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Abstract
Interreflections in a scene can be exploited to improve upon

surface and illuminant spectral estimation. In this paper, we
present a novel maximum entropy approach to spectral color con-
stancy in the presence of interreflections. Previous approaches
employ linear model representations of surface and illuminant
spectra. Such representations are not always practical as a
database of spectra has to be specified in advance in the corre-
sponding algorithms. The proposed approach has a major ad-
vantage over previous algorithms in that it requiresonly camera
sensor responses from the mutual illumination or edge region of a
folded surface and from the far from the edge regions to estimate
surface and illuminant spectra. We demonstrate the feasibility of
the approach while assuming a one-bounce, two-zone model of
mutual illumination. We test our approach in both simulation and
experiment. In the case of one surface patch in a scene, when the
color constancy problem has no solution, we are able to obtain
promising results.

Introduction
It has been shown that the human visual system makes use of

mutual illumination information in color perception [1, 2]. How-
ever, there has been little work in the computer vision literature
which exploits mutual illumination to improve upon color per-
ception. In this work, we address the problem of spectral color
constancy while making use of mutual illumination information.
The problem of spectral color constancy lies in computing a sur-
face reflectance spectrum that is independent of the spectrum of
light incident on the surface.

Most color constancy approaches with interreflections use
spectral models for the surfaces and the illuminant, while em-
ploying finite-dimensional linear model representations for these
spectra. In [3], Funtet al. assumed a one-bounce, two-zone model
of interreflections. The one-bounce model takes into account the
light reflected off one surface that bounces onto the other. The
two zones comprise that in the mutual illumination region, also
called the edge, and that far from this region. By taking mutual
illumination into account, they effectively added a sensor class to
Maloney and Wandell’s approach [4]. This is important because
one more basis function can then be used to model the surface
spectrum, given the restrictions on the number of basis functions
in Maloney and Wandell’s approach. Drew and Funt [5] extended
Funtet al.’s [3] approach to account for multiple zones, using the
radiosity method from [6]. They also proposed the variational
approach [7] that does not assume diffuse-illumination, a two-
patches limit, or locations with negligible interreflection as in the
previous approaches. It still assumes a one-bounce model of inter-
reflection, however. Harder [8] investigated interreflections while
assuming known illumination in addition to Lambertian surfaces.

All the mentioned approaches use three basis functions for
each of the surface and illuminant spectra. The only exception is
in Harder’s work [8] where the illuminant spectrum is assumed
to be known, which is not the case in this paper. Such a small
number of basis functions may not be enough to provide an ac-
curate representation of surface spectra. Moreover, all these ap-
proaches require the database of surface and illuminant spectra
to be specified in advance in order to obtain the basis functions
for the linear model representations. Such a requirement places
these approaches at a major disadvantage as databases might not
be available in advance. Even if they are available, they might not
be consistent with the data in a certain application.

We propose a novel approach that estimates surface and illu-
minant spectra in the presence of interreflections given only cam-
era sensor responses. This approach is based on the color con-
stancy technique introduced in [9] in which the surface and illu-
minant spectra are represented by maximum entropy models, and
therefore do not require a set of basis functions to be specified
in advance. Maximum entropy models were successfully used
to estimate Munsell patch reflectance spectra given only photore-
ceptor responses in [10]. The use of maximum entropy models
was inspired by Jaynes, who stated that a physical quantity fre-
quently observed in practice will tend to a value that can be pro-
duced in the largest number of ways [11]. In the case of physi-
cal processes representing spectra, many surfaces observed in our
everyday-life surroundings have spectra of high entropy, as op-
posed to monochromatic surfaces which have low entropy spectra
[10]. The illuminant spectra are also represented by maximum en-
tropy models as they are observed in our everyday-life surround-
ings and therefore can be produced in a large number of ways [9].

In this paper, the proposed approach is explained and de-
rived. To this end, diffuse-illumination and a Mondrian scene
composed of matte, Lambertian surfaces are assumed. The light
illuminating a Mondrian scene is assumed to be locally con-
stant. This means that the spectral characteristics of the light vary
slowly. As for the interreflections, a one-bounce, two-zone model
is assumed. Next, the performance of the approach is analyzed in
simulation and then in experiment. In particular, in the case of one
surface patch in the scene, it is shown how exploiting interreflec-
tion information improves upon spectral estimation. Moreover,
while, to the knowledge of the authors, none of the previous ap-
proaches provided surface or illuminant spectral estimates for real
images, such spectra are shown in this paper.

Maximum Entropy Spectral Based Color Con-
stancy with Interreflections

The proposed color constancy approach aims at recovering
surface and illuminant spectra in the presence of interreflections
given only camera sensor responses. We assume a one-bounce,
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Figure 1. A scene with one folded surface patch of reflectance spectrum

s(λ ), illuminated by one light source of spectrum e(λ ). Im(λ ) is the light

reflected off the surface in the edge region while I(λ ) is the light reflected off

the surface far from this region.

two-zone model in this paper. The main goal of exploiting in-
terreflection information is to show that in the one surface patch
case, when the color constancy problem has no solution, reason-
able surface and illuminant spectral estimates can be obtained.
Figure 1 shows a folded surface patch in a scene illuminated by a
single light source.s(λ ) is the surface spectrum whilee(λ ) is the
illuminant spectrum. Under the assumption of uniform illumina-
tion and Lambertian surfaces, the light reflected off the surface in
the first zone, the region away from the edge, is:

I(λ ) = s(λ )e(λ ). (1)

In the second zone, the mutual illumination region, the light re-
flected off the surface is:

Im(λ ) = I(λ )+α I(λ )s(λ )

= s(λ )e(λ )+αs2(λ )e(λ ), (2)

whereα denotes the proportion ofI(λ ) reflected off one side that
bounces onto the edge region of the other side.

Two types of light fall on the camera sensors in this case,
I(λ ) and Im(λ ), which after projecting onto the sensor spectral
sensitivitiesRk(λ ), yield Pk andPkm respectively:

Pk =
M

∑
λ=1

Rk(λ )s(λ )e(λ ), k = 1,2, ..., p; (3a)

Pkm = Pk +α
M

∑
λ=1

Rk(λ )s2(λ )e(λ ), k = 1,2, ..., p, (3b)

wherep is the number of sensor classes, each denoted byk; λ is
the wavelength taken over the visible range;M is the dimension of
these spectra. Usually there are three sensor classes correspond-
ing to each of the long-, medium-, and short-wavelength ranges.

The surface and illuminant spectra are represented by max-
imum entropy models. Each of these spectra needs to be repre-
sented by a probability density function (pdf) in order to compute

its entropy. The light incident on a surface is a collection of pho-
tons, and each photon has a specific wavelength. The pdf repre-
sentation of the illuminant is therefore the probability density of
the wavelength of a photon incident on the surface. Assuming
that there is always an incident photon,e(λ ) can be related to the
corresponding pdfpe(λ ), which can be obtained by:

pe(λ ) =
e(λ )

∑M
λ=1e(λ )

,

≡
e(λ )

Ie
, λ = 1, ...,M, (4)

whereIe = ∑M
λ=1e(λ ) is the intensity of the light emitted by the

source. An incident photon can be either absorbed by or reflected
off the surface it hits. Denoting the event that a photon is absorbed
by the surface byA and the event that a photon is reflected off the
surface byR, we can write:P(A) + P(R) = 1. The probability
of a wavelength given that eventR occurred, which means that a
photon has been reflected off the surface, is denoted byp(λ |R).
Bayes Rule gives:

p(λ |R) =
p(R|λ ) p(λ )

p(R)
, (5)

wherep(λ ) is equivalent tope(λ ). In Equation 5,p(R|λ ) denotes
the likelihood of wavelengthλ being observed given a reflected
photon. This likelihood is normalized to give the pdfps(λ ):

ps(λ ) =
p(R|λ )

∑M
λ=1 p(R|λ )

, λ = 1, ...,M. (6)

ps(λ ) can serve as the pdf representation ofs(λ ), which is related
to the former by the multiplicative factor∑M

λ=1 p(R|λ )/p(R).
This factor can be thought of as the surface albedo relative to the
incident light.

Throughout this paper we refer to the entropy of the pdf rep-
resentation of a spectrum as the entropy of a spectrum for simplic-
ity. For the purposes of the following derivations, we denote the
wavelength corresponding to the surface spectrum byλs and the
wavelength corresponding to the illuminant spectrum byλe. Our
goal is to estimate the surface and illuminant spectrum. Therefore
we seek the joint probability densityps,e(λs,λe) that maximizes
the entropyH [12] given by:

H = −
M

∑
λs=1

M

∑
λe=1

ps,e(λs,λe) logps,e(λs,λe). (7)

The surface and illuminant spectra are assumed to be independent,
and therefore the corresponding probability densitiesps(λs) and
pe(λe) are independent. This assumption is valid as the surface
and illuminant spectra are characteristic of the surface and light
source respectively. Making use of this independence assumption,
we can rewriteH [12] as:

H = −
M

∑
λs=1

ps(λs) logps(λs)−
M

∑
λe=1

pe(λe) logpe(λe), (8)

whereps,e(λs,λe) = ps(λs)pe(λe). Therefore, we can now find
ps(λs) andpe(λe) that maximizeH, given the constraints in Equa-
tions 3(a) and 3(b). The functionfminconfrom the Matlab Opti-
mization ToolBox is used for this purpose. Theα of Equation 2
is also estimated by the optimization as it is not known in real
images.



Simulation Results
We test the performance of our approach on two types of

patches:matteMunsell [13] and construction paper. The former
are representative of a wide range of hues encountered in printing.
The Munsell spectra were measured by Parkkinenet al. [14]. The
construction paper spectra were measured with a PR-650 spec-
troradiometer in our laboratory. The illuminant spectra used are
those of daylight and skylight, measured by Parkkinen and Silft-
sen [15], and a set of tungsten light spectra. This set is composed
of ten spectra with temperatures ranging from 2600K to 3500K,
in steps of 100K, obtained from the IES lighting handbook [16].

The surface and illuminant spectra are multiplied to obtain
the light falling on the sensor. To obtain the simulated sensor
responses for the surface patches used, this spectrum of light is
multiplied by the sensor spectral sensitivity curves of a Panasonic
WV-CP410 camera (Equation 3(a) withp= 3). To obtain the sim-
ulated sensor responses for the patches in the mutual illumination
region, the light incident on this region is obtained as expressed
in Equation 2. The set ofα values considered is 0.1, 0.2, 0.3, as it
is assumed that at most 30% of the light reflected off one surface
bounces onto the other. This light is then multiplied by the sen-
sor spectral sensitivity curves of the camera (Equation 3(b) where
p= 3). The sensitivity curves of the camera are obtained from the
manufacturer. The wavelength range considered for these spectra
is 400 nm to 700 nm, and is discretized into 10 nm bins. This
yields a dimension ofM = 31 in Equations 3(a) and 3(b) for the
surface and illuminant spectra.

Two types of artificial scenes, Munsell and construction pa-
per, were constructed as explained below. The model surface and
illuminant spectra are computed for a scene for each of the three
α ’s (0.1, 0.2, 0.3) given the proposed algorithm. These spectra are
also computed given the algorithm proposed in [9], where mutual
illumination information is ignored, for comparison purposes. To
evaluate the performance of our approach, the root mean square
(RMS) errors between the normalized actual and model spectra
for the surface patches and illuminant in each scene is computed.
Each spectrum is normalized to a maximum of one as we do not
intend to recover intensity information. This is a common prac-
tice in solving color constancy problems. Finally, the average of
the RMS errors over all scenes is taken for each of theα values.
The performance of the approach is compared for differentα ’s to
the performance of the approach in [9].

The average RMS errors for each of the differentα ’s for
both the surface and the illuminant spectra is depicted in Figures 2
and 3 for each type of scene. Theα = 0 case corresponds to the
approach in [9]. The term RMS error is denoted by RMSE.

Munsell Patches
Eighty scenes of one Munsell patch and one illuminant in

each were constructed. The 80 patches were chosen at random
from the set of 1269matteMunsell patches [13]. The illuminant
for each scene was selected at random from the set of daylight,
skylight, and tungsten light spectra.

We plot the actual and model spectra for the surface patch
and the illuminant in each of two scenes, one illuminated by day-
light and one by tungsten light forα = 0.2 in Figure 4. We also
plot these spectra when interreflections are ignored. We choose
this value forα as it is in the middle of the range ofα values
considered in this study.

Construction Paper Patches
Eight scenes of one construction paper patch of different

hues and one illuminant in each are considered. The illuminant
is tungsten light at 2800K in all scenes as this allows for compar-
ison to the experimental results.

We plot the actual and model spectra for the surface patch
and the illuminant for a scene with a light blue construction paper
patch forα = 0.2 in Figure 5.

Discussion
From the bar plots (Figures 2(b) and 3 (b)), we can see that

the spectral estimates for the illuminant improve when interreflec-
tion information is exploited, for allα ’s. For the Munsell case,
the average RMS error decreases from 0.2313 (α = 0) to 0.1453
(α = 0.2). For the construction paper case, the average RMS error
decreases from 0.2673 (α = 0) to 0.2116 (α = 0.1). As for the
surface spectra (Figures 2(a) and 3 (a)), the average RMS error
decreases from 0.2765 (α = 0) to 0.2584 (α = 0.1). On average,
this is not the case for the Munsell surface spectra in terms of the
RMS errors. However, in quite a few cases when the RMS er-
rors are higher, our approach renders a spectral estimate that has a
more similar shape to that of the actual one than in the case when
interreflections are ignored.

From the spectra shown (Figures 4 and 5), the maximum
entropy approach of [9] cannot distinguish between the surface
and the illuminant spectra when there is only one surface patch in
the scene. By incorporating the sensor responses obtained from
the mutual illumination region, better spectral estimates are ob-
tained. For example, the error in theCIExy chromaticity coordi-
nates between the model and actual spectrum shown in Figure 5(a)
is 0.0388 whenα = 0.2 compared to 0.1263 whenα = 0, even
though the former spectrum seems noisier. Moreover, since the
model spectra comprise a product of three exponentials, one in
each wavelength range (long, medium, and short), the daylight
spectra are better estimated by this approach than the tungsten
light spectra.

Experimental Results
No previous spectral color constancy approach with inter-

reflections has reported surface and illuminant spectra obtained
from real images. The purpose of the experiments here is to show
that we can still obtain reasonable spectral estimates for surfaces
and illuminants in real scenes despite the assumptions imposed.
We consider scenes made of folded strips of construction paper as
explained below. We do not use the Munsell patches in this case
as they are 1.6 x 2.3 cm and folding them would not allow for a
sensor response far enough from the mutual illumination region.
In addition, the Munsell patches have spectra similar to those of
the construction paper and therefore similar algorithmic perfor-
mance would be expected.

We consider eight scenes. Each strip of construction paper
was 4 x 21 cm. A strip was folded in the middle to make an
opening angle of approximately 120◦. Each side of the paper was
about 30◦ to the image plane. The camera was mounted directly
above. The light source, tungsten at 2800 K, was about 1 m away
from the scene at a 45◦ angle. We captured images of these scenes
with a Panasonic WV-CP410 camera. We segmented two 20x20
pixel samples from each image: one in the mutual illumination
region and one far from this region. Since we assume Mondrian
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(a) Munsell Spectra
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(b) Illuminant Spectra

Figure 2. The average of the RMS errors over all synthetic scenes when interreflection information is exploited (α = 0.1,0.2,0.3) and ignored (α = 0), for the (a)

Munsell surface patch and (b) illuminant spectra.
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(a) Construction Paper Spectra
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(b) Illuminant Spectra

Figure 3. The average of the RMS errors over all synthetic scenes for the case when interreflection information is exploited (α = 0.1,0.2,0.3) and ignored

(α = 0), for the (a) construction paper patch and (b) illuminant spectra.

scenes where the illumination is locally constant, we averaged the
camera responses of all the pixels in a patch to obtain one 3D
response per patch. We feed these averages into our algorithm to
obtain the correspondingα and spectral estimates.

We compute the average RMS errors for the surface and il-
luminant spectra over the scenes for which the optimization con-
verged. These were five out of eight. The average RMS errors
are slightly higher in the interreflection case than that without in-
terreflection. For the surface spectra, the average error is 0.3006
for α > 0 and 0.2597 forα = 0. For the illuminant spectra, the
average error is 0.4505 forα > 0 and 0.4200 forα = 0.

We plot the actual and model spectra for the surface and the
illuminant for a scene with a pink patch in Figure 6. We also
plot these spectra when interreflections are ignored. These plots
suggest that surface spectral estimation can be improved with in-
terreflection information in some cases. The same cannot be con-
cluded for the illuminant spectral estimates. However, once a rea-
sonable surface spectrum is obtained, the color constancy problem
is solved as this spectrum is illumination invariant. This is very
interesting as it suggests that the approach has potential for being
used with real images despite the assumptions imposed.

Concluding Remarks
A new maximum entropy approach to solve for surface and

illuminant spectra in the presence of interreflections was intro-
duced. The approach provides a major advantage in that it re-
quires noa priori information contrary to other spectral based
color constancy approaches with interreflections. Our simulation
results indicate that exploiting interreflection information gener-
ally improves upon spectral estimates. Preliminary experiments
did not confirm this hypothesis; however the algorithm performed
sufficiently well to suggest that interreflections could be useful
with a better control of the experimental setup.
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(a) Munsell Patch 5PB 6/8
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(b) Daylight 8
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(c) Munsell Patch 2.5Y 6/2
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Figure 4. The actual and model spectra, when interreflection information is exploited (α = 0.2) and ignored (α = 0), obtained in simulation for two scenes with

one Munsell patch each: (a) Munsell patch 5PB 6/8 (RMSE = 0.0486, RMSE = 0.1952) illuminated with (b) daylight 8 (RMSE = 0.0389, RMSE = 0.2475), and

(c) Munsell patch 2.5Y 6/2 (RMSE = 0.0958, RMSE = 0.1813) illuminated with (d) tungsten light at temperature 3300 K (RMSE = 0.1680, RMSE = 0.2434).
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(a) Light Blue
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(b) Tungsten Light at 2800K

Figure 5. The actual and model spectra, when interreflection information is exploited (α = 0.2) and ignored (α = 0), obtained in simulation for a scene with a

(a) light blue construction paper patch (RMSE = 0.3106, RMSE = 0.3770) illuminated with (b) tungsten light (RMSE = 0.2023, RMSE = 0.3915).
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Figure 6. The actual and model spectra, when interreflection information is exploited (α > 0) and ignored (α = 0), obtained in experiment for a scene with a (a)
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ogy Conference, Ottawa, ON, pg. 1557 (2005).
[11] E. T. Jaynes, Prior probabilities, IEEE Transactions on Systems Sci-

ence and Cybernetics, 4, pg. 227 (1968).
[12] T. M. Cover and J. A. Thomas, Elements of information theory(Wi-

ley & Sons, 1991).
[13] Munsell Book of Color-Matte Finish Collection (Munsell Color,

Baltimore, MD, 1976).
[14] J. P. S. Parkkinen, J. Hallikainen and T. Jaaskelainen,Characteristic

Spectra of Munsell Colors, Journal of the Optical Society ofAmerica
A, 6, 2, pg. 318 (1989).

[15] J. P. S. Parkkinen and P. Silfsten, Spectra
Databases, University of Joensuu, Joensuu, Finland,
http://www.it.lut.fi/ip/research/color/database/database.html.

[16] IES lighting handbook (Illuminating Engineering Society of North
America, New York, NY, 1981).

Author Biography
Sandra Skaff received the BS degree in computer science fromthe

American University of Beirut (Beirut, Lebanon) in 2000. She received
the MEng degree in electrical engineering from McGill University (Mon-

treal, Canada) in 2002. She has been at McGill’s Visual MotorSystems

Laboratory since 2000 and is currently pursuing a PhD. Her research in-
terests include spectral models for color perception and color constancy.


