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Abstract—Eye movement is a rich modality that can provide
us with a window into a person’s mind. In a typical human-
human interaction, we can get information about the behavioral
state of the others by examining their eye movements. For
instance, when a poker player looks into the eyes of his
opponent, he looks for any indication of bluffing by verifying
the dynamics of the eye movements. However, the information
extracted from the eyes is not the only source of information
we get in a human-human interaction and other modalities,
such as speech or gesture, help us infer the behavioral state of
the others. Most of the time this fusion of information refines
our decisions and helps us better infer people’s cognitive and
behavioral activity based on their actions. In this paper, we
develop a probabilistic framework to fuse different sources of
information to infer the ongoing task in a visual search activity
given the viewer’s eye movement data. We propose to use a
dynamic programming method called foken passing in an eye-
typing application to reveal what the subject is typing during
a search process by observing his direction of gaze during
the execution of the task. Token passing is a computationally
simple technique that allows us to fuse higher order constraints
in the inference process and build models dynamically so we
can have unlimited number of hypotheses. In the experiments
we examine the effect of higher order information, in the form
of a lexicon dictionary, on the task recognition accuracy.
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I. INTRODUCTION 49

The link between eye movements and visual task has en- *
joyed burgeoning attention in psychophysical and cognitive *
sciences. Particularly the effect of visual task on parameters *
of eye movements have been investigated for a long time %
in the literature. In two seminal studies, Yarbus [1967] and
Buswell [1935] showed that visual task has a great influence %
on specific parameters of eye trajectory. Figure 1 shows %
Yarbus’s observation that implies fixation locations are not %
randomly distributed in a scene but instead tend to cluster %
on some regions at the expense of others. In this figure we %
see how visual task can modulate the conspicuity of different
regions and as a result change the pattern of eye movements. st
Based on this experiment, the effect of task on the pattern sz
an parameters of eye movement is called the forward Yarbus es
process. 64

The forward Yarbus process is also studied in a work es
by Clark and O’Regan [1998], who examined the dynamics es

James J. Clark
Centre for Intelligent Machines
McGill University
Montreal, Quebec H3A 2A7, Canada
Email: clark@cim.mcgill.ca

Figure 1: Eye trajectories recorded by Yarbus while a viewer
carried out different visual tasks. Upper right - no specific
task, lower left - estimate the wealth of the family, lower
right - give the ages of the people in the painting [Yarbus,
1967].

of eye movements when reading a text. They showed that
when reading a text the centre of gaze (COG) lands on the
locations that minimize the ambiguity of the word arising
from the incomplete recognition of the letters. In another
study Castelhano et al. [2009] showed that different patterns
of eye movements emerge from tasks of memorizing a scene
and searching for an object in it.

In a forward Yarbus process the visual task is given as
an input and the output is task-dependent scanpaths of eye
movements. The other way of looking at the interaction
between eye movements and visual task is to study the
reverse path from the scanpaths to the visual task. The
inference of task from eye movement data is called an
inverse Yarbus process and has recently gained a growing
interest in psychophysical studies of human attention.

Visual search is one of the main ingredients of human
vision that plays an important role in our everyday life.
Recently in [Haji-Abolhassani and Clark, 2011a,b] we pro-
posed a model based on the theory of Hidden Markov
Models (HMMs) to infer what the viewer is looking for
in a task of searching for pop-out objects in digitally
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created stimuli. In [Haji-Abolhassani and Clark, 2012a,b] we
extended our model to infer the word that the viewers typed
using their eye movements (eye-typing) in a soft keyboard
application. In both scenarios the viewer executes visual
search and the model calculates a probability distribution
on different possible tasks given the eye data, and makes
an inference about what objects are being sought using
maximum likelihood (ML). In real life, however, we incor-
porate a-priori sources of information in the ML estimator
and make inferences based on maximum a-posteriori (MAP)
estimation. For instance, when looking for an orange in
a basket of fruits, the prior knowledge about the color of
oranges helps us skip the objects with different colors and
narrow down our search to the orange areas.

In this paper we extend our HMM-based model presented
in [Haji-Abolhassani and Clark, 2012a,b]; which we will
be referring to as tri-state HMM (TSHMM) in the rest''®
of the text; to incorporate a-priori information to infer'®
the visual task in the eye-typing application. In order to'
infer the ongoing task, we propose to use the TSHMM?'?
model within a simple conceptual model of eye movement'?
recognition based on a technique called token passing that'?*
incorporates the TSHMM s in a transition network structure.'?
In the new structure, the higher order constraints are applied'?
along transitions from a TSHMM unit to another. Moreover,'?”
since in token passing method the models are generatedtzs
dynamically during the test phase, we can have an unlimitedr2
number of hypotheses in our experiments. 130

In the following sections we will first revisit the TSHMM™!
model used for task inference in the eye-typing application.'®?
Then we show how we can equip the model with high level'®
constraints. In the experiments we show how using a-priori'
information in the form of a lexicon dictionary improves the'®

recognition rate. 136
137

II. TASK INFERENCE USING HIDDEN MARKOV MODELS "
139

The application we designed for task inference in visualiso
search is an eye-typing application, where subjects can typeis
a word by directing their gaze on its comprising characters.is
Figure 2 shows the schematic of the on-screen keyboardis
used in the experiments. We removed the letter “Z” fromia
the keyboard to obtain a square layout to reduce directionaliss
bias. In order to impose visual search, we randomized theiss
location of characters to eliminate any memory effect. 147
Although visual attention and direction of gaze are some-14s
times assumed to be the same, in oculomotor studies ofiso
human vision it is shown that the focus of attention (FOA)so
can be well away from the center of gaze (COG) [Fischers
and Weber, 1993]. Based on the alignment of the COG toisz
the FOA we have two types of visual attention; that areiss
covert and overt attention. In overt visual attention the FOA s
is aligned to the COG and in the covert visual attention theiss
FOA is away from COG. 156

Figure 2: The schematic of the on-screen keyboard used
in the eye-typing experiments. We removed the letter “Z”
in order to have a square layout to reduce directional bias.
Also the location of each character is randomized in each
layout so that the user has to search for the characters.

Perhaps the first scientist to provide an experimental
demonstration of covert attention is known to be Helmholtz
[1896]. In his experiment, Helmholtz briefly illuminated
inside a box by lighting a spark and looked at it through
two pinholes. Before the flash he attended to a particular
region of his visual field without moving his eyes in that
direction. He showed that only the objects in the attended
area could be recognized implying attention can be away
from the eye movements.

Apart from the intrinsic difference between the FOA and
the COG in covert shift of attention, the focus of overt
attention can also be different from the COG reported by
the eye-tracker due to the noise of the recording instrument.
Moreover, overshooting or undershooting of the targets can
cause a mismatch between the COG and FOA, regardless of
the attention type, which urges us to allow for discrepancy
between these two phenomena in the attention models.

Hidden Markov Models (HMMs) are a class of generative
methods that are used to classify sequential observations.
A typical HMM is composed of a number of states that
are hidden from the observer. The transitions between the
states are governed by a transition probability matrix, A,
that gives us the chances of transitions from a state to
the connecting states. At each time-step, an observation is
generated according to an observation probability density
function that is assigned to the current state. The observation
pdf is characterized by a set of parameters B that defines
the properties of the pdf. At the beginning of each sequence,
the HMM selects a starting state according to a initial state
distribution, I1, and carries on by chooses the next states at
each time-step according to A. Figure 3 shows a sample tri-
state HMM with its corresponding observation pdf, transition
probabilities and initial state distribution.

HMMs have been extensively used in the field of
speech recognition [Rabiner, 1990], optical character recog-
nition [Hu et al., 1996] and anomaly detection in video
surveillance [Nair and Clark, 2002] before. There are usually
three different problems that are addressed in the literature
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Figure 3: A sample first-order, discrete-time, continuous?*
HMM. An HMM is defined by its number of states,2®
transition probabilities, observation pdfs and initial state?e
distribution in a tuple A(4, B, II). 207
208
209

210
related to the HMMs; that are training, decoding and eval—21

uation. The training is done by an algorithm called Baum-,
Welch, whereby we train the parameters of HMMs using,
the training data. In decoding, the best sequence of states,
is revealed by using a method called Viterbi. Finally, in the,
evaluation, we use a method known as forward algorithm to, .
find the likelihood of a an observation given the parameters
of an HMM. -

In the TSHMM model we used HMMs to model the,,q
cognitive process of human brain that controls the COG and,,,
FOA. In the model we represented the FOA by the hidden,,,
states of an HMM and the observations of the HMM were,,,
equivalent to the COG. The only information we observe,,
from a human eye is the COG and the FOA is hidden from,,,
us. This is inline with the structure of HMMs, where we,,;
only see the observations and the states are hidden to the,,
observer.

1

227
Looking for a character among other characters is a visual
search task that requires a combination of features to be®®
used to locate the target [Treisman and Gelade, 1980]. Thiszze
characteristic calls for an attentive, mainly serial, limitedss
capacity attentional deployment over a limited portion ofzs:
the visual field which usually entails several fixations onzs2
distractors (non-targets) before locating a target. Moreover,zss
during the experiments we observed a pattern in these off-2a
target fixations that implies the FOA doesn’t randomly scanzss
the characters to seek a target, but instead tend to verifyzss
the similar characters more often than dis-similar ones. Thiszs7
effect is studied before in perceptual measurement of imagezss
similarity in [Keren and Baggen, 1981, Gilmore et al., 1979].23
Figure 4a shows the result of an experiment in [Gilmorezso
et al., 1979] that categorizes the characters according tozs
their similarity. In this figure a hierarchical clustering iss
used to classify characters according to their similarity (i.e.,2ss

the lower the connecting line between clusters, the higher
the similarity between the clusters). Figure 4b shows that a
similar pattern appears in our experiments.

Based on these facts we designed the TSHMM model
so that is allows for attentional deployment both on target
and non-target objects. Furthermore, we divided the off-
target fixations according to their similarity to the target. In
figure 5a we see the proposed attention model for the task of
looking for a character. For each character we train an HMM
that has three states that represent deployment of attention
on non-target, similar-to-target (S-state); non-target, dis-
similar-to-target (D-state); and target characters (7-state).
As we showed, this structure elicits more information from
off-target fixations which increases the accuracy of task
inference.

The observation pdfs generate COGs according to the
attention state and are defined by GMMs with equal weights
in the D-state and S-state, and a single Gaussian in the T-
state. The GMM of the S-state has a mean vector that points
to the top two similar characters according to the fixation
frequency histogram (similar to figure 4b) that is obtained
in the training phase. The GMM of the D-state is simply
the negation of the S-state and T-state’s observation pdfs
(with equal weights) which points to the whole surface of
the keyboard except the target and similar-to-target locations.

the initial state distribution, determines the chances of
starting from each state given an observation. Figure S5b
shows how we create a word model based on the HMMs of
it’s comprising characters. When finding a target character,
we assume the transition probabilities to be proportional to
the initial state distribution for the next character. Although,
due to some memory effects the transition probabilities and
initial state distribution might not be exactly the same, the
difference seems to be negligible. Beside major reduction in
training, it is only by this assumption that we are able to
build a model that can accommodate unlimited number of
words.

III. INFORMATION FUSION USING TOKEN PASSING

Although the experiments show that our tri-state HMM
(TSHMM) can reliably be used in task inference in the eye-
typing application, there are other sources of information
that could be applied to the inference to improve the perfor-
mance of the model. Probability distribution of task priors is
a source of information that we use on a daily basis to make
inferences about our observations. In our application, when
the model gives us a uniform distribution over characters
“V” and “U”, knowing that the proceeding character was a
“Q” would help us choose “U” as the eye-typed character,
because that is the character that always follows “Q” in
common English words.

A similar technique is used in speech processing com-
munity to improve the results of a recognizer by applying
high level constraints to the character sequences [Rabiner,
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Figure 4: a) Shows the result of an experiment in perceptual measurement of image similarity that appears in [Gilmore et al.,
1979, figure 1]. The results shown here are inline with what we observed in the experiments. b) Shows the top nine bars of
the fixation distribution when looking for character “W”. Similar characters tend to draw attention towards themselves.

1990]. When recognizing a speech signal, the constraint iszzs
imposed to the decision making engine in the form of azs
lexicon dictionary called language model (LM) that provideszso
us with a-prior information about the current speech part thates
is being pronounced given the proceeding one. 282

Since in our application we deal with common English?s
words as well, we use a similar technique to apply higher?
order constraints on the recognizer. Depending on the orderzs®
of dependency of characters, we have different orders of?
LM. In a unigram LM we assume the characters to be?¥
independent of each other. Applying a unigram LM t0y
our TSHMM reduces the model to what we had before.,
However, in this paper we use a bigram LM whereby weyg,
impose a first order Markov process on the sequence ofy,
characters. 202

In order to build a LM we need to get a database ofzes
valid English words. Then we can train the bigram LMz
by assuming a first order Markov chain as the underlyingzes
process of character sequences. The training is done byze
counting the number of each pair of transitions in the corpus.2e7
In the end, a technique called add one smoothing is appliedzes
to the count numbers by assuming each pair occurs once,g
more than it actually does to assign non-zero probabilities,,
to the unseen pairs in the training corpus [Huang et al.,,,
2001, chapter 11]. Eventually the language model gives us
the probability of p;; for each pair of characters (7, j), where,,
p;j is the probability of seeking character j after having,,
found character ¢ in our eye-typing application. 405

302

In the previous section we showed how we can trainses
TSHMMs for each character. Therefore, by training the LMaor
we have a complete model for the words in the dictionarysos
that describes the transitions within the states of characters,sos
as well as transitions between a word’s characters, in asto
probabilistic manner. This model can be used as a generatives:

model of the cognitive process of the human brain that
generates eye movements during visual search for characters
of a word (i.e., eye-typing). First we start from the initial
state of a character according to the initial state distribution
of the HMM, and by following the transition probabilities
we can choose the states for each time step and generate ob-
servations according to the observation probabilities. When
getting to the final state of a character, it is the language
model that suggests which character, by what probability,
can follow the current one.

The complete structure of the model for a two-character
scenario is shown in figure 6. The bigram LM information
is applied to the transitions between characters. Unlike
the nodes inside the boxes that represent the states in
the character models, the LM nodes don’t represent states,
which means neither any observation is generated in them
nor transition through them takes up any time-step in the
sequence. The LM nodes are equivalent to the so-called
grammar nodes in the speech processing literature and is
merely an indication of applying LM to the model [Huang
et al., 2001, page 618].

Having the generative model of eye movements during
visual search, we can use the trained parameters to decode
a test eye movement trajectory to infer what character
sequence has been eye-typed. If we had a limited number
of hypotheses (words in the dictionary), we could use
Viterbi algorithm to classify the test date into one of the
words in the dictionary [Rabiner, 1990]. Viterbi algorithm,
though, requires the word models to be built beforehand
to be able to compare the likelihood of each word in the
dictionary. However, for a recognition task, there might be
an enormous number of words in the dictionary which makes
it computationally expensive to build the word model for
each word statically in the Viterbi algorithm.
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Figure 5: The structure of the tri-state HMM (TSHMM) for character recognition. a) The TSHMM for a single character.
b) Concatenating the character models to build up the word “CA”. The transitions between the states are governed by the

initial state probabilities.

An analogous problem exists in the literature related tosss
speech recognition, where the dictionary of possible words,,;
exceeds a certain number. The technique used there, that we_,
propose to be used for our problem as well, is a dynamic_
programming algorithm called foken passing [Young et al.,_
1989]. In order to find the best sequence of states that
matches the observation sequence, we assign a cost I%;;
to each transition from state ¢ to j in an HMM equal to
log(1/a;;) and call it the transition cost. a;; is the transition
probability in the TSHMMs model of a character if the
transition is within a character model. If the transition is
between characters, we use the LM statistics to evaluate the
transition cost and we will have R;; = log(1/p;;), where,,,
pij; 1s the probability of going from character ¢ to character,,,
7 according to the LM. 43

The second type of cost that we use in the token passings,,
method is called local cost function and defines the costy,s
of being at state j at time ¢. Suppose we have data ofy,
the form < Q,y >, where y € Y is a task label in the,,;
set of all task labels Y and Q is the vector containing the
observation sequence of fixation locations (31, qo,..., ET)
sampled from a stochastic process {gt} at discrete times
t = {1,2,...,T} over random image locations denoted in

—
Cartesian coordinates by ;= (¢, y¢).

The local cost function is defined as the cost of being at
—
state state j at time ¢ and is defined by L, (¢) = log(1/b;(4,

=

)), where bj(?t) is the probability of observing ¢, at state
j. Similar to the transition cost, L can be calculated using
the parameters of the task-specific TSHMM:s.

Having defined these two cost functions, we can calculate
the alignment cost for an observation sequence () and a
sample state sequence I = (ig, i1, ...,47) by computing the
alignment cost:

SI)= > (Ri,_,i +Li (7). (1)
T=1.T

However, most of the time the state sequence is hidden
from the observer and therefore we can’t compute the
alignment cost function directly. In token passing method,
thus, we define a new alignment cost function called local
alignment cost function, s;(t), that is equal to the sum of
transition and local cost functions that leads to being at state
j at time ¢. ! Algorithm 1 shows how we can use the local

'In Viterbi algorithm (for limited number of tasks) we can use dynamic
programing to calculate the alignment cost functions using the following
equation:

Sj (t) = miin[si(t -1+ Ri]'} + L (qt)- 2)
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alignment costs to decode a sequence of eye movements bysss
finding the path with the minimum cost in figure 6. To dosss
so, we assume that each HMM state can hold a movablesn
token. We can think of a token as an object that can movesr
from one state to another in our network. Each token carriessz
with it a local alignment cost, which gets propagated in thess
network according to the transition and local cost functions.s7
In the algorithm we refer to this cost function as the valuesrs
of the token. At the end of the iterations, the rout with theszs
minimum cost gives us the best alignment between the statessz
and the observation sequence. a78

IV. EXPERIMENTS o

380
To build a database of task-dependent eye trajectories,

we ran a set of trials and recorded the eye movements ofse
six subjects while eye-typing 26 different 3-character words.ss2
The trials started with a fixation mark of size 0.26x0.26sss
deg appearing at the center of the screen. After foveatingss
the fixation mark, the participant initiated the trial with ases
key-press. Once a trial was triggered, the word to be eye-sss
typed was shown at the center of the display. Once thess

subject indicated his readiness by pressing a key, another
fixation mark appeared at the center followed by an on-
screen keyboard similar to the one shown in figure 2. At
this phase subjects eye-typed the word by searching for the
characters appearing in it as quickly as possible and signaled
when they were done by pressing a key (subjects were only
told to eye-type the words as quickly as possible and press a
key when done). Then by asking about the location of one of
the characters (selected randomly) we verified to see if the
subject had correctly eye-typed the words. Once the question
is answered (by fixating the right location that contained the
character during the experiment and pressing a bottom) the
next word is shown and the trial carries on.

The stimuli were generated by a computer and displayed
on a 1280x800 pixel screen at a distance of 18 inches (1
degree of visual angle corresponds to 30 pixels, approx-
imately). Each keyboard was composed of 25 uppercase
English characters randomly located on a 5x5 grid su-
perimposed on a gray background (we removed the letter
“Z” in order to have a square layout to reduce directional
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Algorithm 1 Token Passing algorithm 296
Initialize: 397
Assign a zero valued token to the initial states of theses
models. 399
Assign an oo valued token to all other states. 400
Algorithm: 401
fort=1to T do 402

for each state ¢ do 403

Copy the token in each state ¢ to the connecting statesos

j and increment its value by R;; + L;(t) 405

end for 406

Discard the original tokens. 407

for each state ¢ do 408

Keep the token with the minimum value and discardaos

the rest. #10

end for a1

end for o
Termination:

The token with the minimum s value in all possible ﬁnaI:j

states corresponds to the best match. s

416

417

bias). The 3-letter words were selected so that there was nog
repetition of characters in them. At the beginning of every,q
experimental session, we calibrated the eye tracker by having,,,
the participant look at a 16-point calibration display that,,
extended to 10x 10 degrees of visual angle (the area covered,,,
by the calibration grid is stretched beyond the stimuli which,,;
spans a 6.6x6.6 degrees of visual angle). 424
An eye tracker (ISCAN RK-726PCI) was used to recordass

the participant’s left eye positions at 60 Hz and a chin rest
was used to minimize head movements. The eye tracker’s
vertical resolution is approximately 0.11 degrees and its
horizontal resolution is 0.06 degrees. An LCD monitor was
used for displaying the images and the subjects used both
eyes to conduct the experiments.

After recording eye movements, data analysis was carried
out on each trial wherein we removed the blinks, outliers and
trials with wrong answers in the verification phase from the
data and classified the eye movement data into saccades and
fixations. Moreover, in some of the initial trials, after eye-
typing the word, the viewer returned to the locations of the
characters to double-check the coordinates of them. In order
to simulate a real eye-typing application we removed these
parts from the trajectories in the pre-processing as well.

After the preprocesgng we (iatained a database of 145 tra-
jectories of the form (44, ..., ¢ 1), each containing observa-
tion sequences of coordinates of fixations while performing
the eye-typing, where Et: (x¢,y:) represents z-coordinate
and y-coordinate of the ¢ fixation, respectively.

In order to perform the evaluation, we compare the results
of our proposed model that uses a TSHMM and a bigram
LM to model the tasks, with the one proposed in [Haji-
Abolhassani and Clark, 2012b], that uses a TSHMM with
no LM (i.e., with a unigram LM), in four different dictionary
sizes. We denote the TSHMM that uses the lexicon informa-
tion by +LM and the TSHMM that disregards any high-level
information by -LM. We created four sets of dictionaries
of 26, 52, 104 and 312 English words using the Carnegie
Mellon pronouncing dictionary (CMPD) [Weide, 2005]. All
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dictionaries were built so that they all include all thess
words of the smaller dictionaries. The words were selectedars
randomly from the CMPD and the words length variedsso
between three to five characters. The language model wasse
also created using the CMU-Cambridge toolkit [Clarksonss:
and Rosenfeld, 1997] by extracting language models fromuss
the words in dictionaries. 484
In order to train the TSHMMs, we have to adjust thesss
mean vector of the 2-D Gaussians according to the trainingass
character so that it aligns with the center of character loca-s7
tion. According to [Rabiner, 1990] a uniform (or random)sss
initial estimation of initial state and transition probabilitiesass
(IT and A) is adequate for giving useful re-estimation ofuso
these parameters (subject to the stochastic and the non-zerose
value constraints). Thus, we set a random initial values forss
the parameters in the generic HMM and run the Baum-sss
Welch algorithm on the training set to obtain the finalses
TSHMM [Huang et al.,, 1990]. We also used a techniquesss
called parameter tieing [Rabiner, 1990] to force a uniquesss
task and stimuli independent covariance matrix across allss
of the Gaussian distributions in the mixtures. Thus, weass
can build the word model for the test data by dynamicallyase
changing the means of the states according to the charactersoo
locations of the characters and using the estimated variancessor
of characters. 502
Figure 7 shows the accuracy of word inference usingsos
TSHMM with LM (+LM) and TSHMM without LM (-LM )sos
methods ranging over four dictionary sizes. As expected,sos
the +LM performs better than -LM due to the fusion ofsos
information provided by the LM. The table below the figuresor
shows the accuracy and the standard error of the meansos
(SEM) of the corresponding bars. For each bar we ran asos
10-fold cross validation on our database of 145 trajectoriessio
in order to define the training and test sets and used thest
same epochs across all the methods. 512
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