is given by the following equation:

fRGBg , RGBX1;RGBX2;RGBX3;RGBY1;RGBY2;RGBY3: ð25Þ

P2 acts as a prior for P3:

P3 ¼ pða1; a2; a3; bjfRGBgÞ / P2pðRGBY3ja3; bÞ: ð26Þ

In the same way as information is accumulated over different filter
portions, information is accumulated over scenes, such that the pos-
terior for each image acts as a prior for the set of data of the next
image. The posteriors obtained from images due to additional
moves can be derived in a similar way.
roach to color constancy using non-uniform filters, Comput. Vis. Image
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Fig. 2. Moving camera. Three patches in the scene, illuminated by a single light source viewed by a sensor through a two portion or binary filter, which has one transparent
part and one part tinted blue-green (represented with the hashed part), for example. The camera is moved twice. a1; a2; a3 and b are the weights in the spectral linear models
for patches 1, 2, 3 and the illuminant, respectively. (For interpretation of the references to colours in this figure legend, the reader is referred to the web version of this paper.)
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In short, the active Bayesian formulation is, in fact, sequential,
where the posterior for each image acts as a prior for the next im-
age, and the posterior for each filter portion acts as a prior for the
next filter portion. This is similar to the sequential nature of the
‘‘Static Camera” case (in Section 3.2.1), where the posterior for each
surface patch acts as a prior for the next surface patch. The addition
of more surface patches in the scene provides more information
regarding the illumination and thus, in turn, about the surface
patch spectra themselves. In addition, moving the camera provides
more information about the scene as the surface patches are
viewed from different locations with respect to the filter, and thus
many images of the same scene are obtained. This allows for
acquiring multiple measurements for the same surface patch and
thus improves on parameter estimation.

3.3. Generalization: two to multiple portion filters

We illustrated the sequential nature of the proposed active
Bayesian formulation for the case of two portion filters. As shown
above, the posterior for each filter portion acts as a prior for the
next filter portion. This hypothesis can be generalized to the case
of more than two portion filters in the scene. Consider, for exam-
ple, the ‘‘Static Camera” case when there is a filter of three por-
tions, taken in the order X;Y ; Z, and when there are three-surface
patches in the scene. The scene in this example looks similar to
that in Fig. 1 except that patch 2 is viewed through filter portion
Y and Z instead of only filter portion Y. Patches 1 and 3 are viewed
through filter portions X and Y as in Fig. 1. Call P3 the conditional
posterior function for all three portions of the multiple filter for
the parameters of the surfaces and the light source given the set
of measurements of the scene. P3 would be a function of the pos-
terior for the first two portions X and Y of the filter, (call it P2),
the likelihood of the measurements taken through the third por-
tion of the filter ðZÞ, and the prior of the spectral function weights
of the surface patches viewed through only portion Z of the filter
(none in this case):

P3 ¼ P2pðRGBZ2ja2; bÞ: ð27Þ

In turn, P2 would be a function of the posterior for the first filter
portion ðXÞ, the likelihood of the measurements taken through the
second filter portion ðYÞ, and the prior of the spectral function
weights viewed through only filter portion Y:

P2 ¼ P1pðRGBY1ja1; bÞpðRGBY2ja2; bÞpðRGBY3ja3; bÞpða2Þ: ð28Þ
Please cite this article in press as: S. Skaff et al., A sequential Bayesian app
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extended from incorporating measurements taken through two fil-
ter portions to incorporating measurements taken through three fil-
ter portions. This extension can also be applied to the ‘‘Moving
Camera” case (Section 3.2.2).

4. Experiments

The main purpose of the experiments performed is to show
that, despite the assumptions imposed, additional measurements
obtained for a patch viewed through a filter do improve surface
and illuminant spectral estimates. Constructing a filter with multi-
ple portions of different spectral sensitivities is beyond the scope of
this work as explained in Section 3. Therefore we choose to illus-
trate the performance of the approach for the case of two portion
filters. Note that we had shown in simulation in [20] that improve-
ment in spectral estimation can be obtained with the introduction
of filters with more than two portions into the scene as well.

In this work, we refer to a measurement system with two por-
tions, transparent and filtered, as a binary filter. The optical filter
chosen for the filtered portion should be such that there are signif-
icant differences between the responses from the transparent por-
tion and the filtered portion in the long-, medium-, and short-
wavelength range channels. In addition, the filter should not com-
pletely block the light from the wavelengths that a given photore-
ceptor is sensitive to. For example, a ‘‘brick-wall” yellow optical
filter should not be employed, as it would completely block the
portion of the spectrum responded to by the short-wavelength
channel while passing through unchanged the portions of the spec-
trum responded to by the long- and medium-wavelength channels.
Taking into account these issues, we choose to use an Edmund Op-
tics BG 18 bandpass filter of spectral transmittance peaking in the
blue-green wavelength region. This filter shifts the spectral sensi-
tivity of the long- and short-wavelength sensors towards medium
wavelengths, and narrows the bandwidth of the medium-wave-
length sensor. Thus, it is expected that the binary filter measure-
ment system should provide better spectral modeling at medium
wavelengths than the non-filter measurement system.

Before moving on to describing the implementation and testing
specifics of the algorithm and the results obtained, we would like
to note that some previous color constancy approaches investi-
gated the idea of using multiple measurements for the same sur-
face. For example, Tsukada and Ohta [21], who employed linear
model representations for surface and illuminant spectra, used
two illuminants to capture two images of the same scene. While
roach to color constancy using non-uniform filters, Comput. Vis. Image
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their approach may seem similar to the proposed one, the authors
in [21] employed more unknowns as the number of basis function
illuminant spectra is doubled with the use of two illuminants. Also,
D’Zmura and Iverson [13,14,22] studied the case where multiple
light sources were used to capture multiple images of the same
scene. However their approach suffers from many limitations as
is discussed in Section 2.

Within the color correction approaches that use 3D color space
representations such as RGB, it has been shown how illumination
variation in an image can be used as an additional constraint to im-
prove on color constancy [23,24]. Finlayson et al. introduced the
Chromagenic color constancy approach [25,26], where a filtered
and a non-filtered image are obtained for each scene. As mentioned
in [25], the additional measurements are not used to increment the
number of knowns to facilitate the estimation of the model param-
eters as is the case in the proposed algorithm. These measurements
are used to compute the relationship between the filtered and non-
filtered RGB’s. This relationship is used to select the scene illumi-
nant, and given the illuminant, color correction can be performed.
The Chromagenic color constancy approach is described for the
case of using two measurements for each surface. However, in
the case of three or more measurements per surface, the calcula-
tions can become tedious, and it would be more difficult to com-
pute the relationship between the non-filtered and the filtered
RGB’s at once. On the other hand, the proposed spectral based ap-
proach can handle the incorporation of additional measurements
in a more natural and inexpensive way using Bayesian techniques
as described in the previous section. Moreover, our approach al-
lows for flexibility in the sense that if only non-filtered RGB mea-
surements are available for some surface patches, these can still
be used in the posterior distribution. This is not the case in Chro-
magenic color constancy, where each surface patch should have
two sets of measurements in order for the formulation of the prob-
lem to be complete.

4.1. Experimental setup

We captured images of the pages in the Munsell Book of Color
[18] with a Panasonic WV-CP410 camera. All the images were ob-
tained in our laboratory at night to ensure that the only illumina-
tion was that of the scene light source. We obtained a 50 � 50 pixel
sample from each of the Munsell patches using a semi-automated
segmentation algorithm. Since we assume Mondrian scenes where
the illumination is locally constant, we averaged the RGB responses
of all the pixels in a segmented patch to obtain one RGB response
per patch. The same steps were carried out in the case of the fil-
tered portion of the camera lens to obtain RGB responses for the
patches viewed through a filter. Since we assume flat scenes where
there are no interreflections, the average responses corresponding
to the patches in the scene, in the filter and no filter cases, were
inputted into our algorithm.

We start by explaining how the scenes were constructed. Ten
surface patches, which we shall refer to as main patches, were cho-
sen at random. Ten groups of two patches each were then selected
randomly, and these groups were used to construct 10 three-sur-
face patch scenes with the main patch repeated in all 10 scenes.
Since there were 10 main patches, a total of 100 scenes was con-
structed. The selection of scenes was done in this fashion so as to
allow more robust evaluation of spectral estimation for the main
patch which is repeated in 10 scenes. All the constructed scenes
comprised of three randomly chosen matte Munsell surface
patches [18] illuminated by a single 60 W tungsten light source
at temperature 2800 K. The spectra of these patches were mea-
sured by Parkkinen and Silfsten [27]. The database of light source
spectra comprised of a set of tungsten light spectra at tempera-
tures ranging from 2600 to 3500 K, in steps of 100 K, and was ob-
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tained from the IES lighting handbook [28]. The spectral
sensitivities of the camera sensor were obtained from the manu-
facturer. The wavelengths considered are over the visible range,
430–700 nm, which is discretized into 5 nm intervals. Note that
the choice of surface and illuminant spectral databases would
not make a difference in the performance of the approach as the
basis functions can be updated accordingly to be the principal
components of the new spectral databases. The performance of
the approach, however, depends on how well the basis functions
represent the spectral databases for each of the surfaces and the
light source.

For the Bayesian formulations, the likelihood functions
pðfRGBgja1; a2; a3; bÞ are computed using the sensor measurements
as well as the corresponding model predictions, which are given in
Eq. (5). We describe what the sensor measurements are for each
case studied in the next section. The standard deviation of the like-
lihood is an approximation of the standard deviation of the mea-
surement noise. The latter standard deviation is computed by
capturing 50 snapshots of each of the Munsell patches with a
100 ms delay between snapshots. Then, the standard deviation of
the noise corresponding to each patch sensor response is calcu-
lated using the 50 snapshots of the patch. Finally, the standard
deviations of the sensor response noise of all the patches is aver-
aged to obtain the likelihood standard deviation. While this may
be an oversimplified way of computing the standard deviation, it
serves the purpose and can be reproduced fairly easily upon chang-
ing the database of surface patches. Note that the same standard
deviation as computed above is used when modeling the likelihood
in the case of a filter. This means that it is assumed that the stan-
dard deviation of the noise is approximately the same in this case.
This assumption is made for simplification purposes as it avoids
the need of estimating standard deviations for different filters.
The illuminant spectrum EðkÞ is modeled with five basis functions,
while the surface spectrum SxðkÞ is modeled with eight basis func-
tions. The weights for these spectra are assumed to have Gaussian
distributions. The basis functions for the surface spectrum model
are represented by the principal components of the spectra of
the 1269 Munsell patches provided by Parkkinen and Silfsten
[27]. The basis functions for the light source spectrum model are
represented by the principal components of the spectra of the 10
tungsten light spectra [28].

The prior distributions for the spectral model parameters
pða1; a2; a3; bÞ are assumed to be independent and are modeled by
Gaussian distributions. The means and variances of the prior func-
tions are computed from the distribution of weights corresponding
to the 1269 Munsell patch spectra and the 10 tungsten light spec-
tra used. These weights are obtained by projecting the measured
spectra onto the basis function sets.

The location of the mode of the posterior distribution is esti-
mated by a standard MATLAB optimization package, lsqnonlin,
resulting in a set of estimated surface and light source spectra
weight vectors. Note that any package can be used provided that
the negative of the cost function can be minimized. In order to
eliminate the chances of obtaining a set of weights corresponding
to a local minimum, the optimization is run with 10 different ran-
domly chosen starting points. In most cases, the optimization ter-
minates at the same cost function value. In the occasional cases
when it does not, we choose the solution weight vector corre-
sponding to the smallest value.

4.2. Experimental results

First, we compare the spectral estimates obtained in the binary
filter case to those obtained in the no filter case, which is equiva-
lent to Brainard and Freeman’s approach. Next, we show how mov-
ing the camera, once and then twice, to acquire additional
roach to color constancy using non-uniform filters, Comput. Vis. Image
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Fig. 3. The estimated and actual spectra when there are multiple surface patches in the scene in the cases of no filter and binary filter for each of the (a) tungsten illuminant at
2800 K, RMSE = 0.0930 (no filter), RMSE = 0.0533 (filter) and (b) Munsell patch 1203, RMSE = 0.1705 (no filter), RMSE = 0.1282 (filter).
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measurements for a surface patch improves spectral estimation.
Experiments with three-surface patches in the scene, illuminated
by a single light source (as described in Section 3) are performed.
The resulting estimates for the model and the actual spectra for
the surface patches and the light sources are plotted and the root
mean square (RMS) errors are computed in each of the two cases
below. We would like to note that, to the best of our knowledge,
this is the first time that Brainard and Freeman’s approach is ap-
plied on real data.

4.2.1. Static camera
We compare the performance of the approach in the no filter

case to that of the binary filter case. In the no filter case, one RGB
response is obtained for each surface patch in the scene. In the bin-
ary filter case, two RGB responses corresponding to the different
portions of the filter are obtained for each of surface patches 1
and 3. One RGB response corresponding to filter portion Y is ob-
tained for surface patch 2 (see Fig. 1). These sensor responses are
used in computing the likelihood functions, which in turn are used
in the computation of the posteriors as described in Section 3.2.1.
The resulting estimates for the model and the actual spectra for the
tungsten light source and a surface patch from one of the scenes
can be found in Fig. 3. Note that RMS error is indicated as RMSE
in the corresponding plots. The plots show that the model spectra
are closer to the actual spectra in the binary filter case than in the
no filter case.

Moreover, we depict in Fig. 4 the average over 10 scenes of the
RMS errors between the model and actual spectra for the illumi-
nant and the main surface patches, which are repeated in a set of
U
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O10 scenes. We also depict the average of all the average RMS errors
in the last two bars for each plot. AVE denotes this average. From
these plots we observe that there is always an improvement in
the illuminant spectral estimates. Theoretically, this should lead
to an improvement in the surface spectral estimates. Despite the
fact that this is not always the case as we can see in Fig. 4b, there
is either no improvement or an improvement in 50% of the cases.

To get a better understanding of the comparative performance
of the approach in the no filter and filter cases, the paired T-test
[29] is run on the average RMS errors for the 10 scene sets (de-
picted in Fig. 4) for a 95% confidence level. Note that this test as-
sumes that the differences between the average RMS errors have
a normal distribution. As a result of the test, the improvement in
performance for the binary filter case over the no filter case for
the illuminant spectral estimates is statistically significant
ðt ¼ 4:848; p < 0:05Þ. As for the surface spectral estimates, the dif-
ference in performance between the no filter and the binary filter
case is not statistically significant ðt ¼ �0:639; p < 0:05Þ. There-
fore we cannot conclude from the latter results that the average
performance for the no filter case is better than that for the binary
filter case as implied by the last two bars in Fig. 4b.

4.2.2. Moving camera
We show results for the moving camera case, as described in

Section 3.2.2. There are three-surface patches in the scene with a
filter of two portions, represented by a binary filter on the lens hav-
ing a transparent part and a tinted blue–green part. The camera is
moved: once and then twice. Before moving the camera, the sensor
responses obtained are two for surface patch 1, corresponding to
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Fig. 5. The estimated and actual spectra when there are multiple surface patches in the scene in the binary filter case when the camera is moved twice for each of the
(a) tungsten illuminant at 2800 K, RMSE = 0.0762 (no motion), RMSE = 0.0519 (1 move), RMSE = 0.0399 (2 moves) and (b) Munsell patch 686, RMSE = 0.1621 (no motion),
RMSE = 0.1464 (1 move), RMSE = 0.1428 (2 moves).
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each of the filter portions X and Y, and one for each of surface
patches 2 and 3, corresponding to filter portion Y. The sensor re-
sponses obtained after the camera is moved the first time are the
same as the previous ones, with an additional sensor response ob-
tained for surface patch 2 corresponding to filter portion Y (see
Fig. 2). The sensor responses obtained after the camera is moved
the second time are the same as the previous ones, with an addi-
tional sensor response obtained for surface patch 3 corresponding
to filter portion Y. These sensor responses are used in computing
the likelihood functions corresponding to each of the one move
and two moves cases. The posterior functions are then computed
as described in Section 3.2.2. The hypothesis is that the estimates
will improve with each move for the patches for which additional
measurements are obtained upon moving. Fig. 5 shows the model
and the actual spectra as well as the RMS errors for both the light
source and one of the three-surface patches in a scene respectively.
Notice how the RMS errors in this figure are reduced by moving.

Moreover, we depict the average over 10 scenes of the RMS er-
rors between the model and actual spectra for the illuminant and
the main surface patches, which are repeated in a set of 10 scenes
as seen in Fig. 6. We also depict the average of all the average RMS
errors in the last three bars for each plot. We can see that the aver-
age RMS errors are reduced with every camera move for the illumi-
nant. This should imply decreasing RMS errors with every move for
the surface patches as well, which is evident in 80% of the cases.

To get a better understanding of the comparative performance
of the approach in the no move, one move, and two moves cases,
U
N

C
O

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Av
er

ag
e 

R
M

S 
er

ro
r

Scene Set Number

1 2 3 4 5 6 7 8 9 10 AVE

no motion
1 move
2 moves

Fig. 6. Average RMS errors for the illuminant and 10 surface patch spectra for the binary
moved twice. Each error is the average RMS error over 10 scenes chosen at random for
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scene sets (depicted in Fig. 6) for a 95% confidence level. The two
pairs for which the average RMS errors are employed are: (i) the
no motion and one move case and (ii) the one move and two moves
case. As a result of this test, we conclude that the improvement in
the illuminant spectral estimates is statistically significant upon
moving the camera once versus no motion ðt ¼ 6:532; p < 0:05Þ,
and upon moving the camera twice versus moving once
ðt ¼ 9:271; p < 0:05Þ. The same is true for the surface spectral esti-
mates which are statistically significantly better for the one move
case versus the no motion case ðt ¼ 2:557; p < 0:05Þ, and for the
two moves case versus the one move case as well ðt ¼ 3:867;
p < 0:05Þ. Therefore we can conclude that these results confirm
our hypothesis that when the effect of the prior is reduced, better
surface and illuminant spectral estimates can be obtained.

5. Comparisons to previous work

We compare the proposed approach to five of the prominent
color correction algorithms following the framework proposed by
Barnard et al. [30]. We start by discussing the different approaches
before moving on to the numerical comparisons.

5.1. Color correction approaches

In color correction algorithms, the illuminant estimate is typi-
cally referred to as the sensor response to a white surface under
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Table 1
The median RMS errors for the illuminant estimates of 100 scenes (except for 2D
Gamut Mapping) given by five previous approaches, Brainard and Freeman’s
approach, and the different variants of the proposed approach. For the scene setup
in the case of Sequential Bayesian – Binary Filter, Static Camera, see Fig. 1. For the
scene setup in the case of Sequential Bayesian – Binary Filter: No moves, One move,
and Two moves, see Fig. 2. N denotes the number of gathered sensor responses or
measurements.

Algorithm Median RMS error

Gray World 0.2528
Scale-by-Max 0.2520
C-by-C-01 0.0366
2D Gamut Mapping (CIP) – ICA 0.0619
3D Gamut Mapping (ECRULE) – ICA 0.0698

Brainard–Freeman N ¼ 3 0.0454
Sequential Bayesian – Binary Filter, No Moves N ¼ 4 0.0427
Sequential Bayesian – Binary Filter, One Move N ¼ 5 0.0355
Sequential Bayesian – Binary Filter, Static Camera N ¼ 5 0.0350
Sequential Bayesian – Binary Filter, Two Moves N ¼ 6 0.0310
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a canonical illuminant. The canonical illuminant is the one selected
from the database of illuminant spectra for which the camera is
most balanced. The first algorithm is the Gray World, GW [7]. It as-
sumes that the scene average is identical to the camera response to
a chosen gray surface under the canonical illuminant. The illumi-
nant RGB, which is equivalent to the camera response to a white
surface, is taken to be double the response to a gray surface, again
under the canonical illuminant. The second algorithm, Scale-by-
Max, takes the illuminant RGB estimate to be the maximum in each
channel (red, green, blue) over all the camera responses to all the
surfaces in a scene [31]. The third algorithm is Color by Correlation
proposed by Finlayson et al. [32,33] as an improvement to the Col-
or in Perspective algorithm [34]. In the Color by Correlation algo-
rithm, a correlation matrix in which each column corresponds to
a different training illuminant and each row corresponds to a dif-
ferent image chromaticity is built. The chromaticities are com-
puted from the surface reflectances in the training set. The
convex hull of the chromaticities corresponding to one illuminant
is computed. All the entries of the chromaticity bins falling in the
convex hull are set to one, while all other elements are set to zero.
The correlation matrix is multiplied by a vector containing infor-
mation about the image chromaticities. This vector has the same
discretization as the rows in the correlation matrix. An entry of this
vector is set to one if the chromaticity occurs in the image and to
zero otherwise. The scene illuminant selected is the one corre-
sponding to the maximum correlation between the correlation
matrix and the vector of chromaticities. This algorithm is labeled
as C-by-C-01.

The last two algorithms which we compare our approach to are
based on Forsyth’s gamut mapping approach [35], which generally
comprises two steps. The first step is to form two convex sets of
RGB’s represented by their respective convex hulls. One set com-
prises all possible surface RGB’s when illuminated under a canoni-
cal illuminant. The other set comprises all surface RGB’s under the
unknown illuminant, and therefore the convex hull is the set of ob-
served RGB’s in this case. The two hulls are a unique diagonal map-
ping of each other under the diagonal assumption of illumination
change. The set of possible maps is computed and the solution
diagonal map is sought. This map corresponds to the solution set,
which corresponds to the set of the surface RGB’s under the canon-
ical illuminant. This is the second step of the algorithm. Finlayson
added two ideas to Forsyth’s approach to introduce the Color in
Perspective (CIP) approach [34]. First, he showed how to perform
gamut mapping in 2D (chromaticity) instead of 3D ðRGBÞ space
as this simplifies gamut mapping and renders it usable in the real
world, where specularities and varying illumination are com-
monly-arising problems. Second, he suggested that the diagonal
maps can be restricted to only those corresponding to expected
illuminants. As the illumination constraint is non-convex, Barnard
[36] introduced the assumption of the convex hull for this con-
straint (ECRULE). As for obtaining the solution set, which is the sec-
ond step of a gamut mapping algorithm, there are three methods.
The first one is choosing the solution set with the maximum vol-
ume [34,35]. The second one is taking the average of the constraint
set [36]. The third one is averaging over the non-convex constraint
set using Monte Carlo integration [37]. Following Barnard et al.’s
framework [30], here the solution is selected by taking the center
of mass of the constraint set, referred to as ICA (Illumination Con-
strained Average).

5.2. Numerical results

Our goal is to compare our approach to the algorithms dis-
cussed in the previous section. This implies that the chosen data
sets and priors needed for these algorithms are chosen in ways that
yield them comparable to the method proposed in this paper. First,
Please cite this article in press as: S. Skaff et al., A sequential Bayesian app
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the scenes used for testing are the same as the ones used in the
previous section. They therefore consist of three-surface patches
illuminated by a single light source. Second, the database of light
source spectra used for training in the Color by Correlation ap-
proach is the same as that used for computing the prior functions
in our approach. This is a set of tungsten light spectra at tempera-
tures ranging from 2600 to 3500 K, in steps of 100 K. Next, the
canonical illuminant selected from this set is such that the camera
is most balanced, and is therefore tungsten light at 3500 K. Note
that the canonical illuminant choice can be arbitrary according to
Barnard et al. [30]. In addition, the set of RGB measurements used
to obtain the convex hull in the 2D and 3D Gamut Mapping ap-
proaches are the camera sensor responses of all 1269 patches from
the Munsell Book of Color [18]. In addition, the reflectance spectra
of these patches are used in the Gray World approach. All the spec-
tra employed in the previous approaches are 55D and over the
same wavelength range as in our approach.

The approach proposed in this paper estimates both illuminant
and surface spectra. However, the described algorithms perform
color correction after carrying out an illumination estimation step.
Therefore, we focus on comparing the performance of illuminant
estimation of the different algorithms. Since we are interested in
the chromaticity of the illuminant, we choose the second error
measure in Barnard’s framework [30] for comparison. To obtain
this error measure, the chromaticities for each of the actual and
model illuminants given their RGB’s is computed:

ðra; gaÞ ¼ ðRa=ðRa þ Ga þ BaÞ;Ga=ðRa þ Ga þ BaÞÞ;
ðrm; gmÞ ¼ ðRm=ðRm þ Gm þ BmÞ;Gm=ðRm þ Gm þ BmÞÞ;

ð29Þ

where ðRa;Ga;BaÞ is the RGB of the actual illuminant and ðRm;Gm;BmÞ
is the RGB of the model illuminant. The error E is the vector distance
between the two chromaticities:

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrm � raÞ2 þ ðgm � gaÞ

2
q

: ð30Þ

Our approach estimates an illuminant spectral model, which is pro-
jected onto the three sensitivity curves of the camera sensor to ob-
tain the equivalent three-dimensional RGB measurement. From this
RGB, the corresponding chromaticity coordinates and then E are
computed for each scene. The median RMS error is computed to
measure the performance of the approach in estimating illuminant
spectra for all 100 scenes [38].

Next, the median RMS error is computed for the illuminant
chromaticity estimate of the same 100 scenes as given by the five
previous algorithms. These errors are shown in Table 1. As there
are many variants for each of the Color by Correlation, 2D Gamut
Mapping, and 3D Gamut Mapping algorithms, the variant which
roach to color constancy using non-uniform filters, Comput. Vis. Image
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gives rise to the minimal median RMS error over the 100 illumi-
nants is selected. In addition, the median RMS errors of Brainard
and Freeman’s approach as well as the different variants of our ap-
proach are shown in the table in decreasing order. As expected, the
order of median RMS errors corresponds to an increasing number
of sensor measurements (denoted by N in the table) in each of
the scenarios. However, in the Sequential Bayesian – Binary Filter,
One Move and the Sequential Bayesian – Binary Filter, Static Cam-
era cases, the number of gathered RGB measurements is the same
(N ¼ 5). This reflects in the very small difference in the correspond-
ing median RMS errors.

First, we would like to note that the 2D Gamut Mapping algo-
rithm did not find a solution for 28 out of the 100 scenes. This
may be due to the fact that the canonical gamut, formed by the
RGB’s of the surfaces viewed under the canonical illuminant, is lim-
ited as it does not take into account all possible surfaces. Only the
surface patches from our data set are considered. The median RMS
error given in the table for 2D Gamut Mapping is, therefore, over
72 scenes. From the table, it can be concluded that the Gray World
and the Scale-by-Max algorithms perform poorly as expected since
the assumptions imposed by these algorithms are strong and are
not always valid for real world images. The Color by Correlation
algorithm performs relatively well compared to the other four pre-
vious approaches as it does not impose as strong a set of assump-
tions. This explains its low median RMS error. Finally, we conclude
that the proposed Sequential Bayesian approach yields the best
illuminant spectral estimates when at least five sensor measure-
ments are employed when there are three-surface patches in the
scene, as in the Binary Filter – Static Camera, the Binary Filter –
One Move, and the Binary Filter – Two Moves cases. Our approach
has an advantage over the gamut mapping approaches in that it
does not require a canonical gamut, which should be formed by
taking into account as many surface patches as possible. Moreover,
our approach does not impose any assumptions on the scene under
study, which is the case in the Gray World and Scale-by-Max algo-
rithms. Therefore, our approach demonstrates flexibility of use.
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E6. Conclusions

In this work, we have proposed a sequential Bayesian strategy
that builds on the Brainard–Freeman Bayesian approach to color
constancy [1]. The recursion helps in gathering information across
different scenes and filter portions of different spectral sensitivi-
ties. Brainard and Freeman used a Bayesian technique to regularize
the problem of computing the values of the illuminant and surface
reflectance spectra parameters [39]. This technique uses the bilin-
ear model of Maloney and Wandell [10] to provide a parametriza-
tion of the illuminant and surface patch spectra.

Our approach enhances Brainard and Freeman’s model and is
based on insight from the characteristics of human vision, and
the human eye, in particular. In our approach, measurements are
acquired sequentially from each portion of a filter, similar to when
a person moves his/her gaze across a surface in the scene. In this
paper we modeled the case of a non-uniform filter, which has
two portions of different spectral sensitivities. We also extended
this case to moving the camera across the scene.

The experimental results in Section 4 indicate that there is con-
siderable improvement in the illuminant spectra estimates with
the introduction of the binary filter method compared to the no fil-
ter method, which is equivalent to that of Brainard and Freeman.
Another result shown in Section 4 is that of the moving camera:
the more the number of moves of the camera, the more measure-
ments for surface patches obtained. This motion results in an
improvement in the estimates of the illuminant and surface spec-
tra. Next, the numerical comparisons of illuminant estimation in
Please cite this article in press as: S. Skaff et al., A sequential Bayesian app
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Section 5 show that the proposed algorithm, in the case of a certain
number of gathered sensor responses from a scene, can outperform
state-of-the-art color correction approaches.

In our work, we rely heavily on the Bayesian probabilistic for-
mulation. We believe that this formulation is a suitable approach
because it models the uncertainties in all parts of a system, on
one hand, and because it employs spectral models, on the other
hand. Spectral models make it easier to further extend this Bayes-
ian approach to incorporate measurements from different scenes.
In addition, spectral models as used in our approach do not require
all surface patches of the scene to be viewed under all portions of a
filter. Finally, the computational complexity of the Bayesian formu-
lation is tolerable, which makes it feasible to implement and run
our sequential formulation.
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