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Abstract

This paper introduces a novel mathematical approach taceigpectral
reflectance estimation in unknown underwater environmasiisg uncali-
brated color cameras. The approach derives surface spestiraates with-
out explicitly modeling the underwater medium charactisssuch as light
scattering and absorption. The latter two phenomena arendiepmt upon
two parameters, which are the distance of the object frontémeera and
the depth of the object in water. The proposed approach doiesequire
these parameters to be specified in advance. Spectral maréelseful for
underwater applications, where subtle differences inranéed to be distin-
guished. Such models are also useful for fusing informaftiom multiple
images. We show that the proposed approach yields promissuits.

1 Introduction

Enhancing images or video footage of underwater sceneadégatto many applications.
Underwater images have been used for mine detection andioalee inspection of un-
derwater communication cables [4]. Marine biology [7] amchaeology [9] frequently
employ vision techniques. Underwater images collecteabyeational scuba divers help
them share their experience with others and keep treasueetkentos. Furthermore, in
several cases, divers use the pictures for post-dive famiton of the marine life they
encountered [1]. Finally, robust computer vision techemare crucial in the perfor-
mance of autonomous underwater robotic vehicles [12]. Gslan essential cue in many
computer vision algorithms, and color correction in thewabscenarios is a useful tool
to improve the quality of underwater images. The color candpeesented either in 3D
vector form such as RGB, CMY, YIQ, etc. or in spectral form.eThtter constitutes the
surface reflectance spectrum, that is the amount of ligheatefti off an object’s surface
at each wavelength, and is a physical property of the surface

Underwater color imaging and analysis is increasing in oy, however, the prob-
lem of estimating surface reflectance spectra in such axioms been barely addressed.
Even though challenging to obtain, spectral model reptasiens are useful when there
is a need for an accurate representation of a color. For éeamvhen inspecting metal
underwater, the difference between the colors of the deéeahd good parts may be suf-
ficiently small to require the extra information containadhe spectral models. Spectral
data has also been used to discriminate between differeaisd®]. Currently, methods
relying on spectral data to distinguish between differéan{s, algae, or any material un-
derwater usually employ expensive equipment to obtain daté Therefore, introducing



a technique which can estimate these spectra relgihgon a cheap, consumer digital
camera is of great convenience.

In addition to providing an accurate representation of sercolor, spectral mod-
els allow for simple fusion of information obtained fromfdifent images. In this paper,
images of a multi-patch color target at different distarftesn the camera and at differ-
ent depths are used. We demonstrate the usefulness ofagaston by showing that
the approach provides better spectral estimates whenrgahgensor responses from
multiple images rather than a single image for the samesifatch. Moreover, the pro-
posed approach provides an ideal framework for fusing imédion as it does not require
knowledge of the different parameters such as the targepghdor its distance from the
camera.

The major contribution of this paper is to introduce a mathgcal approach to es-
timate reflectance spectra of surfaces in underwater sagwes only responses from
uncalibrated camera sensors. The paper is structuredasg$olUnderwater color image
formation is explained and derived in Section 2, and the ggefd approach is detailed
in Section 3. Even though the paper is theoretical in natine approach proposed is
applied on real underwater images. The measures used taev#he proposed approach
in estimating surface reflectance spectra are presentedcitio8 4. Results show that
spectral estimates improve upon fusion of information fidifferent images in Section 5.

2 Underwater Color Image Formation

Most vision algorithms are devised under the assumptioaisttie camera is placed in
open air at a close distance from the scene. However, dgwision algorithms that can
operate in other scenarios such as water or foggy air is nf@keaging. In these envi-
ronments, the light reaching the camera undergoes a watblelependent attenuation.
For example, images taken in open air at a far distance mageagpllow-reddish at sun-
set [14], while underwater images appear to be mostly ofrgldee hue [13]. In these
contexts, surface spectral estimation is important asg@eteum is a physical property of
the surface. It therefore represents the surface colorauittulti-dimensional vector that
is characteristic of the surface itself and independertti@surrounding environment.

In a typical underwater image acquisition scenario, thietlemitted from the sun hits
the water surface, where some of this light is reflected aff ssme of it is refracted into
the water. At the camera sensor, the light arrives via 3wiffepaths as shown in Fig. 1.

Let us define the color signal as the wavelength-dependghitfilling on the camera
sensor. A color signal in vacuum is given by:

®(A) =SA)E(A), (1)

whereS(A ) is the surface reflectance spectrum, that is, the propasfitight reflected off
a surface at each wavelengf(A ) is the illuminant spectrum is the wavelength. Un-
derwater, this color signal is a linear superposition of ®iceignals each corresponding
to a different path for the light [6].

The first component of the color signal comes from light reéidoff the object sur-
face, and is attenuated as compared to the color signal wiiakd be observed in open
air at a close distance (Eg. 1):

Py (A) = D(A)e 112, 2)
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Figure 1: The components of light arriving at a camera seasderwater. The green el-
lipse represents a particle underwater off which lightflerted, giving rise to a backscat-
ter component. The variables are defined in the text of Seétio

wheren(A) is the attenuation coefficient given byA) = a(A)+B(A); a(A) is the
absorption coefficient of the wateB(A) is the scattering coefficient, which represents
how much light can be scattered by an infinitesimal volume afen z is the distance
between the object being viewed and the camera. For mori pletase refer to [6].

The second componen,,, (A ), arises from forward scattering of the light along the
line of sight contributing to a blurring of the image. In owperiments, water clarity
and camera-target distance were such that the blur was mdinimaddition, image blur
would not affect the color of the image. Therefdbgy, (A ) is neglected.

The third componen®,w, (A ), arises from backscattered light. In simple terms, this
is light that gets scattered backwards along the line oftdigtparticles suspended in the
water between the object being viewed and the camera. Therltre distance between
the object and the camera, the more light is backscattered.

Hence the color signal underwater that contributes to tlag@can be expressed as:

Puw(A) = Puwy (A) + Piay (A) + Pz (A) = Piwy (A) + Py (A)- @)

Projecting the color signals in this equation onto the sesgectral sensitivitieRg(A ) of
a camera yields an equation in terms of the correspondirgpseasponses:

Puwk:PUW1k+PUW3k’ k:172a"~7p7 (4)

wherepis the number of sensor classes, each denot&dBlge sensor responses recorded
from underwater images aRay, . P, IS the component of the responses corresponding
to the attenuated light, whilB,,, is the component corresponding to the backscattered
light. Knowing that a black surface should haRg, = (0,0,0) where p=3, any offset
from such a response is assumed to be due to backscattdredigrefore, for a certain
distance from the camera, subtracting the response of & blatace By, ) from the
measured response for a particular surfég, | yields Py, k, which given Egs. 1 and 2,
can be expressed as:

Powy = % Rd(A)®(A)e 1472 = % Rd(A)S(A)E(A)e "™, ®)
A=1

A=1



whereM is the dimension of the spectra.

3 Underwater Spectral Reflectance Estimation

The goal of this work is to estimate the surface reflectaneetspm of an object under-
water givenonly camera sensor responses, denote@fy, as given in Eq. 5. The un-
knowns are the camera sensor spectral sensitiies), the illuminant spectruri(A),
and the attenuation functicer»)Z. Grouping the unknowns of Eq. 5 into one function
Ck(A) = R¢(A)E(A)e 142 the responses can be expressed as:

M
Pay = 3 S(A)G(A). (6)
A=1

We refer toCy(A) as the product spectrum. In the following sections, we disdwow we
model each of the components of Eq. 6 before discussing tpoped algorithm.

3.1 The Surface Reflectance Spectra

We represent surface reflectance spectra by maximum entroggls. Such models were
successfully used to estimate Munsell patch reflectanaerspgiven only photoreceptor
responses in [2]. The use of maximum entropy models wasratgply Jaynes, who stated
that a physical quantity frequently observed in practick iwhd to a value that can be
produced in the largest number of ways [8]. In the case ofiphlprocesses representing
spectra, many surfaces observed in our everyday-life sndiogs have spectra of high
entropy, as opposed to monochromatic surfaces which havertropy spectra [2].

The surface spectra need to be represented by probabitigitddéunctions (pdf) in
order to compute their entropy. The spectrum of a collectibphotons can be thought
of as a histogram of photons over wavelength. An incidentgihoan be either absorbed
by or reflected off the surface it hits. Denoting the event éhahoton is absorbed by the
surface byA and the event that a photon is reflected off the surfacB,bye can write:
P(A)+P(R) = 1. Now®(A) as given in Eq. 1 can be represented by thegidfR), the
probability of the wavelength given that evétbccurred, which means that a photon has
been reflected off the surface. Given Bayes' rule:

P(RIA) p(A)
ARy = —————~=,
PAR) = ==
wherep(A) = p(A|photong) denotes the pdf of a wavelength given an incident photon,
photong, and represents the illuminant. Since it is assumed thed thalways an incident
photon, p(A |photong) is written asp(A). Given Egs. 1 and 7, the surface reflectance
spectrum can be written as such:

S(A) = p(RIA)/p(R). (8)

This means tha(A ) denotes the likelihood function of a particular wavelengjtren the
eventR. This function is normalized by the fraction of photons retiéel off the surface
over all wavelengths. The pdf representatioo¥), ps(A ), is obtained by the following:

(7)

M
ps(A)=S(A)/ z SA), A=1.,M. 9)
A=1



The entropyH of ps(A) is defined as:
H=-7% ps(A)logps(A). (10)

3.2 The Product Spectra

A typical consumer digital camera has 3 sensor classesgredn, and bluep(= 3 in
Eq. 4). Therefore, the corresponding product spectra oféimsor spectral sensitivities,
the illuminant and the water attenuation spectra over vesggh are:

Ci(A) =RdA)E(A)e M7 k=123 (11)

For these product spectra, a model that does not requirel&dges of specific parameters
such as those of the water absorption is sought. We resolirteaa model using Fourier
bases. Unlike other basis functions, Fourier bases do gatreea database of spectra to
be specified in advance in order to perform principal comptsanalysis on. Each of the
product spectra is modeled as such:

J
(A)='3 biBi(A), (12)
=1

whereJ is the number of basis functions used for each of the prochmttea models,

Bj(A) denotes the basis functions used, apddenotes the weight for thg" basis func-
tlon for thek!M sensor sensitivity curve. We choose to use 9 Fourier bdse9) as testing
the algorithm on more than 9 Fourier bases did not providgrifgiant improvement in
modeling the surface spectra. Moreover, Finalysbal. [3] found that 9-15 Fourier
bases are sufficient to model the camera sensor spectréahsges, which have the same
shapes as the product spectra.

3.3 The Algorithm

The input to the algorithm is a set of sensor responses froumderwater image, a vector
of dimensionM for the surface spectrum, initialized tgMl, and 3 initial weight vec-
tors, each initialized to AJ (J = 9), corresponding to each of the product spectra. A cost
function comprising of 2 main components is formed. The fiesin represents the en-
tropy of the pdf representation of the surface spectrum la@décond term represents the
closeness of the computed sensor responses to the measunsed iesponses, such that:

M

[S(A),b1,b2,bg] = argmin ' ps(A)logps(A) +

J 2
PUWll Z b] 1B ‘|
S(A),b1,b2,bz X =1 =1

2 2

J J
+ |Pw,—S(A) Y bj2Bj(A)| + | Py — Zb,gB ]LB)
= &

whereb; = [b11...b31], by = [b12...b2], andbz = [b13...by3]. To minimize the cost func-
tion, fmincon for nonlinear constrained optimization from the Matlab i@yzation Tool-
box is used. The constraints are those of positivity on thitasa spectrum and each of



the product spectra. The wavelength range considereddapbctra is 400-700 nm dis-
cretized into 10 nm intervals. Therefore the dimensiopalfteach spectrum isl = 31.

In the above derivations, it is assumed that there is only saméace patch in the
scene. Upon adding a second surface patch, the new cosiofunabuld comprise of
the terms in Eq. 13 in addition to similar ones pertaining#0 ), the sought spectrum
for the second surface patch. We should note that the prdpaggroach seeks one of
the multiple combinations of maximum entropy surface araipct spectral models that
can give rise to the same sensor responses. Using sensansesgrom multiple surface
patches or multiple images of the same patch constrainsagghge combinations, thus
resulting in more accurate surface spectral estimatesfulien is facilitated by the use
of spectral models, which are invariant representatiorssidfice colors.

4 Underwater Spectral Reflectance Estimation
Evaluation

The results of the proposed approach are validated by nieggbhe root mean square er-
ror and by displaying color patches constructed from thienegéd spectra. These patches
give insight as to what color an underwater robot would pigecence it has a system in
place to estimate spectra.

4.1 Root Mean Square Error

The root mean square error (RMSE) between the actual spe&x(A ) of a surface and
the spectrum obtained from the proposed algorifnA ), referred to as a model spec-
trum, is computed. The Munsell patch spectratfe) are those measured by Parkkinen

et al. [11]. The RMSE for a surface spectrumbigyss = \/ﬁ M L (SA(A) = Su(A))2

4.2 Qualitative Evaluation

The CIE XYZ and the CIExy chromaticity coordinates of each of the actual and the
model spectra are also computed. We assume white light asame tov measure the
error in chromaticity values for the surface spectra withwaving it affected by illumi-
nation. The color matching functions used are those of tite X931 standard observer
(2°) as introduced by Judd (1951) and modified by Vos (1978). Degdhe coordi-
nates corresponding to each of the actual and model specttayh andxyym respec-
tively, the CIE chromaticity error is the Euclidean distariwetween these coordinates:
By =/ (xa—m)2+ (Ya—Ym)?.

In order to visualize the patches constructed from the mgpkattra, we transform the
CIE XYZ coordinates as computed above to coordinates in BB [Red, Green, Blue)
color space using the CIECAMO02 model [10]. Given these RG& dimates, we display
the corresponding patches, which are referred to as recotett patches. The patches
obtained from both the model and the actual spectra areagisglin order to account for
any discrepancies that may have arisen upon conversion BXdR@pon display.




5 Experimental Results

The images of a color patch target were taken by 2 scuba divale Caribbean Sea
in Barbados. The target has a set of 41 Munsell patches ghuddack cardboard. We
choose to use Munsell surface patches in our experimentseas have high entropy
spectra [2] and it was shown in [15] that maximum entropy ntiadeprovides reasonable
estimates of these spectra in the case of real images. Alhthges were taken with a
Canon PowerShot A85 camera. The images were taken at 3 dapitist 7.9 m, 5.2 m,
and 4.9 m, and at 2 distances from the camera: about 1.5 neJaaod 3.5 m (far). Fig. 2
shows the images of the target for the 7.9 m and 4.9 m deptls edthe far and close
distances.

Figure 2: The target at a (a) depth of 7.9 m and distance of 3.fjrdepth of 7.9 m
and distance of 1.5 m, (c) depth of 4.9 m and distance of 3.9)rddpth of 4.9 m and
distance of 1.5 m; where distance denotes the distance freitaimera.

Upon segmenting the images with a semi-automated algaritlx20 pixel rectan-
gles in the middle of each patch were obtained. The senspomsss over these pixels
were averaged to obtain one RGB response per patch. Theapmstimate for each of
the 41 surface patches was obtained by minimizing the costifun given in Eq. 13 us-
ing O to 5 additional patches each time. The latter patches elgosen at random from
the remaining 40 Munsell patches on the target. Therefootehaf 41 cases, which we
refer to as scenes, were constructed for each number otsysédches per scene (1 to 6).
The average of the RMSE'’s, which are computed as explain8ddtion 4.1, is taken for
the repeated surface patch over all 6 scenes. Two casevastigated: (1) the effect of
changing the distance of the target from the camera at eazZkdgbths in Section 5.1 and
(2) the effect of changing the depth of the target for theelasd far distances from the
camera in Section 5.2.

5.1 Variation of Distance from the Camera

For each of the 7.9 m and 4.9 m depth cases, we plot the avefdlge RMSE’s versus
the number of patches in the scene in Fig. 3 when the targ#} fai( from, (2) close to
the camera, and (3) when the sensor responses from botharasssmbined.

Fig. 3 shows that the spectral estimates improve upon cantbihe sensor responses
from images at both distances. The improvement is more evatel.9 m than at 7.9 m.
In the case where images at both distances were used, tlagaRMSE drops from 0.37
to 0.31 for the 7.9 m deep images and from 0.35 to 0.28 for theddeep images as the
number of surfaces in a scene increases from 1 to 6. This sthatvthe performance of
the approach is better at shallower levels where the dayiligimination is less attenu-
ated, due to scattering and absorption, than at deepeslefédo the spectral estimates
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Figure 3: The average of the RMSE'’s over all the scenes asaidanof the number of
patches in a scene when the target is far from the camera widbe camera, and when
the responses from the far and close images are combine@pttaaf (a) 7.9m, (b) 4.9m.

generally improve upon the introduction of more surfacelpas into the scene, hence the
usefulness of spectral models in fusing information.

5.2 \Variation of Depth

For each of the far and close distance cases, we plot thegiveféhe RMSE's versus the
number of patches in the scene in Fig. 4 when the target is@Ihdeep, (2) 4.9 m deep,
and (3) when the sensor responses from images at all degties@mbined.
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Figure 4: The average of the RMSE’s over all the scenes asdcidarof the number of
patches in a scene when the target is at a depth of 7.9m, 4.8maen the responses
from the images at all depths are combined at the (a) far|dsgalistance to the camera.

These plots show that the spectral estimates improve umoimttoduction of more
surface patches into the scene as in Section 5.1. Moreogangfspectral estimates across
different depths considerably improves upon the averag&RM his average drops from
0.37 to 0.29 as the number of surfaces in a scene increased fto 6 in each of the far
and close distance cases respectively.

For each of the different depths cases, we plot the modetrspalatained for Munsell
patch 5RP 6/6 for the deep images in Fig. 5. We also displagéhesponding color
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Figure 5: Munsell Patch 5RP6/6 for the far distance casé Hajctual and model spectra
for the 7.9m, 4.9m, and all depths cases, (b) in left-righp;bottom order: the patches
cropped from the target images taken at 7.9m and 4.9m depthseconstructed patches
from the actual spectrum with its xy chromaticity coordegtand the model spectra in
the 7.9m, 4.9m, and all depths cases with the correspondiBgl@omaticity errors.

patches. Itis interesting to see that despite the fact tiegbatches cropped from both the
deep and shallow images are bluish with no visible pinkish the proposed approach
is able to retrieve enough color information upon combirting sensor responses from
all depths and without assuming any prior information. Mwex, even though the chro-
maticity errors are small, there is still some discrepamcthie perceived colors of the
patches. This discrepancy arises from the difference atwiee model and the actual
spectra, which contain essential and more accurate infomghan chromaticities.

6 Concluding Remarks

We introduced a new mathematical approach that solves facgureflectance spectra
using images from an uncalibrated, consumer-level, digakor camera in the absence
of a detailed model of absorption and scattering effectsafraderwater medium. There-
fore, the approach provides the flexibility of being able pe@te in a medium other than
in open air at close distances. By estimating reflectancetispavhich are physical rep-
resentations of a surface color, the approach providesekibility of fusing information
from multiple surfaces of one image or from multiple images.
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