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Abstract

This paper introduces a novel mathematical approach to surface spectral
reflectance estimation in unknown underwater environmentsusing uncali-
brated color cameras. The approach derives surface spectral estimates with-
out explicitly modeling the underwater medium characteristics such as light
scattering and absorption. The latter two phenomena are dependent upon
two parameters, which are the distance of the object from thecamera and
the depth of the object in water. The proposed approach does not require
these parameters to be specified in advance. Spectral modelsare useful for
underwater applications, where subtle differences in color need to be distin-
guished. Such models are also useful for fusing informationfrom multiple
images. We show that the proposed approach yields promisingresults.

1 Introduction

Enhancing images or video footage of underwater scenes is crucial to many applications.
Underwater images have been used for mine detection and alsofor the inspection of un-
derwater communication cables [4]. Marine biology [7] and archaeology [9] frequently
employ vision techniques. Underwater images collected by recreational scuba divers help
them share their experience with others and keep treasured mementos. Furthermore, in
several cases, divers use the pictures for post-dive identification of the marine life they
encountered [1]. Finally, robust computer vision techniques are crucial in the perfor-
mance of autonomous underwater robotic vehicles [12]. Color is an essential cue in many
computer vision algorithms, and color correction in the above scenarios is a useful tool
to improve the quality of underwater images. The color can berepresented either in 3D
vector form such as RGB, CMY, YIQ, etc. or in spectral form. The latter constitutes the
surface reflectance spectrum, that is the amount of light reflected off an object’s surface
at each wavelength, and is a physical property of the surface.

Underwater color imaging and analysis is increasing in popularity, however, the prob-
lem of estimating surface reflectance spectra in such a context has been barely addressed.
Even though challenging to obtain, spectral model representations are useful when there
is a need for an accurate representation of a color. For example, when inspecting metal
underwater, the difference between the colors of the defective and good parts may be suf-
ficiently small to require the extra information contained in the spectral models. Spectral
data has also been used to discriminate between different corals [5]. Currently, methods
relying on spectral data to distinguish between different plants, algae, or any material un-
derwater usually employ expensive equipment to obtain suchdata. Therefore, introducing



a technique which can estimate these spectra relyingonly on a cheap, consumer digital
camera is of great convenience.

In addition to providing an accurate representation of a surface color, spectral mod-
els allow for simple fusion of information obtained from different images. In this paper,
images of a multi-patch color target at different distancesfrom the camera and at differ-
ent depths are used. We demonstrate the usefulness of spectral fusion by showing that
the approach provides better spectral estimates when gathering sensor responses from
multiple images rather than a single image for the same surface patch. Moreover, the pro-
posed approach provides an ideal framework for fusing information as it does not require
knowledge of the different parameters such as the target’s depth or its distance from the
camera.

The major contribution of this paper is to introduce a mathematical approach to es-
timate reflectance spectra of surfaces in underwater scenesgiven only responses from
uncalibrated camera sensors. The paper is structured as follows. Underwater color image
formation is explained and derived in Section 2, and the proposed approach is detailed
in Section 3. Even though the paper is theoretical in nature,the approach proposed is
applied on real underwater images. The measures used to evaluate the proposed approach
in estimating surface reflectance spectra are presented in Section 4. Results show that
spectral estimates improve upon fusion of information fromdifferent images in Section 5.

2 Underwater Color Image Formation

Most vision algorithms are devised under the assumptions that the camera is placed in
open air at a close distance from the scene. However, devising vision algorithms that can
operate in other scenarios such as water or foggy air is more challenging. In these envi-
ronments, the light reaching the camera undergoes a wavelength-dependent attenuation.
For example, images taken in open air at a far distance may appear yellow-reddish at sun-
set [14], while underwater images appear to be mostly of green-blue hue [13]. In these
contexts, surface spectral estimation is important as the spectrum is a physical property of
the surface. It therefore represents the surface color witha multi-dimensional vector that
is characteristic of the surface itself and independent of the surrounding environment.

In a typical underwater image acquisition scenario, the light emitted from the sun hits
the water surface, where some of this light is reflected off and some of it is refracted into
the water. At the camera sensor, the light arrives via 3 different paths as shown in Fig. 1.

Let us define the color signal as the wavelength-dependent light falling on the camera
sensor. A color signal in vacuum is given by:

Φ(λ ) = S(λ )E(λ ), (1)

whereS(λ ) is the surface reflectance spectrum, that is, the proportionof light reflected off
a surface at each wavelength;E(λ ) is the illuminant spectrum;λ is the wavelength. Un-
derwater, this color signal is a linear superposition of 3 color signals each corresponding
to a different path for the light [6].

The first component of the color signal comes from light reflected off the object sur-
face, and is attenuated as compared to the color signal whichwould be observed in open
air at a close distance (Eq. 1):

Φuw1(λ ) = Φ(λ )e−η(λ )z, (2)
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Figure 1: The components of light arriving at a camera sensorunderwater. The green el-
lipse represents a particle underwater off which light is reflected, giving rise to a backscat-
ter component. The variables are defined in the text of Section 2.

whereη(λ ) is the attenuation coefficient given byη(λ ) = α(λ ) + β (λ ); α(λ ) is the
absorption coefficient of the water;β (λ ) is the scattering coefficient, which represents
how much light can be scattered by an infinitesimal volume of water; z is the distance
between the object being viewed and the camera. For more detail please refer to [6].

The second component,Φuw2(λ ), arises from forward scattering of the light along the
line of sight contributing to a blurring of the image. In our experiments, water clarity
and camera-target distance were such that the blur was minimal. In addition, image blur
would not affect the color of the image. ThereforeΦuw2(λ ) is neglected.

The third component,Φuw3(λ ), arises from backscattered light. In simple terms, this
is light that gets scattered backwards along the line of sight by particles suspended in the
water between the object being viewed and the camera. The larger the distance between
the object and the camera, the more light is backscattered.

Hence the color signal underwater that contributes to the image can be expressed as:

Φuw(λ ) = Φuw1(λ )+Φuw2(λ )+Φuw3(λ ) ≈ Φuw1(λ )+Φuw3(λ ). (3)

Projecting the color signals in this equation onto the sensor spectral sensitivitiesRk(λ ) of
a camera yields an equation in terms of the corresponding sensor responses:

Puwk = Puw1k +Puw3k , k = 1,2, ..., p, (4)

wherep is the number of sensor classes, each denoted byk. The sensor responses recorded
from underwater images arePuwk . Puw1k is the component of the responses corresponding
to the attenuated light, whilePuw3k is the component corresponding to the backscattered
light. Knowing that a black surface should havePuwk = (0,0,0) where p=3, any offset
from such a response is assumed to be due to backscattered light. Therefore, for a certain
distance from the camera, subtracting the response of a black surface (Puw3k ) from the
measured response for a particular surface (Puwk ) yieldsPuw1k, which given Eqs. 1 and 2,
can be expressed as:

Puw1k =
M

∑
λ=1

Rk(λ )Φ(λ )e−η(λ )z =
M

∑
λ=1

Rk(λ )S(λ )E(λ )e−η(λ )z, (5)



whereM is the dimension of the spectra.

3 Underwater Spectral Reflectance Estimation

The goal of this work is to estimate the surface reflectance spectrum of an object under-
water givenonly camera sensor responses, denoted byPuw1k as given in Eq. 5. The un-
knowns are the camera sensor spectral sensitivitiesRk(λ ), the illuminant spectrumE(λ ),
and the attenuation functione−η(λ )z. Grouping the unknowns of Eq. 5 into one function
Ck(λ ) = Rk(λ )E(λ )e−η(λ )z, the responses can be expressed as:

Puw1k =
M

∑
λ=1

S(λ )Ck(λ ). (6)

We refer toCk(λ ) as the product spectrum. In the following sections, we discuss how we
model each of the components of Eq. 6 before discussing the proposed algorithm.

3.1 The Surface Reflectance Spectra

We represent surface reflectance spectra by maximum entropymodels. Such models were
successfully used to estimate Munsell patch reflectance spectra given only photoreceptor
responses in [2]. The use of maximum entropy models was inspired by Jaynes, who stated
that a physical quantity frequently observed in practice will tend to a value that can be
produced in the largest number of ways [8]. In the case of physical processes representing
spectra, many surfaces observed in our everyday-life surroundings have spectra of high
entropy, as opposed to monochromatic surfaces which have low entropy spectra [2].

The surface spectra need to be represented by probability density functions (pdf) in
order to compute their entropy. The spectrum of a collectionof photons can be thought
of as a histogram of photons over wavelength. An incident photon can be either absorbed
by or reflected off the surface it hits. Denoting the event that a photon is absorbed by the
surface byA and the event that a photon is reflected off the surface byR, we can write:
P(A)+P(R) = 1. NowΦ(λ ) as given in Eq. 1 can be represented by the pdfp(λ |R), the
probability of the wavelength given that eventR occurred, which means that a photon has
been reflected off the surface. Given Bayes’ rule:

p(λ |R) =
p(R|λ ) p(λ )

p(R)
, (7)

wherep(λ ) ≡ p(λ |photon0) denotes the pdf of a wavelength given an incident photon,
photon0, and represents the illuminant. Since it is assumed that there is always an incident
photon, p(λ |photon0) is written asp(λ ). Given Eqs. 1 and 7, the surface reflectance
spectrum can be written as such:

S(λ ) = p(R|λ )/p(R). (8)

This means thatS(λ ) denotes the likelihood function of a particular wavelengthgiven the
eventR. This function is normalized by the fraction of photons reflected off the surface
over all wavelengths. The pdf representation ofS(λ ), pS(λ ), is obtained by the following:

pS(λ ) = S(λ )/
M

∑
λ=1

S(λ ), λ = 1, ...,M. (9)



The entropyH of pS(λ ) is defined as:

H = −
M

∑
λ=1

pS(λ ) logpS(λ ). (10)

3.2 The Product Spectra

A typical consumer digital camera has 3 sensor classes, red,green, and blue (p = 3 in
Eq. 4). Therefore, the corresponding product spectra of thesensor spectral sensitivities,
the illuminant and the water attenuation spectra over wavelength are:

Ck(λ ) = Rk(λ )E(λ )e−η(λ )z, k = 1,2,3. (11)

For these product spectra, a model that does not require knowledge of specific parameters
such as those of the water absorption is sought. We resort to alinear model using Fourier
bases. Unlike other basis functions, Fourier bases do not require a database of spectra to
be specified in advance in order to perform principal components analysis on. Each of the
product spectra is modeled as such:

Ck(λ ) =
J

∑
j=1

b jkB j(λ ), (12)

whereJ is the number of basis functions used for each of the product spectra models,
B j(λ ) denotes the basis functions used, andb jk denotes the weight for thejth basis func-
tion for thekth sensor sensitivity curve. We choose to use 9 Fourier bases (J = 9) as testing
the algorithm on more than 9 Fourier bases did not provide a significant improvement in
modeling the surface spectra. Moreover, Finalysonet al. [3] found that 9-15 Fourier
bases are sufficient to model the camera sensor spectral sensitivities, which have the same
shapes as the product spectra.

3.3 The Algorithm

The input to the algorithm is a set of sensor responses from anunderwater image, a vector
of dimensionM for the surface spectrum, initialized to 1/M, and 3 initial weight vec-
tors, each initialized to 1/J (J = 9), corresponding to each of the product spectra. A cost
function comprising of 2 main components is formed. The firstterm represents the en-
tropy of the pdf representation of the surface spectrum and the second term represents the
closeness of the computed sensor responses to the measured sensor responses, such that:

[ ˆS(λ ), b̂1, b̂2, b̂3] = argmin
S(λ ),b1,b2,b3

M

∑
λ=1

pS(λ ) logpS(λ )+

[

Puw11 −S(λ )
J

∑
j=1

b j1B j(λ )

]2

+

[

Puw12 −S(λ )
J

∑
j=1

b j2B j(λ )

]2

+

[

Puw13 −S(λ )
J

∑
j=1

b j3B j(λ )

]2

,(13)

whereb1 = [b11...bJ1], b2 = [b12...bJ2], andb3 = [b13...bJ3]. To minimize the cost func-
tion, fmincon for nonlinear constrained optimization from the Matlab Optimization Tool-
box is used. The constraints are those of positivity on the surface spectrum and each of



the product spectra. The wavelength range considered for the spectra is 400-700 nm dis-
cretized into 10 nm intervals. Therefore the dimensionality of each spectrum isM = 31.

In the above derivations, it is assumed that there is only onesurface patch in the
scene. Upon adding a second surface patch, the new cost function would comprise of
the terms in Eq. 13 in addition to similar ones pertaining toS2(λ ), the sought spectrum
for the second surface patch. We should note that the proposed approach seeks one of
the multiple combinations of maximum entropy surface and product spectral models that
can give rise to the same sensor responses. Using sensor responses from multiple surface
patches or multiple images of the same patch constrains the possible combinations, thus
resulting in more accurate surface spectral estimates. Thefusion is facilitated by the use
of spectral models, which are invariant representations ofsurface colors.

4 Underwater Spectral Reflectance Estimation
Evaluation

The results of the proposed approach are validated by measuring the root mean square er-
ror and by displaying color patches constructed from the estimated spectra. These patches
give insight as to what color an underwater robot would perceive once it has a system in
place to estimate spectra.

4.1 Root Mean Square Error

The root mean square error (RMSE) between the actual spectrum SA(λ ) of a surface and
the spectrum obtained from the proposed algorithmSM(λ ), referred to as a model spec-
trum, is computed. The Munsell patch spectra (matte) are those measured by Parkkinen

et al. [11]. The RMSE for a surface spectrum isERMSE =
√

1
M ∑M

λ=1 (SA(λ )−SM(λ ))2.

4.2 Qualitative Evaluation

The CIE XY Z and the CIExy chromaticity coordinates of each of the actual and the
model spectra are also computed. We assume white light as we want to measure the
error in chromaticity values for the surface spectra without having it affected by illumi-
nation. The color matching functions used are those of the CIE 1931 standard observer
(2◦) as introduced by Judd (1951) and modified by Vos (1978). Denoting the coordi-
nates corresponding to each of the actual and model spectra by xAyA andxMyM respec-
tively, the CIE chromaticity error is the Euclidean distance between these coordinates:
Exy =

√

(xA − xM)2 +(yA − yM)2.
In order to visualize the patches constructed from the modelspectra, we transform the

CIE XYZ coordinates as computed above to coordinates in the RGB (Red, Green, Blue)
color space using the CIECAM02 model [10]. Given these RGB coordinates, we display
the corresponding patches, which are referred to as reconstructed patches. The patches
obtained from both the model and the actual spectra are displayed in order to account for
any discrepancies that may have arisen upon conversion to RGB or upon display.



5 Experimental Results

The images of a color patch target were taken by 2 scuba diversin the Caribbean Sea
in Barbados. The target has a set of 41 Munsell patches glued on black cardboard. We
choose to use Munsell surface patches in our experiments as these have high entropy
spectra [2] and it was shown in [15] that maximum entropy modeling provides reasonable
estimates of these spectra in the case of real images. All theimages were taken with a
Canon PowerShot A85 camera. The images were taken at 3 depths: about 7.9 m, 5.2 m,
and 4.9 m, and at 2 distances from the camera: about 1.5 m (close) and 3.5 m (far). Fig. 2
shows the images of the target for the 7.9 m and 4.9 m depth cases at the far and close
distances.

(a) (b) (c) (d)

Figure 2: The target at a (a) depth of 7.9 m and distance of 3.5 m, (b) depth of 7.9 m
and distance of 1.5 m, (c) depth of 4.9 m and distance of 3.5 m, (d) depth of 4.9 m and
distance of 1.5 m; where distance denotes the distance from the camera.

Upon segmenting the images with a semi-automated algorithm, 10x20 pixel rectan-
gles in the middle of each patch were obtained. The sensor responses over these pixels
were averaged to obtain one RGB response per patch. The spectral estimate for each of
the 41 surface patches was obtained by minimizing the cost function given in Eq. 13 us-
ing 0 to 5 additional patches each time. The latter patches were chosen at random from
the remaining 40 Munsell patches on the target. Therefore a total of 41 cases, which we
refer to as scenes, were constructed for each number of surface patches per scene (1 to 6).
The average of the RMSE’s, which are computed as explained inSection 4.1, is taken for
the repeated surface patch over all 6 scenes. Two cases are investigated: (1) the effect of
changing the distance of the target from the camera at each of2 depths in Section 5.1 and
(2) the effect of changing the depth of the target for the close and far distances from the
camera in Section 5.2.

5.1 Variation of Distance from the Camera

For each of the 7.9 m and 4.9 m depth cases, we plot the average of the RMSE’s versus
the number of patches in the scene in Fig. 3 when the target is (1) far from, (2) close to
the camera, and (3) when the sensor responses from both casesare combined.

Fig. 3 shows that the spectral estimates improve upon combining the sensor responses
from images at both distances. The improvement is more evident at 4.9 m than at 7.9 m.
In the case where images at both distances were used, the average RMSE drops from 0.37
to 0.31 for the 7.9 m deep images and from 0.35 to 0.28 for the 4.9 m deep images as the
number of surfaces in a scene increases from 1 to 6. This showsthat the performance of
the approach is better at shallower levels where the daylight illumination is less attenu-
ated, due to scattering and absorption, than at deeper levels. Also the spectral estimates
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(a) 7.9 m deep images
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(b) 4.9 m deep images

Figure 3: The average of the RMSE’s over all the scenes as a function of the number of
patches in a scene when the target is far from the camera, close to the camera, and when
the responses from the far and close images are combined at a depth of (a) 7.9m, (b) 4.9m.

generally improve upon the introduction of more surface patches into the scene, hence the
usefulness of spectral models in fusing information.

5.2 Variation of Depth

For each of the far and close distance cases, we plot the average of the RMSE’s versus the
number of patches in the scene in Fig. 4 when the target is (1) 7.9 m deep, (2) 4.9 m deep,
and (3) when the sensor responses from images at all depths are combined.
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Figure 4: The average of the RMSE’s over all the scenes as a function of the number of
patches in a scene when the target is at a depth of 7.9m, 4.9m and when the responses
from the images at all depths are combined at the (a) far, (b) close distance to the camera.

These plots show that the spectral estimates improve upon the introduction of more
surface patches into the scene as in Section 5.1. Moreover, fusing spectral estimates across
different depths considerably improves upon the average RMSE. This average drops from
0.37 to 0.29 as the number of surfaces in a scene increases from 1 to 6 in each of the far
and close distance cases respectively.

For each of the different depths cases, we plot the model spectra obtained for Munsell
patch 5RP 6/6 for the deep images in Fig. 5. We also display thecorresponding color
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Figure 5: Munsell Patch 5RP6/6 for the far distance case. (a)The actual and model spectra
for the 7.9m, 4.9m, and all depths cases, (b) in left-right, top-bottom order: the patches
cropped from the target images taken at 7.9m and 4.9m depths,the reconstructed patches
from the actual spectrum with its xy chromaticity coordinates, and the model spectra in
the 7.9m, 4.9m, and all depths cases with the corresponding CIE chromaticity errors.

patches. It is interesting to see that despite the fact that the patches cropped from both the
deep and shallow images are bluish with no visible pinkish tint, the proposed approach
is able to retrieve enough color information upon combiningthe sensor responses from
all depths and without assuming any prior information. Moreover, even though the chro-
maticity errors are small, there is still some discrepancy in the perceived colors of the
patches. This discrepancy arises from the difference between the model and the actual
spectra, which contain essential and more accurate information than chromaticities.

6 Concluding Remarks

We introduced a new mathematical approach that solves for surface reflectance spectra
using images from an uncalibrated, consumer-level, digital color camera in the absence
of a detailed model of absorption and scattering effects of an underwater medium. There-
fore, the approach provides the flexibility of being able to operate in a medium other than
in open air at close distances. By estimating reflectance spectra, which are physical rep-
resentations of a surface color, the approach provides the flexibility of fusing information
from multiple surfaces of one image or from multiple images.
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