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Abstract— Fast and accurate estimation of the transformation 

imposed by the illuminant to the colors of an image taken 

under that illuminant is of crucial importance in real-time 

computational color constancy applications. To this end, we 

present an edge based and an efficient chromaticity spatio-

spectral model which are modified versions of the spatio-

spectral method introduced by Chakrabarti et al [1]. As 

compared with the conventional color constancy methods, the 

spatio-spectral model improves the accuracy of estimation at 

the cost of increasing the execution time and storage 

dramatically. This increase makes the spatio-spectral model 

impractical and inappropriate for real-time applications. Our 

proposed methods aim at reducing the computational burden 

and required storage for the spatio-spectral modeling while 

retaining its accuracy of estimation. Evaluation of the 

performance of the proposed methods on a synthetic color 

image database and also the “Color Checker” database [2] are 

presented.  

Keywords-color constancy; spatio-spectral model; 

I.  INTRODUCTION  

A great feature of our visual system is that we can 

perceive the color of an object rather the same way under 

different color lights; in other words, human visual system 

is color constant. The bulk of the research has been 

conducted to investigate color constancy in human beings to 

figure out how our visual system is color constant, and how 

to incorporate the mechanism of human color constancy into 

machine vision. Color constancy is a branch of the computer 

vision field which deals with effects of the color of an 

illuminant on the appearance of the objects seen under that 

illuminant. Color constancy is of vital importance in many 

machine vision applications such as: object recognition, 

object tracking, surveillance, image retrieval, and image 

enhancement; among them, the first three are examples of 

the real-time applications of the color constancy. Moreover, 

photography and film industry are two other real-time 

application of color constancy where the rendered images 

and videos should be consistent with the human color 

perception. The aim of color constancy is to compensate for 

the skews brought about by the color of the illuminant on 

the color of the objects in the images.  

A. Literature Review 

A group of color constancy methods tries to recover the 

whole spectrum of the illuminant or the spectral reflectance 

function of surfaces in the image. The pioneering work of 

Maloney and Wandel [3] falls within this category. They 

proposed a low-dimensional linear model for recovering 

surface spectral reflectance assuming that every ambient 

light can be reconstructed well enough by a few fixed 

known basis lights and every surface reflectance function 

can be reconstructed well enough by a few fixed known 

basis reflectance functions. However, this method makes a 

very restrictive assumption and also is computationally 

complex.  

Estimating the color of the illuminant in terms of the 

camera response is another approach to recover the original 

colors of the image which is also the focus of the present 

research. In this way, the number of unknowns in the color 

constancy problem reduces [4]. Several methods have been 

proposed to estimate the color of the illuminant; each of 

them has made some assumptions to solve the color 

constancy problem. We can mention a group of low-level 

color constancy approaches which are simple and fast, 

among them the gray-world, max-RGB and shade of gray 

are well-known.  The gray-world method assumes that the 

average reflectance of a scene is achromatic [5]. It is a naïve 

assumption which may not hold for every image. Max-RGB 

is another approach which assumes that the color of the 

illuminant in an image can be obtained by taking the 

maximum response of the different color channels [6]. The 

shade of gray method takes the L
n
 Minkowski norm of the 

image as the color of the illuminant [7]. All of these 

methods are conceptually simple and fast, however, many 

other algorithms are proposed to achieve better 

performance. The 3D Gamut mapping method developed by 

Forsyth [8] assumes that there is a limited set of colors that 

can be viewed under a canonical illuminant and then, finds 

all diagonal matrices which transform every single point of 

the image gamut into the canonical gamut space. The 

intersection of the transformations gives us all the feasible 

mappings which map the image gamut to the canonical 

gamut. Among these feasible solutions, Forsyth suggested 

the intuitive way of choosing the solution with the 

maximum variance. The 3D gamut mapping works well 

with the images met the predefined assumptions; however, 

the assumptions do not hold for the real images where we 

face with specular surfaces and non-uniform illumination. 

This method is also computationally intensive. Color in 

perspective, which is also known as 2D gamut mapping, 

proposed by Finlayson [9]; and is the extension of 3D gamut 
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mapping. 2D gamut mapping tries to encounter with 

specular surfaces and non-uniform illuminations. 

Considering the fact that these unwanted effects just can 

change the color length and not its orientation provides 

Finlayson an incentive to get rid of the intensity information 

in the color space. To this end, colors are projected to the 

two dimensional chromaticity spaces. Due to eliminating 

one dimension, this algorithm takes advantage of less 

computational complexity, but it still requires great 

computations and it cannot deal with real images as well. 

The color by correlation method proposed by Finlayson et 

al. [4] introduces a great contribution to the field of color 

constancy. As with the color in perspective, this algorithm 

also works in the chromaticity space. Two main strengths of 

the method are: first, the method is able to unify the large 

group of prevailing methods in the color constancy (prior to 

the time of publishing the article); and second, the proposed 

method is practical for real images besides synthetic images. 

The main weaknesses of this algorithm are that it requires 

the training data and the camera sensors sensitivity curves.   

The edge-based color constancy method (i.e. gray-edge) 

proposed by Weijer et al. [10] falls within another group of 

color constancy methods trying to take into account the 

high-level visual information in the estimation process. The 

gray-edge method is one of the pioneering works which 

incorporated image derivatives into the color constancy 

method. They hypothesized that “the average of the 

reflectance differences in a scene is achromatic.” Another 

method which lies within this category is the spatio-spectral 

model proposed by Chakrabarty et al. [1]. The spatio-

spectral modeling is an attempt towards incorporating the 

spatial dependencies among pixels by filtering out the 

images rather than treating them individually. The spatio-

spectral model shows higher estimation accuracy compared 

with well-known simple methods like gray-world and gray-

edge methods. However, in terms of the execution time and 

the amount of required storage which are important factors 

in the real-time applications, spatio-spectral model shows 

unsatisfactory results.  

To address these problems, the edge-based and efficient 

chromaticity spatio-spectral models are presented. The 

proposed methods in this work reduce the redundant 

information in an image before start modeling in two 

different ways. The edge-based method takes into account 

the edges and their neighborhood for spatio-spectral 

modeling and the efficient chromaticity approach considers 

the pixels bringing new chromaticity information. The 

remainder of this paper organized as follows. In the section 

2, our proposed methods are introduced after a brief 

overview on the spatio-spectral modeling. Section 3 shows 

and discusses the results of the experiments have been 

conducted over synthesized and real image databases. 

Section four concludes the paper. 

 

II. METHOD 

Before introducing our method, we should briefly 

describe spatio-spectral model which is the basis for our 

contributions in this paper. Then later in this section we will 

present the edge-based and efficient chromaticity spatio-

spectral model.  

A. Spatio-Spectral Modeling Overview 

In the following subsection, we summarize this model 

and keep the notations the same as they proposed in the 

original paper. 

At first, a spatial decorrelating transform, which is a set 

of spatial subband filters, is applied to the input image. 

Among different alternatives of spatial filters, second-

derivative Gaussian filters at different scales are chosen 

because of their popularity in the image filtering application. 

Using K different subband filters 1{ }K

k k
f

=
, each colored 

image x(n) is decomposed to K images 
1{ ( )}K

k kx n
=

. 

Secondly, the spatio-spectral model assumes that the joint 

probability distribution of each subband component ( )kx n  

corresponding to the canonical color image is modeled as 

the radial exponential distribution 

11
( ) exp( 2 )

det( )

T

k k k k

k

p x x x
π

−
= − Σ

Σ
 

(1) 

where 
k

Σ  is the 3 by 3 covariance matrix. These subband 

components are deemed independent from each other.  

We should emphasize that this model is just valid for the 

canonical image and not for an arbitrary image. The 

parameters of this model i.e. the covariance matrices 

corresponding to subbands have to be obtained in the 

training phase. It is worth mentioning that the required 

storage for the filtered image is K times greater than that of 

the image.  

1) Training Phase 

In the training phase, given a set of T canonical images 

1{ }T

t t
x

=
the covariance matrices 

k
Σ  corresponding to 

subband models are obtained using the maximum log-

likelihood method as follows. 

,

1

, ,

arg max log ( | )

arg max ( log det( ) 2 )
2

k k t

t

T

k t k t

t

p x

T
x x

−

Σ = Σ

= − Σ − Σ

∑

∑
 

(2) 

However, this problem does not have a closed form 

solution. Chakrabarti et al. proposed an iterative method to 

solve this optimization problem: 
k

Σ  is initialized as an 

identity matrix and then updated using the current estimate 
*

k
Σ at each iteration, as follows.  
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, ,

* 1

, ,
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k t k t
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T
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k t k k t

x x

T x x
−

Σ =
Σ

∑
 

(3) 

2) Estimation Phase 

It has been shown that the transformation imposed by the 

illuminant on the perceived color of surfaces in the image 

can be modeled by a linear mapping with a sufficient 

accuracy in many cases [1]. This hypothesis suggests that an 

image taken under an arbitrary illuminant can be 

transformed to the corresponding canonical image using a 3 

by 3 linear mapping of the following form  
1( ) ( )x n M y n−

=  (4) 

where x(n) and y(n) are canonical image and given image 

under an arbitrary lighting respectively. Assuming that three 

color channels are independent from each other we can 

consider M as a diagonal matrix. Therefore, our objective is 

to estimate three diagonal entries of the matrix M based on 

the obtained probability distribution function of the 

decomposed canonical images. Given the matrix M, we can 

calculate the likelihood ( | )
k

p y M  

1
exp( 2 ( ) )

( | )
det( )

T

k k k

k

k

y M M y
p y M

M Mπ

−
− Σ

=
Σ

 (5) 

The M can be obtained using the maximum likelihood 

method; however, this problem also does not have a closed-

form solution and has to be solved using iterative methods. 

,

ˆ arg max log ( ( ) | )
ML kk n

M

M p y n M= ∑
 

(6) 

To this end, M is initialized as an identity matrix and then 

it is updated based on the current estimate *
M . If we define 

[ ]1 2 3m m m m= and [ ]1 2 3
w w w w= as the diagonal 

elements of M and 1
M

− , it has been shown that 
i

m  can be 

obtained as  

* *

2 *1
( ) 4

2

ji ji

i ii

j i j ij j

A A
m A

m m≠ ≠

 
 = + +
 
 
∑ ∑

 

(7) 

*A  is a 3 by 3 symmetric matrix given by 

( )
* 1

1
* *

( ) ( )4

( ) ( )

T

k k
k

T T
k n

k k k

y n y n
A

N y n M M y n

−
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 = Σ
 Σ 

∑ ∑ �

 

(8) 

where 

,

1
k n

N =∑ , and “ � ” represents the entry-wise product 

of two matrices. For further details on the method, we refer 

you to the original article. Up to this point, we described the 

maximum likelihood solution of the color constancy 

problem which implicitly assumes that illuminants are 

equally likely. Another contribution of Chakrabarti et al. is 

to incorporate the illuminant prior to increase the accuracy 

of the estimation. They deem the illuminant prior 

distribution as follows 

1.5 0.5
1

2 2 2

1 2 3

2 det( ) 1
( ) exp

2

TQ
p M w Q w

m m mπ

−

−   
= −   
     

(9) 

where Q is a 3 by 3 positive definite matrix. Using the 

illuminant prior, the illuminant estimate can be obtained by  

,

ˆ arg max log ( ( ) | )

log ( )

ML kk n
M

M p y n M

p Mα

 =  

+

∑  
(10) 

where the coefficient α determines the relative weight of the 

prior information; in other words, it determines that how 

much we trust the prior information. Updating the iterative 

solution based on the new objective function, the illuminant 

estimate can be calculated the same way except replacing 
*

A with *

pA . *

pA  is given by  

*
*

2
p

NA Q
A

N

α

α

+
=

+
 (11) 

The parameters α and Q should be learned during the 

training phase and for obtaining them we use the same 

procedure as they have used in their codes. In the next 

section, we will come up with two solutions to reduce the 

required storage and speeding up the execution of the 

algorithm. 

B. Edge-based spatio-spectral method 

In the first attempt to speed up the spatio-spectral model 

and reducing the required storage, we introduce the edge-

based spatio-spectral modeling which is based on the fact 

that most of information in an image concentrated around 

edges. In other words, uniform regions in an image do not 

bring the spatio-spectral model with new information, and 

simply we can neglect them in the process of filtering. 

Therefore, the spatio-spectral modeling can be confined to 

the regions around edges. After finding edges, they should 

be dilated to incorporate the neighboring pixels in the 

modeling. A question may arise is that “How many pixels 

around edges should be considered?” The size of dilation 

can be determined adaptively based on the scale of the 

second order Gaussian filter. We assume that 6σ pixels 

around edges contain the required information. The edge-

based spatio-spectral model can be summarized as follows:  

1- Edges of a given image is obtained using “canny” 

or “sobel” filter 

2- The edges are dilated based on the scale of second 

order Gaussian filter to incorporate the neighboring 

pixels of edges 

3- The spatio-spectral modeling is confined to the 

mask obtained from the previous step  

To visualize the first and second steps, Figure 1. shows a 

case in point trying to build masks for each scale of the 

second-derivative Gaussian filter over which the spatio-

spectral modeling will be done. 
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In the next section, we introduce another way of reducing 

redundant information in an image based on finding 

chromaticities of the image. 

C. Efficient Chromaticity spatio-spectral modeling 

As we mentioned before, the spatio-spectral model deals 

with all the pixels in an image within which exist great 

amount of redundant information. In every natural image, 

we frequently see that an image is covered with the big 

regions of uniform colors (such as blue sky) which are 

several pixels with redundant information. Dealing with vast 

number of uniform patches in an image brings about huge 

amount of computations in the estimation phase and 

consequently, the algorithm loses its value in the real-time 

applications, and also it may decrease the accuracy of 

estimation. In the remainder of this section, we propose 

another solution to resolve the mentioned problems. To 

remove the redundancies between image patches, we 

propose a simple algorithm which constitute the overall 

chromaticity region for each image and evaluate the pixels 

in terms of their information based on the new chromaticites 

they add to the overall chromaticity region. To transform the 

camera RGB vector 
1 2 3

( )T
p p p at every pixel to the 

chromaticity values, we use the following equations 

proposed by Finlayson et al. [4]. 
1 1

31 3 3
1 2

2 2

( ) , ( )
pp

c c
p p

= =

 

(12) 

It is assumed that all the possible colors in images can be 

confined to the chromaticity space, C, defined by 
min max min max

1 1 2 2
[ , ] [ , ]c c c c×  which is uniformly partitioned 

into N×N chromaticity regions (see Fig. 2).  
1 1

31 3 3
1 2

2 2

( ) , ( )
pp

c c
p p

= =

 

(13) 

min max min max

1 1 2 2

min max min max

1 1 2 2

{ ( , ) | , }

{ | [ , ] [ , ]}

C c x y c x c c y c

c c c c c c

= = ≤ ≤ ≤ ≤

= ∈ ×

 

(14) 

So, 2N different colors can be identified in images. The 

bigger N makes it possible to describe the overall 

chromaticity space finer. The value of N depends on the 

application. To constitute the overall chromaticity region for  

each image, our algorithm takes the pixels one by one from 

the first in the upper left corner to the last in the lower right 

corner of the image, and then the corresponding 

chromaticity values to that pixel is computed. Before any 

pixel comes, the overall chromaticity region is empty; and 

as the pixels come in gradually this region grows based on 

the chromaticities of the pixels. If the chromaticity of a new 

pixel already exists in the overall chromaticity region, then 

we can treat that pixel as a redundant pixel and get rid of it. 

Pseudo-code for removing redundant information among 

patches is given as follows. 

1- Compute the chromaticity of jth pixel. 

2- If the pixel does not introduce any new chromaticity to 

the overall chromaticity region then, get rid of that 

patch, 1j j→ + , and go to 1. 

3- Update the overall chromaticity region based on the 

new chromaticity of the jth pixel. Save the pixel as an 

effective pixel for using in the spatio-spectral modeling. 

4- Dilate the effective pixels based on the scale factor of 

the second-order Gaussian filter to incorporate their 

neighboring pixels in the spatio-spectral modeling.  

Analogous to the the edge-based method, the size of 

dilation is dynamic and should be set as a constant 

multiplication of the filter scale factor where this constant 

can be determined based on the size of the image. Similar to 

the edge-based reduction method, let us visualize the 

procedure described above for the same image used in the 

    
 a             b         c 

Figure 3. Computing masks for incorporating effective pixels and their 

neighborhood in the spatio-spectral modeling, a, b, and c) dilated 

effective pixels in the image by a factor of 10 for σ=1,2, and 4 

respectively.  

 

    
a         b                   c  

      
 d          e                       f 
Figure 1. Visualizing step 1 and step 2 of the edge-based spatio-

spectral modeling, a) input color image b) corresponding gray-scale 

image c) edges of the gray-scale image d, e, and f) dilated edges for 

σ=1,2, and 4 respectively.  

 

 
Figure 2. Discretized chromaticity space 
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Fig. 1. As you may notice, one of the patches (in the second 

row and last column) in the image is removes because it is 

of the same color (and chromaticity) as another one at the 

intersection of the fourth row and the forth column. 

III. EXPERIMENTS AND RESULTS 

This section discusses experiments have been done to 

evaluate the performance of the proposed edge-based and 

efficient chromaticity spatio-spectral modeling. The 

experiments are done over both synthesized and real images. 

At first, we show the results of the algorithm against 

synthesized images, and then we will move to the “Color 

Checker” database containing real images collected by 

Gehler et al. [2]. The original spatio-spectral model is 

implemented by Chakrabarti et al. [1] and their codes are 

available. We have used these codes and modify them based 

on the proposed ideas. In the implementation of the original 

spatio-spectral method, the scales of the second derivative 

Gaussian filter are set as σ={1, 2, and 4}. The performance 

of their algorithm is reported in three cases: first, the 

maximum likelihood method without any prior information 

is used; second, the ML estimate is obtained with general 

prior information over all images; and third, the ML 

estimate obtained when two distinct priors are assumed for 

indoor and outdoor images. In the same way, we will report 

our results for these three cases when the indoor and 

outdoor images are categorized (e.g. the “Color Checker” 

database) and neglect the third case for our experiments 

over the synthesized database. The angle between the 

estimated color and the actual color of the illuminant, 

referred to as angular error, is used as a measure of 

performance. The execution time of the spatio-spectral 

method and our proposed methods can be split into the pre-

computation time and estimation time. The former process 

filters out the image to obtain the subband images and the 

latter uses the result of pre-computation process and 

estimates the illuminant color. The addition of the two 

execution times indicates the overall execution time of the 

algorithm. It is worth mentioning that the training time is 

not demonstrated here because in most applications, the 

training process is done off-line. We conduct our 

experiments over 4 scenarios defined as follows.  

Scenario1: The performance of the original spatio-

spectral method is examined. 

Scenario 2: The edge-based spatio-spectral model is put 

under test. The edge dilation size is set equal to 6σ. Edges 

are computed using the Sobel filter. The threshold of 

detection is adjusted equal to a constant multiplication of the 

median of the gray-scale image. This constant is chosen as 

0.2 for all images. 

Scenario 3: The experiments are conducted over efficient 

chromaticity spatio-spectral method. In this case, the 

chromaticity space is confined to the [0.1,2.5]×[0.2,2.5] 

region and discretized using a 500×500 grid. The dilation 

size is selected equal to 15σ for all images.  

A. Synthetic Image Database 

In this section, a synthesized image database is 

constructed in a similar way proposed in [4] with slight 

modifications to assess the proposed method. A set of 1296 

Munsell chips [11] is used as the surface reflectance 

database, and a set of 87 lights including variety of indoor 

and outdoor illuminants collected by Branard et al. [12] 

comprises our illuminant database. The images are 

synthesized by choosing a set of surfaces from the surface 

reflectance database randomly and selecting an illuminant 

from the illuminant database. For each image with a given 

number of surfaces, a set of surface reflectance functions 

and also a single illuminant are drawn randomly to render a 

256 × 256 image. The spectral sensitivity curves of the Sony 

DXC-930 three chip CCD camera measured by Barnard et 

al. [12] is used for the rendering purpose. The selected 

surfaces are distributed randomly in a checkerboard pattern. 

Additionally, knowing the color of the illuminant for each 

rendered image, a ground-truth for the color of the 

illuminant is created. All the experiments have been 

conducted over a set of synthesized images with {4, 9, 16, 

25, 36, 49, 64} surfaces. Some sample images of this 

database are shown in the Figure 4. 

The experiments over synthesized database are run using 

the Intel Core™ i7 - 720QM processor (1.60GHz ) with 

Intel Turbo Boost Technology up to (2.80GHz ) and 6GB of 

system memory. We invoke the two well-known color 

constancy methods: gray-world and grayedge, which are 

implemented by Weijer et al. [10], to compare their 

performance with that of the spatio-spectral and the 

algorithms proposed in this paper. The codes of these 

reference methods are available on: http://lear.inrialpes.fr 

/people/vandeweijer/research. In the codes, the Minkowski 

norm, sigma of Gaussian filter, and the differential order for 

the gray edge method are set to 5, 2, and 1 respectively. The 

accuracy and execution time of each algorithm together with 

that of scenarios are tabulated in Table 1.  

The results indicate that the conventional color constancy 

methods are fast and in this regard they are suitable for real-

time applications; however, in terms of accuracy, they do 

not provide accurate estimations. Bear in mind that both the 

    

   

Figure 4. Sample cases of the synthesized image database with 4, 9, 

16, 25, 36 and 49 patches  
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accuracy and time are important in practice. At the other 

side, the spatio-spectral method is more accurate; however, 

the execution time is much more than simple color 

constancy methods. In contrast to the both mentioned 

groups, our proposed methods give rise to an acceptable 

accuracy which is very close to that of original spatio-

spectral method, and doubles the speed of the first scenario. 

We should add that the accuracy of our methods get closer 

and closer to that of the spatio-spectral as the number of 

surfaces in a synthesized image increases (see Figs. 5 and 

6). Since in the real images the number of surface patches is 

more than just 10 or 20 surfaces, we can expect that all these 

three methods exhibit similar accuracies over real images. 

This hypothesis will be investigated in the next section. 

 

B. Real Images 

The “Color Checker” database is used to evaluate the 

proposed methods in this paper and compare the results with 

the mentioned conventional color constancy methods and 

also the spatio-spectral approach. This database consists of 

568 images separated into the indoor (246 images) and 

outdoor (322 images) categories. The color of true 

illuminant is given for every image in the database which is 

used as a ground-truth for the training and also calculating 

the estimation error of the algorithms. Each image in this 

database includes the picture of a Macbeth color checker 

which is excluded for the training and the test. The “Color 

Checker” dataset is available in several versions; we used 

the one prepared by Shi and Funt [14]. In this version, 

images are not gamma corrected; and auto-white balance is 

not applied to the images. The experiments have been done 

using the Intel(R) Xeon(R)-E5645, 2.40GHz CPU with 

48GB system memory. Table 2 shows the results of 

different methods. 

The results demonstrate that the proposed methods are 

efficient in terms of keeping the precision of spatio-spectral 

method and speeding up this algorithm. Scenarios 2 and 3 

increase the accuracy of estimation; one explanation is that 
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Figure 5. Mean angular error of the ML estimate as a function of the 

number of surfaces is shown for the spatio-spectral method and our 

proposed methods. 
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Figure 6. Mean angular error of the GP estimate as a function of the 

number of surfaces is shown for the spatio-spectral method and our 

proposed methods. 

 

Table 1. Angular Errors for different methods on the “Color 

Checker” database 

 All Images 
Execution 

Time (s)  
Mean Median 

Worst 

25% 

Gray World 6.1° 6.5° 8.0° 0.673 

Gray Edge 3.9° 2.8° 8.5° 2.525 

Scenario 1 (ML) 3.7° 3.0° 7.6° 23.034 

Scenario 1 (GP) 3.6° 3.0° 7.4° 23.038 

Scenario 1 (CWP) 3.1° 2.3° 6.5° 23.039 

Scenario 2 (ML) 3.5° 2.7° 7.3° 12.835 

Scenario 2 (GP) 3.4° 2.7° 7.1° 12.840 

Scenario 2 (CWP) 3.0° 2.2° 6.3° 12.840 

Scenario 3 (ML) 3.7° 2.9° 7.8° 8.930 

Scenario 3 (GP) 3.6° 2.9° 7.6° 8.935 

Scenario 3 (CWP) 3.0° 2.2° 6.4° 8.935 

 

Table 2.  Angular Errors for different methods on the synthesized 

database 

 All Images 
Execution 

Time (s) 
 

Mean Median 
Worst 

25% 

Gray World 5.6° 4.5° 11.5° 0.013 

Gray Edge 6.4° 4.9° 13.9° 0.069 

Scenario 1 (ML) 3.6° 2.7° 8.2° 0.682 

Scenario 1 (GP) 3.5° 2.7° 7.8° 0.689 

Scenario 2 (ML) 4.6° 3.1° 10.7° 0.343 

Scenario 2 (GP) 4.0° 3.0° 8.7° 0.351 

Scenario 3 (ML) 4.2° 2.9° 9.7° 0.345 

Scenario 3 (GP) 3.8° 2.9° 8.0° 0.358 
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removing the redundancies existing in an image leads to a 

better modeling, because redundant information can play a 

similar role as the noise signal for the model which degrades 

the modeling precision. The execution time of the spatio-

spectral model is dramatically high and this quantity is 

improved approximately by the factor of 2 and 3 in the 

edge-based and efficient chromaticity spatio-spectral 

methods; however, it requires still more improvement to be 

considered as a choice for real-time applications. In this 

regard, we apply downsizing to the images for further 

speeding up the algorithm and investigate its effects on the 

precision of estimation. Bear in mind that the size of the 

images in the “Color Checker” database varies between 6 to 

10 MB. The huge file size overfeeds the spatio-spectral 

model, rises the required storage, and slows down the 

algorithm. In the Tables 3 and 4, the results of scenarios 2 

and 3 are shown when the images are downsized by a factor 

of 0.5 and 0.25 before being fed to the algorithms.  

Take a brief look at the results of Table 3 indicates that 

downsizing the images not only speeds up the algorithm 

significantly but also improves the accuracy of estimation in 

some cases. The reason is that downsizing the huge size 

files can reduce the redundant information such as false 

positive edges which do not bring out any new information 

for the spatio-spectral model. 

For the sake of convenience, the average angular error 

and the execution time of the scenarios over different 

experiments are plotted in the Figure 7. This figure illustrate 

that: first, using the proposed methods in this paper we can 

double or triple the speed of the spatio-spectral model; 

second, the edge-based method and the efficient 

chromaticity spatio-spectral method keeps the accuracy of 

the spatio-spectral method relatively constant and in some 

cases, improves the precision; third, downsizing of the huge 

size image files will not reduce the performance of the 

proposed methods and even make them totally appropriate 

for real-time applications.  
 

IV. CONCLUSION 

In this paper, we contributed the edge-based and efficient 

chromaticity spatio-spectral modeling to improve the spatio-

spectral method presented in [1] to fit the requirements of 

the real-time applications. The proposed methods in this 

work try to get rid of redundant information in an image 

before start modeling in two different ways. The edge-based 

method takes into account the edges and their neighborhood 

for spatio-spectral modeling and the efficient chromaticity 

approach considers the pixels bringing new chromaticity 

information. The evaluation of the proposed methods on the 

synthesized and real images shows promising results. As we 

expected, both approaches are effective in speeding up the 

spatio-spectral method while keeping the high accuracy of 

estimation. Comparing with the conventional computational 

color constancy methods, main strengths of the modified 

spatio-spectral color constancy are: first, take into account 

dependencies among neighboring pixels; second, improves 

the accuracy of estimation; however, the major weakness of 

this algorithm is that it requires the training phase. So we 

cannot expect this method to provide a good estimation for 

images with a new illuminant which is too different from 

those illuminants used in the training phase.  

Finally, we should point out some challenges that can be 
Table 3. Angular Errors of scenarios 2 and 3 on the “Color Checker”  

 All Images 
Execution 

Time (s)  
Mean Median 

Worst 

25% 

Downsized database by the factor of 0.5 

Scenario 2 (ML) 3.5° 2.7° 7.5° 3.900 

Scenario 2 (GP) 3.4° 2.7° 7.3° 3.905 

Scenario 2 (CWP) 2.9° 2.2° 6.3° 3.905 

Scenario 3 (ML) 3.7° 2.9° 7.8° 2.874 

Scenario 3 (GP) 3.6° 2.8° 7.6° 2.879 

Scenario 3 (CWP) 2.9° 2.1° 6.4° 2.879 

Downsized database by the factor of 0.25 

Scenario 2 (ML) 3.6° 2.7° 7.7° 1.124 

Scenario 2 (GP) 3.5° 2.6° 7.4° 1.129 

Scenario 2 (CWP) 2.9° 2.1° 6.4° 1.129 

Scenario 3 (ML) 3.6° 2.7° 7.8° 1.059 

Scenario 3 (GP) 3.5° 2.7° 7.5° 1.063 

Scenario 3 (CWP) 2.9° 2.1° 6.4° 1.064 
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Figure 7. The results of Tables 2-4.are summed up. The upper and 

lower plot shows the variation of the execution time and the mean 

angular error over different scenarios respectively. 
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the subject of our future work. First, the category-wise prior 

assumes that the indoor and outdoor labels are provided 

every image; however, it is not always the case in the 

practice. Second, we should find a mechanized way to 

determine that to which degree the image can be downsized 

without losing the accuracy. 
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