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Abstract—Eye movement is a rich modality that can provide1

us with a window into a person’s mind. In a typical human-2

human interaction, we can get information about the behavioral3

state of the others by examining their eye movements. For4

instance, when a poker player looks into the eyes of his5

opponent, he looks for any indication of bluffing by verifying6

the dynamics of the eye movements. However, the information7

extracted from the eyes is not the only source of information8

we get in a human-human interaction and other modalities,9

such as speech or gesture, help us infer the behavioral state of10

the others. Most of the time this fusion of information refines11

our decisions and helps us better infer people’s cognitive and12

behavioral activity based on their actions. In this paper, we13

develop a probabilistic framework to fuse different sources of14

information to infer the ongoing task in a visual search activity15

given the viewer’s eye movement data. We propose to use a16

dynamic programming method called token passing in an eye-17

typing application to reveal what the subject is typing during18

a search process by observing his direction of gaze during19

the execution of the task. Token passing is a computationally20

simple technique that allows us to fuse higher order constraints21

in the inference process and build models dynamically so we22

can have unlimited number of hypotheses. In the experiments23

we examine the effect of higher order information, in the form24

of a lexicon dictionary, on the task recognition accuracy.25

Keywords-attention; visual search; cognitive modeling; task26

inference; information fusion; eye movement;27

I. INTRODUCTION28

The link between eye movements and visual task has en-29

joyed burgeoning attention in psychophysical and cognitive30

sciences. Particularly the effect of visual task on parameters31

of eye movements have been investigated for a long time32

in the literature. In two seminal studies, Yarbus [1967] and33

Buswell [1935] showed that visual task has a great influence34

on specific parameters of eye trajectory. Figure 1 shows35

Yarbus’s observation that implies fixation locations are not36

randomly distributed in a scene but instead tend to cluster37

on some regions at the expense of others. In this figure we38

see how visual task can modulate the conspicuity of different39

regions and as a result change the pattern of eye movements.40

Based on this experiment, the effect of task on the pattern41

an parameters of eye movement is called the forward Yarbus42

process.43

The forward Yarbus process is also studied in a work44

by Clark and O’Regan [1998], who examined the dynamics45

Figure 1: Eye trajectories recorded by Yarbus while a viewer
carried out different visual tasks. Upper right - no specific
task, lower left - estimate the wealth of the family, lower
right - give the ages of the people in the painting [Yarbus,
1967].

of eye movements when reading a text. They showed that46

when reading a text the centre of gaze (COG) lands on the47

locations that minimize the ambiguity of the word arising48

from the incomplete recognition of the letters. In another49

study Castelhano et al. [2009] showed that different patterns50

of eye movements emerge from tasks of memorizing a scene51

and searching for an object in it.52

In a forward Yarbus process the visual task is given as53

an input and the output is task-dependent scanpaths of eye54

movements. The other way of looking at the interaction55

between eye movements and visual task is to study the56

reverse path from the scanpaths to the visual task. The57

inference of task from eye movement data is called an58

inverse Yarbus process and has recently gained a growing59

interest in psychophysical studies of human attention.60

Visual search is one of the main ingredients of human61

vision that plays an important role in our everyday life.62

Recently in [Haji-Abolhassani and Clark, 2011a,b] we pro-63

posed a model based on the theory of Hidden Markov64

Models (HMMs) to infer what the viewer is looking for65

in a task of searching for pop-out objects in digitally66



created stimuli. In [Haji-Abolhassani and Clark, 2012a,b] we67

extended our model to infer the word that the viewers typed68

using their eye movements (eye-typing) in a soft keyboard69

application. In both scenarios the viewer executes visual70

search and the model calculates a probability distribution71

on different possible tasks given the eye data, and makes72

an inference about what objects are being sought using73

maximum likelihood (ML). In real life, however, we incor-74

porate a-priori sources of information in the ML estimator75

and make inferences based on maximum a-posteriori (MAP)76

estimation. For instance, when looking for an orange in77

a basket of fruits, the prior knowledge about the color of78

oranges helps us skip the objects with different colors and79

narrow down our search to the orange areas.80

In this paper we extend our HMM-based model presented81

in [Haji-Abolhassani and Clark, 2012a,b]; which we will82

be referring to as tri-state HMM (TSHMM) in the rest83

of the text; to incorporate a-priori information to infer84

the visual task in the eye-typing application. In order to85

infer the ongoing task, we propose to use the TSHMM86

model within a simple conceptual model of eye movement87

recognition based on a technique called token passing that88

incorporates the TSHMMs in a transition network structure.89

In the new structure, the higher order constraints are applied90

along transitions from a TSHMM unit to another. Moreover,91

since in token passing method the models are generated92

dynamically during the test phase, we can have an unlimited93

number of hypotheses in our experiments.94

In the following sections we will first revisit the TSHMM95

model used for task inference in the eye-typing application.96

Then we show how we can equip the model with high level97

constraints. In the experiments we show how using a-priori98

information in the form of a lexicon dictionary improves the99

recognition rate.100

II. TASK INFERENCE USING HIDDEN MARKOV MODELS101

The application we designed for task inference in visual102

search is an eye-typing application, where subjects can type103

a word by directing their gaze on its comprising characters.104

Figure 2 shows the schematic of the on-screen keyboard105

used in the experiments. We removed the letter “Z” from106

the keyboard to obtain a square layout to reduce directional107

bias. In order to impose visual search, we randomized the108

location of characters to eliminate any memory effect.109

Although visual attention and direction of gaze are some-110

times assumed to be the same, in oculomotor studies of111

human vision it is shown that the focus of attention (FOA)112

can be well away from the center of gaze (COG) [Fischer113

and Weber, 1993]. Based on the alignment of the COG to114

the FOA we have two types of visual attention; that are115

covert and overt attention. In overt visual attention the FOA116

is aligned to the COG and in the covert visual attention the117

FOA is away from COG.118

Figure 2: The schematic of the on-screen keyboard used
in the eye-typing experiments. We removed the letter “Z”
in order to have a square layout to reduce directional bias.
Also the location of each character is randomized in each
layout so that the user has to search for the characters.

Perhaps the first scientist to provide an experimental119

demonstration of covert attention is known to be Helmholtz120

[1896]. In his experiment, Helmholtz briefly illuminated121

inside a box by lighting a spark and looked at it through122

two pinholes. Before the flash he attended to a particular123

region of his visual field without moving his eyes in that124

direction. He showed that only the objects in the attended125

area could be recognized implying attention can be away126

from the eye movements.127

Apart from the intrinsic difference between the FOA and128

the COG in covert shift of attention, the focus of overt129

attention can also be different from the COG reported by130

the eye-tracker due to the noise of the recording instrument.131

Moreover, overshooting or undershooting of the targets can132

cause a mismatch between the COG and FOA, regardless of133

the attention type, which urges us to allow for discrepancy134

between these two phenomena in the attention models.135

Hidden Markov Models (HMMs) are a class of generative136

methods that are used to classify sequential observations.137

A typical HMM is composed of a number of states that138

are hidden from the observer. The transitions between the139

states are governed by a transition probability matrix, A,140

that gives us the chances of transitions from a state to141

the connecting states. At each time-step, an observation is142

generated according to an observation probability density143

function that is assigned to the current state. The observation144

pdf is characterized by a set of parameters B that defines145

the properties of the pdf. At the beginning of each sequence,146

the HMM selects a starting state according to a initial state147

distribution, Π, and carries on by chooses the next states at148

each time-step according to A. Figure 3 shows a sample tri-149

state HMM with its corresponding observation pdf, transition150

probabilities and initial state distribution.151

HMMs have been extensively used in the field of152

speech recognition [Rabiner, 1990], optical character recog-153

nition [Hu et al., 1996] and anomaly detection in video154

surveillance [Nair and Clark, 2002] before. There are usually155

three different problems that are addressed in the literature156



Figure 3: A sample first-order, discrete-time, continuous
HMM. An HMM is defined by its number of states,
transition probabilities, observation pdfs and initial state
distribution in a tuple λ(A,B,Π).

related to the HMMs; that are training, decoding and eval-157

uation. The training is done by an algorithm called Baum-158

Welch, whereby we train the parameters of HMMs using159

the training data. In decoding, the best sequence of states160

is revealed by using a method called Viterbi. Finally, in the161

evaluation, we use a method known as forward algorithm to162

find the likelihood of a an observation given the parameters163

of an HMM.164

In the TSHMM model we used HMMs to model the165

cognitive process of human brain that controls the COG and166

FOA. In the model we represented the FOA by the hidden167

states of an HMM and the observations of the HMM were168

equivalent to the COG. The only information we observe169

from a human eye is the COG and the FOA is hidden from170

us. This is inline with the structure of HMMs, where we171

only see the observations and the states are hidden to the172

observer.173

Looking for a character among other characters is a visual174

search task that requires a combination of features to be175

used to locate the target [Treisman and Gelade, 1980]. This176

characteristic calls for an attentive, mainly serial, limited177

capacity attentional deployment over a limited portion of178

the visual field which usually entails several fixations on179

distractors (non-targets) before locating a target. Moreover,180

during the experiments we observed a pattern in these off-181

target fixations that implies the FOA doesn’t randomly scan182

the characters to seek a target, but instead tend to verify183

the similar characters more often than dis-similar ones. This184

effect is studied before in perceptual measurement of image185

similarity in [Keren and Baggen, 1981, Gilmore et al., 1979].186

Figure 4a shows the result of an experiment in [Gilmore187

et al., 1979] that categorizes the characters according to188

their similarity. In this figure a hierarchical clustering is189

used to classify characters according to their similarity (i.e.,190

the lower the connecting line between clusters, the higher191

the similarity between the clusters). Figure 4b shows that a192

similar pattern appears in our experiments.193

Based on these facts we designed the TSHMM model194

so that is allows for attentional deployment both on target195

and non-target objects. Furthermore, we divided the off-196

target fixations according to their similarity to the target. In197

figure 5a we see the proposed attention model for the task of198

looking for a character. For each character we train an HMM199

that has three states that represent deployment of attention200

on non-target, similar-to-target (S-state); non-target, dis-201

similar-to-target (D-state); and target characters (T-state).202

As we showed, this structure elicits more information from203

off-target fixations which increases the accuracy of task204

inference.205

The observation pdfs generate COGs according to the206

attention state and are defined by GMMs with equal weights207

in the D-state and S-state, and a single Gaussian in the T-208

state. The GMM of the S-state has a mean vector that points209

to the top two similar characters according to the fixation210

frequency histogram (similar to figure 4b) that is obtained211

in the training phase. The GMM of the D-state is simply212

the negation of the S-state and T-state’s observation pdfs213

(with equal weights) which points to the whole surface of214

the keyboard except the target and similar-to-target locations.215

the initial state distribution, determines the chances of216

starting from each state given an observation. Figure 5b217

shows how we create a word model based on the HMMs of218

it’s comprising characters. When finding a target character,219

we assume the transition probabilities to be proportional to220

the initial state distribution for the next character. Although,221

due to some memory effects the transition probabilities and222

initial state distribution might not be exactly the same, the223

difference seems to be negligible. Beside major reduction in224

training, it is only by this assumption that we are able to225

build a model that can accommodate unlimited number of226

words.227

III. INFORMATION FUSION USING TOKEN PASSING228

Although the experiments show that our tri-state HMM229

(TSHMM) can reliably be used in task inference in the eye-230

typing application, there are other sources of information231

that could be applied to the inference to improve the perfor-232

mance of the model. Probability distribution of task priors is233

a source of information that we use on a daily basis to make234

inferences about our observations. In our application, when235

the model gives us a uniform distribution over characters236

“V” and “U”, knowing that the proceeding character was a237

“Q” would help us choose “U” as the eye-typed character,238

because that is the character that always follows “Q” in239

common English words.240

A similar technique is used in speech processing com-241

munity to improve the results of a recognizer by applying242

high level constraints to the character sequences [Rabiner,243
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Figure 4: a) Shows the result of an experiment in perceptual measurement of image similarity that appears in [Gilmore et al.,
1979, figure 1]. The results shown here are inline with what we observed in the experiments. b) Shows the top nine bars of
the fixation distribution when looking for character “W”. Similar characters tend to draw attention towards themselves.

1990]. When recognizing a speech signal, the constraint is244

imposed to the decision making engine in the form of a245

lexicon dictionary called language model (LM) that provides246

us with a-prior information about the current speech part that247

is being pronounced given the proceeding one.248

Since in our application we deal with common English249

words as well, we use a similar technique to apply higher250

order constraints on the recognizer. Depending on the order251

of dependency of characters, we have different orders of252

LM. In a unigram LM we assume the characters to be253

independent of each other. Applying a unigram LM to254

our TSHMM reduces the model to what we had before.255

However, in this paper we use a bigram LM whereby we256

impose a first order Markov process on the sequence of257

characters.258

In order to build a LM we need to get a database of259

valid English words. Then we can train the bigram LM260

by assuming a first order Markov chain as the underlying261

process of character sequences. The training is done by262

counting the number of each pair of transitions in the corpus.263

In the end, a technique called add one smoothing is applied264

to the count numbers by assuming each pair occurs once265

more than it actually does to assign non-zero probabilities266

to the unseen pairs in the training corpus [Huang et al.,267

2001, chapter 11]. Eventually the language model gives us268

the probability of pij for each pair of characters (i, j), where269

pij is the probability of seeking character j after having270

found character i in our eye-typing application.271

In the previous section we showed how we can train272

TSHMMs for each character. Therefore, by training the LM273

we have a complete model for the words in the dictionary274

that describes the transitions within the states of characters,275

as well as transitions between a word’s characters, in a276

probabilistic manner. This model can be used as a generative277

model of the cognitive process of the human brain that278

generates eye movements during visual search for characters279

of a word (i.e., eye-typing). First we start from the initial280

state of a character according to the initial state distribution281

of the HMM, and by following the transition probabilities282

we can choose the states for each time step and generate ob-283

servations according to the observation probabilities. When284

getting to the final state of a character, it is the language285

model that suggests which character, by what probability,286

can follow the current one.287

The complete structure of the model for a two-character288

scenario is shown in figure 6. The bigram LM information289

is applied to the transitions between characters. Unlike290

the nodes inside the boxes that represent the states in291

the character models, the LM nodes don’t represent states,292

which means neither any observation is generated in them293

nor transition through them takes up any time-step in the294

sequence. The LM nodes are equivalent to the so-called295

grammar nodes in the speech processing literature and is296

merely an indication of applying LM to the model [Huang297

et al., 2001, page 618].298

Having the generative model of eye movements during299

visual search, we can use the trained parameters to decode300

a test eye movement trajectory to infer what character301

sequence has been eye-typed. If we had a limited number302

of hypotheses (words in the dictionary), we could use303

Viterbi algorithm to classify the test date into one of the304

words in the dictionary [Rabiner, 1990]. Viterbi algorithm,305

though, requires the word models to be built beforehand306

to be able to compare the likelihood of each word in the307

dictionary. However, for a recognition task, there might be308

an enormous number of words in the dictionary which makes309

it computationally expensive to build the word model for310

each word statically in the Viterbi algorithm.311



(a)
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Figure 5: The structure of the tri-state HMM (TSHMM) for character recognition. a) The TSHMM for a single character.
b) Concatenating the character models to build up the word “CA”. The transitions between the states are governed by the
initial state probabilities.

An analogous problem exists in the literature related to312

speech recognition, where the dictionary of possible words313

exceeds a certain number. The technique used there, that we314

propose to be used for our problem as well, is a dynamic315

programming algorithm called token passing [Young et al.,316

1989]. In order to find the best sequence of states that317

matches the observation sequence, we assign a cost Rij318

to each transition from state i to j in an HMM equal to319

log(1/aij) and call it the transition cost. aij is the transition320

probability in the TSHMMs model of a character if the321

transition is within a character model. If the transition is322

between characters, we use the LM statistics to evaluate the323

transition cost and we will have Rij = log(1/pij), where324

pij is the probability of going from character i to character325

j according to the LM.326

The second type of cost that we use in the token passing327

method is called local cost function and defines the cost328

of being at state j at time t. Suppose we have data of329

the form < Q, y >, where y ∈ Y is a task label in the330

set of all task labels Y and Q is the vector containing the331

observation sequence of fixation locations (
→
q 1,

→
q 2, ...,

→
q T )332

sampled from a stochastic process {
→
q t} at discrete times333

t = {1, 2, ..., T} over random image locations denoted in334

Cartesian coordinates by
→
q t= (xt, yt).335

The local cost function is defined as the cost of being at336

state state j at time t and is defined by Lj(t) = log(1/bj(
→
q t337

)), where bj(
→
q t) is the probability of observing

→
q t at state338

j. Similar to the transition cost, L can be calculated using339

the parameters of the task-specific TSHMMs.340

Having defined these two cost functions, we can calculate
the alignment cost for an observation sequence Q and a
sample state sequence I = (i0, i1, ..., iT ) by computing the
alignment cost:

S(I) =
∑
τ=1:T

(Riτ−1iτ + Liτ (τ)). (1)

However, most of the time the state sequence is hidden341

from the observer and therefore we can’t compute the342

alignment cost function directly. In token passing method,343

thus, we define a new alignment cost function called local344

alignment cost function, sj(t), that is equal to the sum of345

transition and local cost functions that leads to being at state346

j at time t. 1 Algorithm 1 shows how we can use the local347

1In Viterbi algorithm (for limited number of tasks) we can use dynamic
programing to calculate the alignment cost functions using the following
equation:

sj(t) = min
i

[si(t− 1) +Rij ] + Lj(qt). (2)



Figure 6: Incorporating the a-priori information in the form of a language model in the word model. The best state sequence
for a given observation sequence can be obtained by using the token passing technique on this general word model. The LM
nodes (a.k.a grammar nodes) don’t generate observations, but the LM parameters are applied to the model when passing
through these nodes.

alignment costs to decode a sequence of eye movements by348

finding the path with the minimum cost in figure 6. To do349

so, we assume that each HMM state can hold a movable350

token. We can think of a token as an object that can move351

from one state to another in our network. Each token carries352

with it a local alignment cost, which gets propagated in the353

network according to the transition and local cost functions.354

In the algorithm we refer to this cost function as the value355

of the token. At the end of the iterations, the rout with the356

minimum cost gives us the best alignment between the states357

and the observation sequence.358

IV. EXPERIMENTS359

To build a database of task-dependent eye trajectories,360

we ran a set of trials and recorded the eye movements of361

six subjects while eye-typing 26 different 3-character words.362

The trials started with a fixation mark of size 0.26×0.26363

deg appearing at the center of the screen. After foveating364

the fixation mark, the participant initiated the trial with a365

key-press. Once a trial was triggered, the word to be eye-366

typed was shown at the center of the display. Once the367

subject indicated his readiness by pressing a key, another368

fixation mark appeared at the center followed by an on-369

screen keyboard similar to the one shown in figure 2. At370

this phase subjects eye-typed the word by searching for the371

characters appearing in it as quickly as possible and signaled372

when they were done by pressing a key (subjects were only373

told to eye-type the words as quickly as possible and press a374

key when done). Then by asking about the location of one of375

the characters (selected randomly) we verified to see if the376

subject had correctly eye-typed the words. Once the question377

is answered (by fixating the right location that contained the378

character during the experiment and pressing a bottom) the379

next word is shown and the trial carries on.380

The stimuli were generated by a computer and displayed381

on a 1280×800 pixel screen at a distance of 18 inches (1382

degree of visual angle corresponds to 30 pixels, approx-383

imately). Each keyboard was composed of 25 uppercase384

English characters randomly located on a 5×5 grid su-385

perimposed on a gray background (we removed the letter386

“Z” in order to have a square layout to reduce directional387



Figure 7: Comparison of the task classification accuracy using TSHMM with a bigram LM (+LM) and TSHMM with a
unigram LM (-LM) in the eye-typing application. The TSHMM with a unigram LM (-LM) corresponds to previous work,
where no LM was assumed. The “DICT. SIZE” row shows the number of words (hypotheses) used in each experiment with
a “Wxxx” code, where “xxx” shows the number of words. Each bar shows the mean classification rate (%) of correctly
recognizing the intended word in the eye-typing application. The mean value and the standard error of the mean (SEM) are
represented by bars and the numerical values are given in the following table.

Algorithm 1 Token Passing algorithm

Initialize:
Assign a zero valued token to the initial states of the
models.
Assign an ∞ valued token to all other states.
Algorithm:
for t = 1 to T do

for each state i do
Copy the token in each state i to the connecting state
j and increment its value by Rij + Lj(t)

end for
Discard the original tokens.
for each state i do

Keep the token with the minimum value and discard
the rest.

end for
end for
Termination:
The token with the minimum s value in all possible final
states corresponds to the best match.

bias). The 3-letter words were selected so that there was no388

repetition of characters in them. At the beginning of every389

experimental session, we calibrated the eye tracker by having390

the participant look at a 16-point calibration display that391

extended to 10×10 degrees of visual angle (the area covered392

by the calibration grid is stretched beyond the stimuli which393

spans a 6.6×6.6 degrees of visual angle).394

An eye tracker (ISCAN RK-726PCI) was used to record395

the participant’s left eye positions at 60 Hz and a chin rest396

was used to minimize head movements. The eye tracker’s397

vertical resolution is approximately 0.11 degrees and its398

horizontal resolution is 0.06 degrees. An LCD monitor was399

used for displaying the images and the subjects used both400

eyes to conduct the experiments.401

After recording eye movements, data analysis was carried402

out on each trial wherein we removed the blinks, outliers and403

trials with wrong answers in the verification phase from the404

data and classified the eye movement data into saccades and405

fixations. Moreover, in some of the initial trials, after eye-406

typing the word, the viewer returned to the locations of the407

characters to double-check the coordinates of them. In order408

to simulate a real eye-typing application we removed these409

parts from the trajectories in the pre-processing as well.410

After the preprocessing we obtained a database of 145 tra-411

jectories of the form (
→
q 1, . . . ,

→
q T ), each containing observa-412

tion sequences of coordinates of fixations while performing413

the eye-typing, where
→
q t= (xt, yt) represents x-coordinate414

and y-coordinate of the tth fixation, respectively.415

In order to perform the evaluation, we compare the results416

of our proposed model that uses a TSHMM and a bigram417

LM to model the tasks, with the one proposed in [Haji-418

Abolhassani and Clark, 2012b], that uses a TSHMM with419

no LM (i.e., with a unigram LM), in four different dictionary420

sizes. We denote the TSHMM that uses the lexicon informa-421

tion by +LM and the TSHMM that disregards any high-level422

information by -LM. We created four sets of dictionaries423

of 26, 52, 104 and 312 English words using the Carnegie424

Mellon pronouncing dictionary (CMPD) [Weide, 2005]. All425



dictionaries were built so that they all include all the426

words of the smaller dictionaries. The words were selected427

randomly from the CMPD and the words length varied428

between three to five characters. The language model was429

also created using the CMU-Cambridge toolkit [Clarkson430

and Rosenfeld, 1997] by extracting language models from431

the words in dictionaries.432

In order to train the TSHMMs, we have to adjust the433

mean vector of the 2-D Gaussians according to the training434

character so that it aligns with the center of character loca-435

tion. According to [Rabiner, 1990] a uniform (or random)436

initial estimation of initial state and transition probabilities437

(Π and A) is adequate for giving useful re-estimation of438

these parameters (subject to the stochastic and the non-zero439

value constraints). Thus, we set a random initial values for440

the parameters in the generic HMM and run the Baum-441

Welch algorithm on the training set to obtain the final442

TSHMM [Huang et al., 1990]. We also used a technique443

called parameter tieing [Rabiner, 1990] to force a unique444

task and stimuli independent covariance matrix across all445

of the Gaussian distributions in the mixtures. Thus, we446

can build the word model for the test data by dynamically447

changing the means of the states according to the character448

locations of the characters and using the estimated variances449

of characters.450

Figure 7 shows the accuracy of word inference using451

TSHMM with LM (+LM) and TSHMM without LM (-LM)452

methods ranging over four dictionary sizes. As expected,453

the +LM performs better than -LM due to the fusion of454

information provided by the LM. The table below the figure455

shows the accuracy and the standard error of the mean456

(SEM) of the corresponding bars. For each bar we ran a457

10-fold cross validation on our database of 145 trajectories458

in order to define the training and test sets and used the459

same epochs across all the methods.460
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