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Abstract—Specularity is a common phenomenon in the real
world and can provide both challenges and opportunities for
computer vision algorithms. In this paper, we propose a new
method to detect specularities in real time. This method is based
on an unnormalized version of the Wiener Entropy which is
commonly used in audio spectral analysis. Experiment results
demonstrate our proposed methodology’s efficacy in specularity
detection on both natural and synthetic images. Its potential
in the 3D movie industry and for helping compute stereo
correspondence in the presence of specularities is described.
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I. INTRODUCTION

The visual world is enriched by the presence of specular
reflections. From the glistening light of waves on lakes to the
sparkling highlights that make fresh fruits mouth watering;
from the shiny hood reflection of a luxury car to glistening
lips in a modern makeup advertisement, specularities are
everywhere. When light is incident on a surface, some
of it penetrates to the interior. This part of the incident
light can be divided into two components: a portion that
is absorbed and is not reflected back, and a portion that is
scattered within the bulk material and then reflected back
to the surface. This reflected component is called the diffuse
component of the total reflection. In addition to the light that
penetrates the surface, some light is reflected immediately
from the surface. This reflected portion of light is the
specular component of the total reflection. In this paper, a
specularity is loosely defined as a region whose proportion
of specular reflection is high enough that the original diffuse
spectrum is obviously changed.

Specularity is a common phenomenon in natural images,
and constitutes an unignorable double-edged sword. On
one hand, specularities contain information that can be
used to infer geometrical structures. On the other hand,
specularities present difficulties for many computer vision
tasks such as shape from shading, stereopsis, motion anal-
ysis, object recognition, image segmentation and so on.
While the approach proposed in this paper is generally
applicable, our work is motivated by problems arising from
3D cinematography. In today’s movie industry, 3D has
experienced growing popularity and more and more movies
are shot in 3D. However, many computer vision problems

arise in 3D filming [4]. One of these problems is caused
by specularities: due to the differentially polarizing effect
of the beamsplitter in a mirror stereo camera rig, specular
regions are usually captured differently along the two optical
paths. This differential image capture results in mismatching
image features in corresponding regions, and can produce
binocular fusion problems for movie viewers as well as
creating difficulties for technical post-processing of the film.

It is therefore of great importance to reliably detect
specularities (preferably in real time). This paper describes
a new real-time approach for specularity detection, based on
an unnormalized form of Wiener Entropy. Prior specularity
detection methods are reviewed in Section 2. In Section 3
and 4, the concept of unnormalized Wiener entropy (UW
entropy) along with its application in specularity detection
is introduced. Section 5 demonstrates some representative
results of our proposed specularity detection method. In
Section 6 our method’s application in the 3D movie industry
is described and Section 7 presents a specularity aware stereo
correspondence approach based on UW entropy.

II. PREVIOUS WORK

Many specularity detection algorithms have been de-
veloped over the years. Among them, the most popular
category is based on color space analysis. Shafer [17] built
a dichromatic model in the RGB color space where a
collection of color vectors from a homogeneous dichromatic
surface roughly lie in a dichromatic plane spanned by the
specular color and diffuse color. The specular reflection can
be obtained by simply projecting the pixel color onto the
specular line. Later it is observed that these color vectors
usually cluster in a ‘skewed-T’ shape and improvements
are made in Klinker et al. [9]. However, some assumptions
have to be made in this method. First of all, the ‘skewed-T’
shape only exists for well-constrained environments where
the gradual change in color can be easily seen. For clipped
specularities or specularities far away like those on a lake
or specularities of the same color as the diffuse underlying
component, it is hard to find such a clearly defined ‘skewed-
T’ shape. Even if a gradual change exists, often the corner
of the ‘skewed-T’ is not sharp enough for an accurate
separation. What’s more, in order to fit a parallelogram, the
pixel noise should be small and the distribution of pixel



color vectors within a homogeneous material must not be
pathological. Last but not least, segmentation into patches of
homogeneous diffuse color is required. Similarly, Gershon
et al. [7] observed the phenomenon that a highlight typically
involves a gradual additive color shift from the object color
to the illuminant color. Based on this observation, they
developed an algorithm to detect those shifts which are
characterized by a “dog leg” behavior in color space between
segmented regions. However, besides the previously men-
tioned drawbacks, there are additional shortcomings. Firstly,
neighborhood information among all segmented regions has
to be gathered. Also, the transition from the object color
to the illuminant color should be smooth, meaning that
this algorithm cannot deal with sudden changes in surface
curvature. In addition, the algorithm cannot handle more
than one light source unless the light sources share the
same spectral power distribution. In Bajcsy et al. [1] color
pixels measured in RGB are transformed into the S space
where color variations are analyzed in terms of brightness,
hue, and saturation. Though analysis becomes more intuitive
and easier, in theory there is no information gain by just
transforming between color spaces. In their method, the
scene illumination must be singly colored and estimated
using a white reference plate as an active probe, which not
only complicates the process but also cannot guarantee an
accurate enough estimation.

The previously mentioned methods involve expensive 3D
color space analyses. To address the problem of complexity,
a relatively fast approach based on a 2D diagram has been
developed by Schluns and Koschan [16]. In their method, 3D
color descriptors are transformed to a pair of 2D descriptors.
Though faster than above approaches, its matte and highlight
color estimation procedure is still complex and involves
segmentation. Like most methods in this category, it expects
objects in the scene to have very saturated colors and exist
against a uniform background. Drew [5] showed that the
Lambertian part of reflection forms an ellipsoid in the 2D
color spaces and the specular part can be considered as
outlier. Using a least-median-of-squares method, the ellip-
soid can be found to recover the surface orientation due
to its linear relationship with the RGB color. Specularities
do not fall on this ellipsoid and thus can be detected as
a side benefit. However, in this method, several important
parameters are set in an ad-hoc manner, an aggregated set of
illuminants with spectrally varying light sources is required,
and to do regression reliably the non-specular regions should
be dominant. Torres et al. [18] introduced a 2D MS diagram
describing the relationship between intensity and saturation.
They claim that specularities can be located in a well-defined
region in this diagram by analyzing the shape of specular
clusters. Though this method can work quite well for inten-
sive ‘white’ specularities without any hue, it does not work
in rest cases. Furthermore, the region mask selection and
some important parameter settings are a little bit ad-hoc and

the segmentation cannot be avoided either. Similarly, in [11],
thresholding on intensity and saturation is applied in order
to spot the specular pixels. This method confines specularity
candidates into a paticular region of high brightness and
unsaturated color in the 2D space of intensity-saturation.
However, the fact is that by mixing different specular and
diffuse components specularities can actually appear in any
color (not necessarily those of high brightness and less
saturation). Thus, by using such an axis-aligned bounding
region, they let go many genuine specularities. The two ‘not
so bright’ specularities in Figure 1, some quite saturated
specularities in Figure 5 will all serve as good examples.
Different from above methods, Park [15] has presented a new
color space transformation, which is similar to the RGB-
SUV transformation in [13], where the illuminant direc-
tion becomes aligned with one axis. This transformation is
advantageous for specularity detection because unsaturated
specular regions form planar color clusters in the new color
space and each of the planar specular clusters corresponds
to a specular region. In this way, the complexity has been
reduced by one dimension and segmentation is no longer
needed. In their work, how to detect saturated pixels that
do not lie on above dichromatic planes is also described.
However, the illuminant should be evaluated beforehand,
which is ill-posed and a difficult task itself.

Color is one of the main features we can extract from a
scene and is readily acquired with common digital cameras,
perhaps explaining the large number of color-based specular-
ity detection methods. That said, many specularity detection
methods either ignore color (e.g. [3]) or combine it with
other cues such as polarization information [19] or multiple
views [10] or both [12] to detect specularities at the expense
of more complicated hardware devices or more processing
time. For the purpose of real-timing, in this paper we do not
bother to incorporate other physical cues and only adopt the
available color information to detect specularities.

III. SPECULARITY AND UW ENTROPY

The effect of a specular reflection in an image over
and above the diffuse reflection is twofold: it increases the
intensity and it changes the color direction most if not all
of the time. The approach to specularity detection that we
propose in this paper takes into account both of these effects.

Let us first consider the color direction change due to the
specular reflection. We find that in general if the color of
the illuminant is not aligned with the color of the diffuse
reflecting surface, the effect of the specular component is
a tendency to make the spectrum of the mixed light more
uniformly distributed, or in other words, less spiky. (here
the spectral flatness or uniformity has nothing to do with
intensity or magnitude.) The reason is that most light sources
in the real world, from the natural sunlight to man-made
fluorescent light, have a quite uniform spectral distribu-
tion compared to the diffuse component. Even if the light



source’s spectrum is not that highly uniformly distributed
compared to that of the diffuse component, the resulting
mixed spectrum will also get flatter. Take the light from a
red led (which has a quite spiky spectrum) for example,
when it shines on a different colored surface (for example
greenish or bluish surface), the resulting channel values of
the specular region also become more uniformly distributed
than the underlying diffuse color. Even when the light source
has exactly the same spectrum (channel distribution) as the
diffuse surface, the resulting ratio over the channels will
remain the same, but will not decrease. This may account
for the biological fact that the specularity on the samely
colored object seems relatively less identifiable. In summary,
the uniformizing tendency of spectrum is generally valid for
most specularities.

In audio spectral analysis, Wiener Entropy is used to
measure spectral uniformity or flatness [6], [14]. Suppose
we model the spectrum of the imaged light as a distribution
of spectral samples (channel values) Sk, which could be the
set of N output values from a spectrometer, or the N = 3
RGB channels of a digital camera. The Wiener Entropy is
then defined as the log of the ratio of the geometric mean
of the Sk to the arithmetic mean of the Sk:
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The Wiener Entropy can be interpreted as the Kullback-
Liebler divergence between {Sk} and a uniform distribution.
Often, in audio spectral analysis applications, the term
inside the logarithm is termed the Spectral Flatness with
the logarithm then providing a value expressed in decibels.
The Wiener entropy can be seen to capture the (generally
true) uniformizing tendency on the spectrum of the specular
reflection, in that the value of the Wiener entropy should be
higher (approaching zero) for specular regions as compared
with nearby non-specular regions (assumed to have similar
body reflection colors). However, as previously mentioned,
in general the Wiener entropy, or the Spectral Flatness mea-
sure, can only capture one part of the effect of the specular
component. To handle the intensity enhancing effect, we add
a term as follows, proportional to the log of the intensity, as
represented by the sum of the spectral components:
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This will nominally cancel out the denominator inside the
logarithm in equation (2), resulting in a loss of normal-
ization. However, we write it as above to make clear the

effect of the added term. For computational simplicity, in the
remainder of the paper we will omit the logarithm operation
and the scale factor of 1/N noting that in so doing we obtain
a monotonically related measure. This gives us what we call
the unnormalized Wiener entropy (or UW entropy):

H = exp(N ·W ′) = IN exp(N ·W ) (4)

which can be written as:
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)
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where I is the intensity

I =
1

N

N∑
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Sk (6)

In our unnormalized Wiener entropy measure, the spectral
samples (channel values) are joined together in a multiplica-
tive manner, which not only cares about the intensity change
of each individual sample, but also takes into consideration
the ratio or proportion among them. For example, in a
trichromatic vision system, if the highest sensor response
is normalized to one, each of the other two responses
becomes the ratio of itself to the highest response. Thus the
multiplication of the three reveals the overall ratio among
all three sensor values. Dynamically speaking, when one of
the sensor values is changed, depending on the proportion
of the changed channel in all channels, the same amount
of change can produce quite different results. If the change
occurs in a channel whose value is of smaller proportion,
the multiplication as well as channel ratio is changed more
obviously than if the same amount of change is applied to
the channel of bigger proportion. The addition of specular
reflection to the diffuse component has similar properties:
when a red light sheds on an ‘already’ red object the
resulting specularity is not so obvious compared to the
case where a different color light source is used. Thus, the
proposed unnormalized Wiener entropy measure can also
well reflect the different results of various combinations of
diffuse and specular components.

From equation (4), we can see that the unnormalized
Wiener entropy consists of two parts: one is the brightness
related map IN and the other is the product of the propor-
tions of each channel, which we will refer to as the unifor-
mity map, exp(N ·W ) (which captures spectral flatness). In
our algorithm the two parts of the proposed unnormalized
Wiener entropy capture the color-direction-changing and
intensity-increasing characteristics of specularities and work
‘hand in hand’ to successfully detect them. For example,
consider Figure 1 where the left hand image is derived from
a synthetic scene and contains four specularities.

The brightness map corresponding to the lefthand image
is shown in the center image in this figure. In the bright-
ness map we can see that the two most obvious specular



Figure 1. A synthetic image containing multiple specularities (left) with
the associated brightness (center) and uniformity (right) maps.

highlights stand out from their neighborhood due to their
high brightness. However, the other two specularities are
relatively dim compared to the very bright non-specular
regions and are drown in the non-specular neighborhood. By
simply and naively searching for bright pixels like [3] does,
we cannot effectively identify these specularities. Therefore,
brightness alone is not enough for specularity detection
because it only focuses on the sum of the channel values and
completely ignores their relationship. Fortunately, the uni-
formity part in the proposed unnormalized Wiener entropy
can capture the other very important characteristic, which
is specular region generally has a more uniform spectrum
(or distribution over channels) and by combining it with
the brightness information in a complementary yet compact
manner, we can successfully identify the specularities. The
uniformity map is shown in the righthand image of Figure 1.
In the uniformity map, all four specular regions are of
a relatively high value compared to non-specular regions,
demonstrating the uniformity map’s ability to complement
the brightness information in specularity detection. Figure 2
shows another example, this time on a natural image. The
uniformity part helps the brightness part clearly picks out
the many specularities in the scene.

Figure 2. A natural image containing multiple specularities (left) with the
associated brightness map (center) and UW Entropy map (right).

It is worth noting that as mentioned previously many
methods examining both brightness and saturation infor-
mation have been proposed to detect specularities such
as [18], [11]. However, quite different from those methods
which separately threshold on brightness and saturation
values, in our UW Entropy the brightness related part and
the uniformity part have a cooperative and complementary
relationship and one cannot survive without the other. For
the image in Figure 1, while our UW Entropy can use the
high uniformity to help identifying the two not so bright

specularities, the saturation information in naive threshold-
ing methods (similar to our uniformity), though somewhat
informative, cannot save the two not so bright specularities
from being labelled as non-specular by the brightness test.
Besides the case of not-so-bright specularities, later results
in the experiment part will also justify our UW Entropy’s
superiority in handling specularities that are quite saturated
such as the reddish specularity on the teapot, the bluish
specularity on the apple, and the yellowish specularities over
the sea surface in Figure 5. What’s more, though similar,
our uniformity part and saturation are definitely different.
Our uniformity part is actually more suitable than saturation
for specularity detection due to the previously described
advantages of multiplication. Last but not least, our UW
Entropy’s simple and compact form is highly desirable for
real time applications such as those in the 3D movie industry.

However, we have to admit that though in most situations,
as described previously, the uniformity part increases in
specular areas as compared with nearby non-specular regions
due to the additional specular component, it may fail in one
rare case. The case is when the diffuse spectral component is
highly uniformly distributed over the channels (gray objects
for example) compared to the specular component. Only in
this case, the uniformity part decreases. Now it is time for
the brightness related part to help and UW entropy, as a
whole, will still be successful in specularity detection. In
this case relatively speaking the brightness (the number of
additional photons loosely speaking) should be so high that
the channel ratio is adequately changed to appear specular
because there is no channel of obviously smaller proportion
where just a tiny amount of additive specular component
can make a considerable difference on the channel ratios.
As can be seen, even in this case where the uniformity map
is lower for specularities, the proposed unnormalized Wiener
entropy still works because the brightness map’s significant
contribution help to counteract the effect of the uniformity
map and makes the unnormalized Wiener entropy higher in
specular regions. The reddish specularity on the gray teapot
in Figure 5 will serve as a good example of our method’s
success in this case. Our method is thus seen to handle
most possible cases encountered in practice, and is therefore
superior to methods which naively assume a particular kind
of light source or specular region color (e.g. nearly white
and of low saturation).

IV. SPECULARITY DETECTION BASED ON UW ENTROPY

We can define a specularity as a region where the unnor-
malized Wiener entropy of the total reflection is much higher
than that of the underlying diffuse component. Specifically
we say that specular regions are detected when:

H(Rf (λ)) −H(D(λ)) > τ ′ (7)

where Rf (λ) is the spectrum of the total reflection, D(λ)
is the spectrum of the diffuse component, H indicates the



UW entropy, and τ ′ is a particular threshold.
The spectrum of the light coming from specular regions

do not only depend on the specular component but also on
the underlying diffuse component. However, based only on
the sensor responses of the total reflection such as a normal
RGB photo, in theory it is almost impossible to separate
the diffuse and specular component perfectly. To get around
this problem, in this paper we take an alternative perspective
with a simplifying assumption. From equation (7), we have

H(Rf (λ)) −H(D(λ)) > τ ′

H(Rf (λ)) > τ ′ +H(D(λ))

H(Rf (λ)) > τ (8)

where τ = τ ′+H(D(λ)). Equation (8) suggests that instead
of trying to directly measure the difference between the UW
entropy of the total reflection and that of the diffuse com-
ponent, we can consider just the total reflection as a whole.
However, to make the threshold τ = τ ′+H(D(λ)) universal,
the UW Entropy of the diffuse component H(D(λ)) has
to be constant over the region under consideration or at
least having little variation. This is quite possible within
one object. However, for the whole scene, different colored
objects and backgrounds usually have very different colors
and the UW Energies of them are most likely not the
same. The good news is that even though in a scene the
background’s and the objects’ UW entropies are not the
same, most of the time they are quite similar compared to the
much higher UW Entropies of the specular regions because
in the real world most objects often have a color that has
a small value in at least one of the color channels such as
a red apple, green tree, yellow flower, brown desk, and so
on. It follows that for an image a single universal threshold
τ can be applied to the unnormalized Wiener entropy map
to separate specular and non-specular regions without pre-
segmentation. However, the determination of the threshold
based on the image becomes an important process.

Figure 3. Local Surface Model

To proceed with the development of a threshold determi-

nation method, we make a number of modeling assumptions.
The first is to locally consider the cross-section of a surface
as a segment of a circular arc (a flat surface can be seen as a
special arc whose radius is large). This is shown in Figure 3
where S is the light source position, O is the center of the
circular arc AB, P1 is the intersection point of the surface
with the line SO, P2 is another point on the surface, and
the viewer V is assumed to be at S.

We also adopt the Blinn-Phong specular reflection
model [2] and the Lambertian diffuse reflection model.
Under these assumptions the intensity of channel i is:

Si = αs

∫ λ2

λ1

Inc(λ)ρi(λ)dλ · cosn θ+

αdi

∫ λ2

λ1

Inc(λ)ρi(λ)dλ · cos θ

=

∫ λ2

λ1

Inc(λ)ρi(λ)dλ · (αs · cosn θ + αdi · cos θ) (9)

where Inc(λ) is the spectrum of the incident light, αs is the
specular albedo (often assumed to be channel independent
in the literature so that the specular light has the same color
with the light source), αdi is the diffuse albedo of channel
i, ρi(λ) is the spectral sensitivity of the ith channel, and
λ ∈ (λ1, λ2) is the sensing range. The unnormalized Wiener
entropy can thus be expressed as follows:

HR =

N∏
i=1

Si =(

N∏
i=1

∫ λ2

λ1

Inc(λ)ρi(λ)dλ)·

(αs · cosn(θ) + αd · cos θ)N (10)

where αd is a value that lies somewhere between the
maximum and the minimum of the channels’ diffuse albedos
αdi. The existence of such a value can be easily proved
mathematically. The first part (the multiplication of integrals)
does not change with the lighting and viewing direction. The
last part, on the other hand, does depend on θ. This geometry
related factor (h(θ) = (αs · cos60 θ + αd · cos θ)N ) can be
decomposed into a diffuse part (f(θ) = (αd ·cos θ)N ) and a
specular related part (g(θ) = h(θ) − f(θ)). The variation
of these components with θ are illustrated in Figure 4.
It is worth noting that in addition to helping select the
threshold, Figure 4 also explains our methodology’s success
in specularity detection from another perspective.

From Figure 4 we can see that the specular related part
(the function in orange g(θ)) falls off more quickly than the
diffuse part (the function in red f(θ)). When the geometry
related factor h(θ) shown in blue (and also the UW entropy)
decreases down to one half its maximum value (indicated
by the blue spot in Figure 4), the specular related part g(θ)
has already been weakened greatly while the diffuse part
f(θ) has not changed very much. Thus, 0.5 is a reasonable
threshold on the UW Entropy. If the UW Entropy decreases
but to a value above 0.5, the specular related component



Figure 4. Threshold Selection (n = 3, αs = 0.2, αd = 0.8, n = 60 (a
typical value according to [2])). The blue curve represents the geometric
factor which varies depending on the viewing direction. The blue spot
indicates the point at which the geometric factor is one half its maximum
value. The red curve indicates the diffuse component of the geometric factor
and the orange curve indicates the specular component.

has not been attenuated enough compared to the diffuse
component, meaning that the image is still in the specular
region. On the other hand, if the UW entropy decreases to
a value below 0.5, then, according to Figure 4, the specular
part begins to change very slowly while the diffuse part
begins to decrease dramatically, which strongly indicates that
the specular ‘boundary’ has already been reached. Also, by
examining the histogram of UW Entropy distribution over
many images with specularities, generally speaking, spec-
ular and non-specular pixels are gathered in two different
clusters and a large gap between the non-specular pixels
with low UW entropies and the specular pixels with high
UW entropies can be found. Intuitively, this explains why a
threshold of 0.5 successfully divides the specular and non-
specular regions. As a matter of fact, in our experiments a
threshold of 0.5 works well for all images tested and thus
can be considered as a general threshold. It is also worth
noting that because of this wide gap, the threshold can be
chosen from a rather large range and 0.5 is just a convenient
but in no way unique threshold. Also due to this large gap,
the threshold selection method is quite robust to noise.

V. EXPERIMENTAL RESULTS

In our experiment, we have analyzed many images with
specularities. Some of them are from peer-reviewed papers,
some are collected over the Internet, while others are taken
or simulated by ourselves. Typical examples of specularity
detection using the proposed UW Entropy based method are
shown in Figure 5 for a mixed set of synthetic and natural
images. In each of these examples, a general threshold value
of 0.5 was used, relative to the maximum UW entropy
value over the entire scene. As can be seen from those
examples, our unnormalized Wiener entropy based method
works quite well on both synthetic and natural scenes under
illuminants with different colors and saturations. In addition,

the proposed method requires no extra information on the
illuminant, object material, reflectance maps, or the imaging
process. Given only a color image, the method can locate
the specularities with very little processing.

It must be noted that the computational complexity of the
proposed approach is very low. As can be seen from equation
(5), the computation of the unnormalized Wiener entropy
only requires the multiplication of the sensor channel values
(e.g. 2 multiplications in the case of an RGB camera). The
implementation of the thresholding operation is likewise
of very low complexity. This means that the specularity
detection algorithm is extremely fast and easily implemented
in simple hardware for real-time applications. However,
since any specular color can be generated in a diffuse manner
in theory, like all other specularity detection methods based
on color alone, our approach may detect some false positives
sometimes. In this case, other indispensable physical cues
must be adopted to remove false positives, which is beyond
the scope of this paper.

VI. APPLICATION IN THE 3D MOVIE INDUSTRY

Modern cinema has undergone a revolution with the
advent of high-quality 3D film-making. Currently 3D movies
are created from stereo imagery captured with binocular
camera rigs (in addition to synthetic imagery). The binoc-
ular imagery after post-production editing is presented to
viewers typically using circularly polarized video projectors.
Specularities are a very important issue in 3D cinema,
for two main reasons. The first is that specular reflections
generally appear somewhat different in the left and right
eye images, due to the change in viewing direction between
the eyes. It is important that this (usually slight) difference
be captured and rendered accurately to provide a natural
appearing 3D display. The second reason has to do with the
way in which 3D imagery is captured for high-quality 3D
cinema. Typically, in order to use high-quality fast camera
lenses with large apertures while still having an inter-camera
baseline comparable to the human one, images are captured
with mirror rigs. A mirror rig employs a beam splitter
consisting of a half-silvered mirror which passes half of the
light directly through the mirror to one camera and the other
half is reflected to another camera. One of the drawbacks
of the mirror rig setup is that light passing along the two
optical paths undergo a differential polarization [4]. The
result is that when linearly polarized light, such as provided
by specular reflection, enters the beam splitter, the reflected
light may be attenuated relative to the light in the direct
path. This means that in viewing a scene with specularity,
one camera may capture the specularities while the other
does not. A viewer looking at the resulting stereo imagery
may have difficulty fusing the specular region due to the
excessive mismatch. The use of quarter wave retarders can
reduce this effect, but at the cost of reducing light levels and
possibly affecting color balance.



Figure 5. Results of specular region detection on a mixed set of synthetic and natural images using the unnormalized Wiener entropy based method. The
examples are presented in nine groups of 3 images: the leftmost image of each group is the original image, the middle image of the group is a false-color
depiction of the unnormalized Wiener entropy, and the rightmost image of each group shows the detected specular regions after thresholding with 0.5 of
the maximum entropy values.

It is important to be able to detect stereo mismatches due
to specularities during the filming (in real time), so as to
minimize expensive re-filming or post-production process-
ing. The specularity detection method described in this paper
is computationally inexpensive and so can be applied in real-
time for monitoring by a stereographer. An example of this
is shown in Figure 6 where (a) and (b) show a pair of images
of the same scene, taken with perpendicular polarizing
angles trying to maximize differences across views. The
result of our specular detection is also shown in (c) and
(d) and demonstrates the success of our method in finding
the specular regions. This example also shows the effect of
the polarizing filter in removing some of the specularities,
which could potentially cause difficulties in binocular fusion
for viewers of the stereo imagery.

Figure 6. Left column: A simulated pair obtained from a mirror rig camera
setup (source:[4]). Right column: The output of our specularity detection
method. Note the differences in specularity between the two images caused
by the polarizing effect of the beam-splitter in the mirror rig.

The 3D cinematographer would want to know when
stereo mismatches are present. To handle this, we have
implemented a Fourier-domain shape matching algorithm
trying to find matches between candidate specular regions in
the stereo pair. If mismatches are found, the cinematographer
has a number of options: he can re-take the imagery after
modifying the set to remove the troublesome specularity;
a synthetic specularity can be added in to the polarized
channel to compensate for the attenuation; or the specularity
in the non-polarized channel can be removed by doing in-
painting of the specular region. The implementation of these
steps is outside of the scope of this paper, however.

VII. APPLICATION TO COMPUTING CORRESPONDENCES

IN THE PRESENCE OF SPECULARITY

Beyond the particular application to 3D cinematography,
our specularity detection method also has a more general ap-
plication to stereo vision research in aiding the computation
of stereo correspondence in the presence of specularities.
Many robust stereo algorithms have been developed to deal
with specularities. For example, one class of approaches use
mutual information (MI) as the similarity measure (e.g. [8]),
which requires no prior information about the corresponding
relationship and allows correspondences to be found in spite
of some mismatches in brightness. However, improvements
can be made if specularities are explicitly modelled, in
our case through use of the unnormalized Wiener entropy.
Inspired by Kim et al. [8], we presented a new specularity-
aware visual correpondence method by embedding our UW
entropy into the energy function. Different from the data
term in [8] which actually does not incorporate any in-
formation about specularty, our specularity-aware mutual
information data term is as follows.

DataMI
p (dp) = − k

H(p)
· log(Pd(I1(p), I2(p+ dp))) (11)



Figure 7. (a) (b) A stereo pair with specularities, which is part of the
Tsukuba benchmark stereo pair (to focus on the regions with specularities
and also to achieve a high resolution, other non-specular parts of the
Tsukuba pair is excluded) (c) The disparity map produced by Kim’s
method [8]. (d) The disparity map by our method. It is worth noting that
for the two methods all shared parameters are set exactly the same.

where p indicates a pixel, H(p) is our UW entropy at p,
k is a constant, I1 and I2 are the two intensity images
in a stereo pair, and Pd is the joint probability based on
the current labeling d (representing disparity). Besides the
introduction of H(p), the joint probability distribution Pd

is also constructed differently from [8] in our approach:
instead of counting every correspondence equally, we count
specular correspondences less according to their UW En-
tropies. Using the Potts model as the penalty term and
the same optimization technique – MAP-MRF with graph
cuts, we applied our specularity-aware MI-based method
to the stereo pair shown in Figure 7. The results of our
method and the method in Kim et al. [8] are compared.
From the results, we can see that the specular regions have
successfully fooled the method in [8] making it assign wrong
disparity values to specular regions (indicated by red circles).
On the other hand, our method is smarter and can calculate
a correct disparity value even in the presence of specularities
because specularity information has been incorporated into
the energy function and the graph cuts optimization method
can make more intelligent decisions accordingly, which
demonstrates our proposed methods efficacy and superiority.

VIII. CONCLUSION

In this paper, a simple yet powerful methodology de-
tecting specular regions in images is introduced, based on
the use of an unnormalized form of Wiener entropy. The
approach has a low computational complexity, permitting
its use in real-time applications such as monitoring and
quality control of stereo imagery in 3D cinematography.
We demonstrate that the method works well on both natural
and synthetic imagery, and show how UW Entropy can be
used to improve the performance of modern correspondence

computation algorithms in the presence of specularities.
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