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Abstract

Many real-time tasks, such as human-computer interac-

tion, require fast and efficient facial gender classification.

Although deep CNN nets have been very effective for a mul-

titude of classification tasks, their high space and time de-

mands make them impractical for personal computers and

mobile devices without a powerful GPU. In this paper, we

develop a 16-layer, yet lightweight, neural network which

boosts efficiency while maintaining high accuracy. Our net

is pruned from the VGG-16 model [35] starting from the

last convolutional (conv) layer where we find neuron acti-

vations are highly uncorrelated given the gender. Through

Fisher’s Linear Discriminant Analysis (LDA) [8], we show

that this high decorrelation makes it safe to discard directly

last conv layer neurons with high within-class variance and

low between-class variance. Combined with either Support

Vector Machines (SVM) or Bayesian classification, the re-

duced CNNs are capable of achieving comparable (or even

higher) accuracies on the LFW and CelebA datasets than

the original net with fully connected layers. On LFW, only

four Conv5 3 neurons are able to maintain a comparably

high recognition accuracy, which results in a reduction of

total network size by a factor of 70X with a 11 fold speedup.

Comparisons with a state-of-the-art pruning method [12]

(as well as two smaller nets [20, 24]) in terms of accu-

racy loss and convolutional layers pruning rate are also

provided.

1. Introduction

In recent years, deep learning has revolutionized many

computer vision areas due to high accuracy for a wide vari-

ety of classification tasks. Although artificial neural net-

works have been used for visual recognition tasks since

the 1980s [22], recent algorithms have been successful at

training large networks efficiently [15, 6, 28, 16]. Given

the huge amount of data that has become available, recent

advances in computing have led to the emergence of deep

neural nets. Even though deep learning techniques become

the state-of-the-art solutions for various computer vision

tasks, the requirement of a powerful GPU has made their

wide deployment on general purpose PCs and mobile de-

vices impractical. Moreover, from the ‘very’ deep VGG-

Net [35] and GoogLeNet [36] to the ‘extremely’ deep Mi-

crosoft ResNet [14], the competition for higher accuracy

with ever larger depths is strong, rendering real-time per-

formance on mobile devices even more out of reach.

In this paper, we explore ways to greatly prune very

deep networks while maintaining or even improving on

their classification accuracy. Our motivation stems from the

current popular practice where, rather than train a deep net

from scratch using all the available data, algorithm devel-

opers usually adopt a general network model and fine-tune

it using a smaller dataset for the particular task. There-

fore, there is a chance that some structures from the pre-

trained model are not fully used for the current purpose. Our

premise is that less useful structures (together with possible

redundancies) could be pruned away in order to increase

computational efficiency. Deep convolutional networks are

generally considered to be composed of two components:

the convolutional (conv) layers (alternated with activation

and pooling layers) as feature extractors and fully con-

nected (FC) layers as final classifiers 1. Deep nets outper-

form many traditional computer vision algorithms mainly

because, given enough training data, the first component

does well in learning the compositionality of the real world

(by constructing very complicated features based on primi-

tive ones). More often than not, such features learned for a

particular task are superior to handcrafted features designed

with limited domain knowledge. The second component,

FC layers, is essentially similar to logistic regression clas-

sifiers, which model the log-odds with a linear function. In

this paper, we increase efficiency for each of the two com-

ponents. We first investigate the firing patterns of last conv

layer neurons through Fisher’s Linear Discriminant Anal-

ysis (LDA) [8] and discover that those neuron activations

are highly decorrelated for each class, which permits dis-

1In this paper, FC layer is used in a general sense and includes all the

layers after Conv5 3.
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carding a large number of less informative neuron dimen-

sions without loss of information. As a result, the network

complexity can be significantly reduced, which not only

makes feature extraction more efficient, but also simplifies

classification. In the second component, we analyze pos-

sible alternatives to the expensive FC layers for the final

classification. Instead of the FC layers, which model the

log-odds based on linear functions, we explore multiple al-

ternatives such as the Bayesian classifier and SVMs (with

linear and RBF kernels). Although our approach is gen-

erally applicable to a wide range of biometrics recognition

problems, we use facial gender classification as an exam-

ple. Our experimental results show that when using the re-

duced CNN features previously extracted, both a Bayesian

and SVM classifiers are able to achieve comparably high

performance. They can even outperform using the original

net when the dataset is particularly challenging (e.g. par-

tial occlusions, large view changes, complex backgrounds,

blurs exist). Also, the combinations of LDA-Pruned CNN

nets and the Bayesian/SVM classifiers take far less space

(only a few megabytes) than the original net (over 500 MB)

while having a 11 times faster recognition speed. In addi-

tion, we have analyzed the relationship of accuracy change

and parameters pruned away, and have compared our ap-

proach to a state of the art pruning method [12] as well as

two smaller nets (i.e. AlexNet [20] and [24]). According

to the results, our Fisher LDA based pruning enjoys a lower

accuracy loss than [12], especially when the conv layers’

pruning rate is high (say above 85%). Furthermore, un-

like [12], our pruning approach can directly lead to space

and time savings. The comparison with [20, 24] justifies

the superiority of pruning a deeper net over training one of

smaller depth. The remainder of the paper is structured as

follows: the relevant literature is reviewed in Section 2. In

Section 3, our light weight deep networks along with al-

ternative classifiers are introduced. Section 4 describes our

experimental validation and compares our modified nets to

their originals as well as other pruned structures in terms

of accuracy and efficiency. In Section 5, our contribution

and possible future directions are discussed. Section 6 con-

cludes the paper.

2. Related Work

2.1. Facial Gender Classification

Gender classification from face images has long been a

hot topic in biometrics research. Traditional approaches are

based on hand-engineered features that can be grouped to be

either global [40, 5] or local [1, 26, 21]. The main problem

with handcrafted features based approaches is that they re-

quire domain knowledge and may not generalize well. In

this subsection, we focus on approaches that utilize fea-

tures learned from neural networks. Artificial feed-forward

neural networks, for use in classification tasks, have been

around for decades. In the 1990s, they began to be em-

ployed for gender classification [9, 31, 10]. However, the

shallow structure of early neural networks has constrained

their performance and applicability. It was not until late

2012 when Krizhevsky et al. [20] won the ImageNet Recog-

nition Challenge with a ConvNet that neural networks re-

gained attention. In the following years, various deep nets

were successfully applied to a variety of visual recogni-

tion tasks including facial gender classification. Verma et

al. [42] showed that the CNN filters correspond to similar

features that neuroscientists identified as cues used by hu-

man beings to recognize gender. Inspired by the dropout

technique in training deep nets, Eidinger et al. [7] trained a

SVM with random dropout of some features and achieved

promising results on their relatively small Adience dataset,

on which Levi and Hassner [24] later trained and tested a

not-very-deep CNN. Instead of training on entire images,

Mansanet et al. [27] trained relatively shallow nets using

local patches and reported better accuracies than whole im-

age based nets of similar depths. According to [35], larger

depths are desired in order to gain higher accuracy. How-

ever, in general, the larger the depth, the more parameters

are needed to train, and the less efficient the net will be.

Therefore, it is desirable to prune deep networks to an ex-

tent that is suitable for the task and data at hand.

2.2. Deep Neural Networks Pruning

Earlier work, targeting shallow nets, include magnitude-

based biased weight decay [32], Hessian based Optimal

Brain Damage [23] and Optimal Brain Surgeon [13]. More

recently, aiming at deep networks, Han et al. [12] devel-

oped a strategy to learn which connections are more im-

portant based on backpropagation. In [11], they added two

more stages of weight quantization and Huffman encoding

in order to further reduce the network complexity. Their

pruning is based on unit length connection, thus it may not

well reflect larger scale utilities. Additionally, like other

weight value based pruning methods, it assumes that large

weight values represent high importance, which is not al-

ways the case (more explanations in Section 3.3). In terms

of implementation, masks are required to disregard pruned

weights during network operation, which inevitably adds

to the computational and storage burden. To better utilize

pruning’s computational advantages, Anwar et al. [2] lo-

cate pruning candidates using particle filters in a structured

way. With each pruning candidate weighted separately, the

across-layer relationship is largely ignored. Last but not

least, particle filters are generally expensive considering the

huge number of connections in a deep net.

Unlike above weights based approaches, we treat net-

work pruning as a dimensionality reduction problem in the

feature space learned by deep nets. The goal is not to
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remove dimensions of small values but rather to discard

along the correct directions so that no much information

will be lost. Different dimensionality reduction techniques

have different measures of information. Based on total data

variance, Principal Component Analysis (PCA) has been

widely used for general dimensionality reduction. How-

ever, it is not optimal in our supervised case because, with-

out considering the labels, it may preserve unwanted vari-

ances while giving up discriminative information in low-

variance dimensions. Autoencoders [15] is also a great un-

supervised approach to dimension reduction. Compared to

PCA, it is able to effectively deal with complex non-linear

cases. However, when looking for a subspace to project to,

its aim is to preserve as much reconstruction power as pos-

sible, which is not necessarily aligned with the real utility

either. In this paper, we argue that when pruning, the infor-

mation to be preserved should be task specific. Inspirations

can be drawn from a finding in neuroscience that although

there are numerous neuron connections in the brain, each

neuron typically receives inputs from only a small set of

other neurons depending on the particular purpose [41].

2.3. Alternatives to Fully Connected Layers for Fi­
nal Classification

The FC layer is basically a expensive final classifier

(similar to logistic regression with a computationally in-

tensive pre-transformation process) on top of the extracted

CNN features. As such, this leads to the possibility that

by replacing this layer with a different classifier, a reduc-

tion in computational complexity becomes possible. Many

machine learning methods, including SVM have met with

some success for classification tasks, including facial gen-

der recognition [29]. An advantage of SVM over lo-

gistic regression is that different kernels enable SVM to

deal with linearly inseparable data. As a result, a wide

variety of methods have combined neural networks and

SVMs [38, 34, 46]. However, the reasoning behind the suc-

cess of such combinations is not usually provided. In [34],

Sharif et al. combined CNN features and SVM for multi-

ple visual recognition tasks and obtained state-of-the-art re-

sults. By replacing the softmax layer with a linear SVM and

minimizing a margin-based loss, Tang [38] showed a small

but consistent improvement on a variety of deep learning

benchmark datasets such as MNIST and CIFAR-10. Specif-

ically for face attributes recognition, Zhong et al. [46] found

that linear SVM, together with CNN features, is able to

achieve higher mean prediction accuracy than FC layers.

Another alternative is Bayesian classifier, which has a nice

probabilistic interpretation similar to logistic regression but

does not necessarily model the log-odds with a linear func-

tion. Due to its probabilistic nature, it may be optimal for

challenging datasets with much noise and uncertainty. As

demonstrated in [39], the Bayesian classifier can outper-

form SVM in gender recognition when there are a wide va-

riety of occlusions and view changes present in the images.

3. Facial Gender Classification Using a Deep

but Lightweight Network

3.1. Network Structure

In this paper, our convolutional neural network is based

on the very deep VGG-16 architecture [35] and is pre-

trained using the ImageNet data in a similar way to [33].

The VGG-16 architecture is used as an example of a very

deep network partly because its descendant, VGG-Face

net [30], is experimentally testified to successfully learn dis-

criminative facial features for face verification. In our work,

we fully train the network in the traditional manner before

removing the FC layers, reducing the CNN feature dimen-

sions, and plugging in alternative classifiers on top.

3.2. Dimension Reduction in the Last Conv Layer

The last conv layer is chosen as the starting point for

pruning because its neurons are experimentally testified to

fire more uncorrelatedly within each class than other conv

layers (which, as will be seen, is critical for our LDA-based

approach). Moreover, unlike FC layers, last conv layer pre-

serves the location information and does not restrict input

images to a pre-defined size or aspect ratio. In fact, many

works such as [3, 46] have demonstrated last conv layer’s

superiority over FC layers in terms of accuracy. Layer

Conv5 3 is the last conv layer of the VGG-16 model, which

has 512 neurons. We define the maximum activation value

of a neuron as its firing score. Then for each image a 512-D

firing vector can be obtained in the last conv layer, which

is called a firing instance or observation. By stacking all

these observations extracted from a set of images, the fir-

ing data matrix X for that set is obtained. In our experi-

ments, X is normalized as a pre-processing step. The bene-

fits of abandoning less useful dimensions in X are twofold:

1) it compresses the data and thus has a potential for net-

work pruning. 2) it can make the pattern hidden in the high

dimensional data easier to find, which simplifies classifi-

cation and possibly boost accuracy. As mentioned in Sec-

tion 2.2, unsupervised dimensionality reduction techniques

can be problematic for our case. Inspired by Fisher’s Linear

Discriminant Analysis [8] and its applications on face im-

ages [5, 18, 4], we adopt the intra-class correlation (ICC) to

better measure information utility for gender recognition:

ICC =
s2(b)

s2(b) + s2(w)
(1)

where s2(w) is the variance within each gender, s2(b) is the

variance between the two genders, and the sum of the two

is the overall variance across all samples from both gen-

ders. When reducing dimensions, we are trying to maxi-
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mize ICC, which has an equal effect of maximizing the ra-

tio of between-gender variance to within-gender variance.

The direct multivariate generalization of it is:

Wopt = argmax
W

| WTSbW |

| WTSwW |
(2)

where

Sw =
∑

i=0:1

∑

xk∈Xi

(xk − µi)(xk − µi)
T (3)

Sb =
∑

i=0:1

Ni(µi − µ)(µi − µ)T (4)

and W is the orthogonal transformation matrix projecting

the data X from its original space to a new space with the

columns in W being the new space’s coordinate axes. xk is

a firing instance of the last conv layer, µ is the mean firing

vector, and i indicates the gender (0 for female, 1 for male).

Through analyzing Sw for both the LFW dataset and the

CelebFaces Attributes Dataset (CelebA) [25] in our experi-

ments, we find Sw tends to be a diagonal matrix (most large

values are along the diagonal and most values off the diag-

onal have a zero or near zero value), which is to say, the

firing of different neurons in the last conv layer is highly

uncorrelated given the gender. Figure 1 shows the two Sw

matrices for LFW and CelebA training sets. These results

(a) Sw Matrix of LFW (b) Sw Matrix of CelebA

Figure 1: Sw matrices of (a) LFW and (b) CelebA. The one-

pixel wide diagonals in both 512*512 matrices are so slim

that they are best viewed when zoomed in (as demonstrated

in the blue squares).

are intuitive given the fact that higher layers capture vari-

ous high-level abstractions of the data (we have also exam-

ined other conv layers, the trend is that from bottom to top

the neuron activations become progressively more decor-

related). Figure 2 shows some example Conv5 3 neuron

patterns in the network trained on CelebA. Each pattern is

synthesized via a regularized optimization algorithm [43]

and can be interpreted as the pattern the corresponding neu-

ron fires most on in the input image. Since the columns in

Figure 2: Sample Conv5 3 Neurons (trained On CelebA).

From top left to bottom right, they fire for goatee, glasses,

ear, hairline, curly hair, and noses respectively.

W are the (generalized) eigenvectors of Sw (and Sb), W

columns are the standard basis vectors and the elements on

the diagonal of Sw (and Sb) are corresponding (generalized)

eigenvalues. To maximize the ICC we simply need to se-

lect the neuron dimensions of low within-class variance and

high between-class variance. For instance, although both

the goatee neuron and the glasses neuron in Figure 2 have

high variances (that PCA prefers), the goatee dimension has

a higher chance to be selected by LDA due to its higher ICC.

This corresponds to intuition, as most females do not have

goatee while many males do. The direct abandonment of

certain Conv5 3 neurons greatly facilitates the pruning at

all other layers.

3.3. Pruning of the Deep Network

Last conv layer dimensionality reduction along neuron

directions makes pruning on the neuron (filter) level possi-

ble. Instead of ‘masking out’ smaller weights [12], pruning

on the neuron level directly leads to space and time savings.

With the removal of a filter, the dependencies of this filter

on others in previous layers are also eliminated. When all

the dependencies on a filter from higher layers are removed,

this filter can be discarded. Take Figure 3 for example. The

remaining filter outputs in a layer are colored in cyan. Cor-

responding useful depths of a next layer filter are colored

in green (e.g. each useful C3 filter is represented by the

small green block in column C2). The remaining cyan fil-

ter outputs/filters (overlapped with the green useful depths

of a next layer filter) depend only on those cyan filter out-

puts/filters in the previous layer. Non-colored filter parts

and filter outputs (filters) are thus discarded. When 106 C2
filters (each visualized by the small block in column C1)

are thrown away, not only the C2 convolution computations

with C1 output data are reduced by 106/128, but also C3 fil-

ters’ depth is reduced by the same ratio (as shown in green

13



Figure 3: Demonstration of pruning on filter level (cyan in-

dicates remaining data, green represents the surviving part

of a remaining next layer filter).

in Column C2). The same applies when other layer filters

are discarded. In total, 151,938 conv layer parameters are

pruned away. In our work, the dependency of a filter on

others in previous layers is calculated using deconvolution

(deconv) [45, 44], a technique mapping an max activation

through lower layers all the way to the pixel level. As a mir-

rored version of the feed forward process, the deconv proce-

dure consists of series of unpooling (utilizing stored max lo-

cation switches), non-linear rectification, and reversed con-

volution (using a transpose of the filter). We choose deconv

over backprop for the reason that we only care about the

maximum activation value of each neuron. Additionally,

deconv is more robust to noise activations and vanishing

gradients. It is also worth noting that unlike traditional ap-

proaches, the dependency here is learned by pooling over

training samples. Its improvement over weight-based prun-

ing is due to the fact that neural networks are non-convex

and trained weights are not guaranteed to be globally op-

timal. Therefore, a large weight does not always indicate

high importance. For example, large weights connections

that have never been activated on a task specific dataset are

of little use for that task. This is especially true when the

network is pre-trained for a different task and we do not

have enough data when fine-tuning. When pruning, the neu-

rons with a deconv dependency smaller than a threshold is

deleted. In our experiments, such a threshold is not difficult

to set. Except for the first few conv layers, deconv depen-

dencies in most other layers tend to be sparse. When the

threshold is smaller than a certain value t0 (e.g. when about

75% conv parameters are pruned away in the four Conv5 3

neurons case on LFW), an accuracy plateau is reached, be-

yond which point the accuracy does not change too much

with the decrease of the threshold. t0 is then selected as

the final threshold. This guarantees no accuracy loss dur-

ing the pruning process. That said, if further pruning is re-

quired, the threshold on (the highest) deconv values can be

increased at the risk of sacrificing accuracy. To recover high

accuracy, retraining is needed after pruning. Otherwise, the

accuracy could be greatly sacrificed. To leverage the previ-

ously learned network structure (co-adapted structures and

primitive features in the first few layers), the pruned net-

works are retrained starting from the surviving parameters

without re-initializing.

3.4. Alternative Classifiers on Top of CNN Features

As alternatives to the expensive FC layers, SVM (with

linear and RBF kernels) and Bayesian quadratic discrimi-

nant analysis are explored in our experiments based on the

reduced CNN features. SVM is a deterministic, discrim-

inative classifier, which tries to fit a hyperplane between

two classes with as wide a margin as possible. It focuses

on samples near the margins but does not assign attention

to others. The main advantage of SVM lies in its various

kernels, which, when selected properly, empower SVM to

perform well even for linearly inseparable tasks. On the

other hand, the Bayesian classifier is a probabilistic, gener-

ative approach. Instead of just giving a binary choice, the

Bayesian classifier is able to generate a probability distribu-

tion over all (not necessarily two) classes. In cases where

many sources of noise and uncertainty exist and no sepa-

rating hyperplane can be easily found, the Bayesian classi-

fier may be a better choice than SVM. That said, non-naive

Bayesian quadratic discriminant analysis is vulnerable to

the curse of dimensionality.

4. Experiments and Results

4.1. Experimental Setup

Our programs are implemented using Caffe [19] on a

Nvidia Tesla K40 GPU and a quad-core Intel i7 CPU. We

modified the Caffe source code by adding modules such as

filter pruning and deconv dependency calculation.

Two datasets are used in this paper. The LFWA+ dataset

is a richly labeled version of the popular Labeled Faces in

the Wild (LFW) database [17], originally designed for face

verification tasks. It covers a large range of pose and back-

ground clutter variations. Some images even have multiple

faces. Another dataset used is the CelebFaces Attributes

Dataset (CelebA) [25], which is a large-scale dataset with

202,599 images of 10,177 identities, containing the same

attribute labels as in LFWA+. Despite its relatively large

size, most of its images are portrait photos against simple

backgrounds taken by professional photographers. For both

databases, the train/test splits suggested in [25] are adopted.

All the images are pre-resized to a dimension of 224*224.
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Method LFW CelebA

Original Net with FC 90.3% (512) 98.0% (512)

LDA-CNN+Bayesian 91.8% (105) 97.3% (94)

LDA-CNN+SVML 91.3% (43) 97.7% (105)

LDA-CNN+SVMR 92.4% (63) 97.5% (52)

Table 1: Highest recognition accuracy comparison of dif-

ferent approaches. SVML and SVMR represent SVM with

linear and RBF kernel respectively. The accuracies reported

here are the highest when a certain number (specified in the

parentheses) of neurons are utilized in the last conv layer.

(a) (b)

Figure 4: Accuracy Comparison of Alternative Classifiers

Using Pruned CNN features on (a) LFW and (b) CelebA

(Blue: Bayesian, Orange: RBF-SVM, Red: Linear SVM)

4.2. Recognition Accuracy

In this section, we demonstrate and discuss the recog-

nition results of alternative classifiers (Table 1) as well as

their changes with the number of preserved Conv5 3 neu-

rons (Figure 4). For comparison, the results of the original

deep net are also included in the first row of Table 1 and as

a green dashed line in Figure 4. It is worth mentioning that

besides varying the number of preserved Conv5 3 neurons,

not much parameter tweaking is done. Thus, accuracies re-

ported here are no way guaranteed to be the best. According

to Table 1, both the Bayesian classifier and the SVMs can

achieve their highest accuracies using a small subset of last

conv layer neurons on the two datasets. Particularly, the

Bayesian classifier and the SVM with RBF kernel (RBF-

SVM) outperformed the original net by a margin of almost

2% on LFW. In the LFW case, RBF-SVM beats the original

net when the preserved Conv5 3 number reaches four. With

more than four neurons, accuracies only improve slightly

(<3%) with occasional decreases. This is consistent with

our hypothesis that fine-tuned deep nets possibly have many

less useful and redundant structures, which may sometimes

hurt accuracy. On CelebA, the original FC CNN has compa-

rable (slightly higher, within 1%) accuracies over the other

LDA-CNN based classifications. In this case, most images

are not as challenging as those in LFW, thus linear or gen-

eralized linear models (e.g. logistical regression based) are

effectively able to separate the two classes. This can be seen

as the linear SVM performs better than both RBF-SVM and

the Bayesian classifier. Noticeably, the Bayesian classifier

achieves a higher accuracy than linear SVM on the chal-

lenging LFW dataset where there is more uncertainty and

noise. Also, on both datasets, the Bayesian classifier beats

both SVMs when there are fewer than 3 neurons and has

a more stable performance since it captures other informa-

tion than just the margins. However, without the naive inde-

pendence assumption of each dimension, the Bayesian clas-

sifier degrades drastically around 150 neurons due to the

curse of dimensionality. The degradation kicks in suddenly

as the space volume increases exponentially with dimen-

sionality. Even one extra neuron dimension (e.g. from 150

to 151) can multiply the (already large) space volume. Since

only a small number of neurons are needed, the Bayesian

classifier is still a good choice, especially when memory

resources are constrained. Although RBF-SVM performs

well and attains the highest accuracy on LFW, it is slow and

memory intensive to train on large datasets such as CelebA.

In addition, compared to the Bayesian classifier, there are

more parameters to set. Instead of choosing every parame-

ter via cross validation, in our experiments, three sets of pa-

rameters are randomly selected for RBF-SVM and the accu-

racies reported here are comprised on their average output.

Also, in both Figure 4a and Figure 4b, the accuracy of the

RBF-SVM kernel first increases and begins to decrease sud-

denly due to overfitting. This occurs a little later on CelebA

than on LFW because of CelebA’s larger size.

Compared to Bayesian and RBF-SVM, linear SVM

performed similarly to the original FC classifier on both

datasets. This is intuitive in that FC layers, including soft-

max, is basically a logistic regression classifier with a trans-

formed input and a linear SVM can be derived from logis-

tic regression. Nevertheless, as will be shown in Subsec-

tion 4.4, the LDA-CNN-SVM structure is much more effi-

cient than the original net.

4.3. Accuracy Change vs. Parameter Pruning Rate

In this subsection, we analyze the relationship of param-

eters pruning rate and accuracy change and compare our

results with a state-of-the-art pruning approach [12] as well

as two smaller net structures, i.e. AlexNet [20] (without

filter grouping) and GenderNet [24]. As shown in previ-

ous subsection, by preserving only four neurons in the last

conv layer, we are able to achieve an accuracy compara-

ble to the original DNN on the LFW dataset. We take

this case as an example. Figure 5 demonstrates its accu-

racy change/pruning rate relationship (by varying the de-

pendency threshold). It is worth noting that unlike [12], we

only retrain both pruned networks once. Additionally, for

fair comparison, we also use (pruned) FC layers to clas-

sify our Fisher LDA reduced features. Since our goal is

15



Figure 5: Accuracy change vs. conv layers pruning rate.

Only 4 Conv5 3 neurons are used (when pruning rate6= 0).

Comparisons: Han etal.[12], AlexNet [20], GenderNet [24].

to prune CNN features for use with alternative lightweight

classifiers, we keep the pruning rate of FC layers the same

for both pruning approaches and the pruning percentage

reported is of only the conv layers. As a side note, all

common hyper-parameters are set the same for both ap-

proaches and little tweaking of parameters is involved. That

said, the batch size sometimes needs to be adjusted in or-

der to escape local minima. As can be seen from Figure 5,

our approach has higher accuracies across different prun-

ing rates than [12]. At some points, accuracy can even

improve slightly (<0.8%) when pruning due to the redun-

dant and less useful structures in the hidden layers. Also,

for our approach, only about a quarter of all the conv layer

weights are enough to maintain a comparable discriminat-

ing power. When pruning to around the same number of

parameters as the AlexNet [20], both pruning approaches

enjoy higher accuracies, which justifies the superiority of

pruning pre-trained larger networks over training shallow

ones. However, around 80%, both approaches suffer greatly

from pruning. When the pruning rate reaches 84%, [12] is

not able to recover itself through retraining and performs

even worse than the shallow GenderNet [24]. Ours, on the

other hand, seems to regain stability after the drastic fall and

performs better than the fixed net. Our approach’s better

performance mainly stems from the awareness of each neu-

ron’s contribution to the final discriminating power when

pruning the net. In other words, our approach’s dependency

is across all layers. In contrast, the dependency in [12] is of

length one. It may prune away small weights that contribute

to more informative neurons in the last conv layer because

the effects of small weights are possible to be accumulated

Figure 6: Demonstration of layerwise structure complexity

reduction by keeping the 4 discriminative Conv5 3 neurons.

over layers or be enlarged by large weights in other layers.

Pruning away small weights in a certain layer is actually

cutting off whole connections from the raw pixel level to

the final classification stage. Even if weight magnitude is a

good pruning measure, the importance of a whole bottom-

to-top connection should not be measured by a length one

weight. In next subsection, we will provide a computational

complexity analysis in terms of both space and time.

4.4. Complexity Analysis

To gain more insight into our pruning method, Figure 6

and Table 2 offer a detailed layerwise space and time com-

plexity analysis. According to Figure 6, most parameters

in the middle conv layers (Conv2 2 to Conv4 1) do not help

with our task. Compared to later layers, the first three layers

have relatively low reduction rates. This is easy to under-

stand given the observation that earlier layers contain more

generic features such as edge and color blob detectors that

could be useful to all classes. In addition, our approach’s

high pruning rate can directly contribute to lower memory

requirements because unlike [12], it enables us to discard

(rather than disregard) filter weights. In [12], masks are

needed in the retraining stage to freeze zero weights. As a

result, besides large overhead costs of extra masks, the num-

ber of convolutional operations does not actually change.

That said, if masking is also applied in testing (at the cost

of even more space), time will be saved since many multi-

plication operations are replaced by a simpler mask check-

ing. Complexity can be further reduced if we replace the

(pruned yet still large) FC layers with our lightweight al-

ternatives. Since our alternative classifiers are based only
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❳
❳
❳
❳
❳
❳
❳
❳

❳
❳

Method

Layer
Conv1 1 Conv1 2 Conv2 1 Conv2 2 Conv3 1 Conv3 2 Conv3 3 Conv4 1

Original CNN+FC Layers 70.96 405.39 183.60 362.15 171.64 341.23 341.33 166.94

LDA-CNN+Bayesian/SVM 18.02 98.27 39.68 31.96 3.59 6.43 9.92 3.79

Speedup Ratio 3.93 4.13 4.63 11.33 47.83 53.06 34.41 44.08
❳
❳
❳
❳
❳
❳
❳
❳

❳
❳

Method

Layer
Conv4 2 Conv4 3 Conv5 1 Conv5 2 Conv5 3

FC Layers

BC SVML SVMR
Total

Original CNN+FC Layers 333.75 333.98 85.69 85.70 85.63 283.20 3306.50

LDA-CNN+Bayesian/SVM 18.11 28.07 6.79 11.92 0.84 0.04 0.01 0.05 286.86

Speedup Ratio 18.43 11.90 12.63 7.19 101.68 7E3 3E4 6E3 11.53

Table 2: Per image recognition time comparison of different approaches in all layers (in milliseconds). BC is short for the

Bayesian classifier, SVML and SVMR stand for SVM with linear and RBF kernel respectively. FC layers here refer to all the

layers after Conv5 3. The tests are run on the CPU.

on the highest activation, they are more robust to noise (no

performance degradation is incurred even when the FP16

precision is used). Compared to the original deep net model

of over 500 MB, our pruned model is very light and takes

up only 7 MB (with no accuracy loss). For the Bayesian

classifier, the storage overhead can be ignored when only

four neurons are used (even when all neurons are utilized in

Conv5 3, the extra space required is just about 2 MB). For

SVMs, the extra storage needed depends on the number of

trained support vectors. In the LFW and four Conv5 3 neu-

rons case, it is only about 30KB for both SVMs. Given the

fact that most of today’s latest cellphone models have only 1

or 2 GB RAM, the low storage requirements of our pruned

nets are critical if we want to go from off-chip to on-chip.

Table 2 shows the recognition speed comparison be-

tween the original net and our pruned model. The origi-

nal net is trained in the GPU mode using Caffe while tested

with the CPU mode on. To avoid as much Caffe overhead as

possible, we implement features extraction using survived

filters ourselves utilizing all the four cores. According to

the table, our LDA-Pruned model is faster at all conv layers

than the original net. Besides the last conv layer, the middle

layers with high structure reduction rates also enjoy a large

speedup. Nonetheless, the relation is nonlinear owing to the

different dimensions of each layer’s input data. In total, a

11-fold speedup is achieved by using our pruned model. It is

worth noting that both the SVMs and the Bayesian classifier

(based on the reduced CNN features) are significantly faster

than the original FC layers in classification. The Bayesian

classifier’s speed is somewhere between the two SVMs.

5. Discussion and Future Directions

While many big datasets are the property of large cor-

porations (e.g. DeepFaces [37]), academic datasets are rel-

atively small. Compact pruned nets like ours are easier to

train and retrain, thus alleviating the data constraint to some

extent and simultaneously improving on the generalizabil-

ity [23]. Furthermore, due to the low space and time com-

plexity, pruned nets can possibly be embedded on the chip

SRAM to tackle real-time video streams. Although this pa-

per leverages VGG-16 for gender recognition, it is likely

that the high decorrelation found in the last conv layer is

common to some other CNNs and tasks as well. However,

more tests are needed for the above to be seen. It is also

appealing to train and prune deep nets for other facial traits

and explore their possible shared structures. As shown in

Figure 2, when we train a deep net for gender classification,

some other attributes are obtained in the last conv layer.

6. Conclusion

In this paper, we develop a deep but lightweight CNN

that can boost efficiency while maintaining accuracy for fa-

cial gender classification. It is pruned from the VGG-16

model, whose most last conv layer neurons tend to fire un-

correlatedly within each class. Through Fisher LDA, these

neurons in dimensions that have low ICC were discarded,

thereby greatly pruning the network and significantly in-

creasing efficiency. As the result, the approach can be use-

ful in contexts where fast and accurate performance is de-

sirable but where expensive GPUs are not available (e.g.

embedded systems). Our LDA based pruning is better than

weight value based approaches because filter weights can

be large but unimportant for the specific limited task when

the pre-training is done on a large dataset of general recog-

nition purposes (e.g. ImageNet). By combining with alter-

native classifiers, the approach is shown to achieve higher

or comparable accuracies to the original net on the LFW

and CelebA datasets, but with a reduction of model size by

70X, and with a subsequent 11-fold speedup.
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