Physical Asymmetries and Brightness Perception

James J. Clark

Abstract This paper considers the problem of estimating the brigistrog visual
stimuli. A number of physical asymmetries are seen to pedmiermination of
brightness that is invariant to certain manipulations efsensor responses, such as
inversion. In particular, the light-dark range asymmesgxamined and is shown
to result, over a certain range, in increased variabilitgerisor responses as scene
brightness increases. Based on this observation we prdpasbrightness can be
measured using variability statistics of conditional dlgttions of image patch val-
ues. We suggest that a process of statistical learning eétbenditional distribu-
tions underlies the Stevens effect.

1 Introduction - Isit Dark or Bright?

Suppose one is viewing a scene, such as looking out onto astnest on a bright
sunny day, or looking around your moonlit kitchen for a mgirtisnack with the
lights turned off. In this paper we will be concerned with therception of how
bright a viewed scene is, and consider the question “whaemake scene appear
bright while the other appears dark?”. The teonghtness denotes the subjective
perception of théuminance of a visual stimulus, where luminance is a photometric
(i.e. perceptually weighted) measure of the intensity gifti(either reflecting from
a surface or being emitted from a light source) per unit amsaeting in a particular
direction.

A naive answer to the question of what determines the peotepf brightness
would be to simply associate “dark” with low sensor signdlea and “light” with
high sensor signal values, as depicted in figure 1.
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Fig. 1 Is the perception of brightness based on the firing rates obneun the brain?

There are a number of problems with this naive approach, yew&o begin
with, the sign of the variation in sensor signals with the ilnamce of the visual
stimulus is an arbitrary convention. One could just as gdsve sensors whose
signals are high when the luminance of the stimulus is lowmace-versa. For ex-
ample, in the human retina both types of sensors are foundrenbipolar cells
either respond to the presence (ON-cells) or to the abs&ieE-¢ells) of incident
light [1].

Some sensors respond to spatial or temporal contrasts l(@aties). To take
a specific example, consider that signals to the visual xdrten the retina are
in the form of ON-Center/OFF-Surround and OFF-Center/QX-&Ind signals.
These could be integrated to recover the luminance, butrtii@gaity in the sign
remains. This also implies that the sensor signal may depenthe spatial and
temporal "surround”.

The issues just mentioned suggest that brightness is pedc a way that in-
volves more than just the raw signal levels from the imageaen This paper de-
scribes a possible approach for doing this, one that is basetbnsideration of
physical asymmetries that reveal differences betweem digt dark.

2 Physical Asymmetries Underlying Brightness Perception

The most fundamental asymmetry that we will look at is thecalted light-dark
range asymmetry. This asymmetry can be understood by noting that there islarwi
range of sensor values possible in a bright scene than inkaoti&: Suppose, for
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argument’s sake, that we have a strictly increasing momotasual sensor with
an infinite dynamic range. That it, its response is a strictbyeasing function of
the intensity of the incident light. If this sensor views @&ise consisting of a single
non-luminous textured convex Lambertian object, illundaeby a single point light
source having illuminanck, there will be a finite maximum value that this sensor
could produce. This maximum value will depend on the serisitbf the sensorg,

the maximum albedo of the object, and the illuminaha# the object surface. The
range of albedo values for a non-luminous object must beenahgel0, 1]. Thus
the range of sensor values will i@ La]. As the surface illuminanck increases,
so does the range of possible sensor values. This incredise @nge would persist
even if the sensor was instead taken to have a strictly deagaesponse (corre-
sponding to a negative) or had a constant offset (so that the sensor had a non-zero
response to a zero incident intensity).

The analysis is more involved, but the light-dark range awsgtny will also be
present for more complicated scenes, with multiple nonthenian objects and
multiple distributed illuminants. Singularities such asustics created by mirrors
and lenses can create infinite intensities, but only oveistamgly small areas. Sen-
sors with finite extent will have a finite response to such tesisand this response
will be scaled by the illuminance of the light source.

2.1 Breakdown of the Light-Dark Range Asymmetry due to
Saturation

Practical physically realizable sensors will saturatednelysome range of incident
light intensity, at both the low and high ends of the sensargje. The saturation on
low end implies that the sensor will be insensitive to scatghiness changes below
a certain level. The saturation on the high end, howevernatlremove all sensitiv-
ity to brightness changes. This is because, in a scene wbitthias shadowing, or a
range of surface albedos that includes zero albedo surfivezs will be parts of the
scene which result in sensor responses below the high-¢mchsan limit. Figure
2 shows the histogram of sensor values for different scémeiihances given an
assumption of uniform distribution of object albedos. Wa sae the breakdown of
the light-dark asymmetry due to saturation. At very low s#lanminances the his-
togram contains a single impulse at the minimum response\af the sensor. As
the scene illuminance increases, some of the values rise&dbe minimum level,
up to a value that scales with the scene illuminance. Thénheifghe impulse at the
minimum level drops as fewer sensor responses are belowithimmam value. As
the scene illuminance increases further, some of the intidght has an intensity
above the sensors high-end saturation level. Thus an ie@l¢his level begins
to form. As the scene illuminance increases further, thellealways be some re-
sponses in the operational range of the sensor but thesbegilime a smaller and
smaller fraction of the total. Thus the histogram becomesenand more concen-
trated in the impulse at the high-level saturation valueusTtve can see that the



4 James J. Clark

histogram for the very high and very low scene illuminancessymmetric. It is
only for intermediate illuminances, where the sensor do¢saturate significantly,
that the light-dark range asymmetry is present.
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Fig. 2 Sensor saturation causes a breakdown of the light-dark rangevayy at the extremes of
scene brightness.

An automatic gain control, such as that provided by the pogihe human eye,
can extend the range of validity of the light-dark range aswatny. A perfect gain
control would seem to obviate the possibility of brightnessception, since the
sensor response would always be the same. However, the gailcsignal itself
can be used as the brightness measure since the gain corgbanism will nec-
essarily exhibit a light-dark asymmetry. Even if one inedrthe sensor signal, the
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gain control signal would not be inverted (e.g. a cameraéstape would still need
to be closed down as the scene illuminance increased).

2.2 Other Asymmetries

The light-dark asymmetry is not the only sort of physicalragyetry that permits
differentiating between light and dark. There are also irtgrdg sensori-motor asym-
metries (such as what happens when you close your eyes nooffuights, or oc-
clude objects) that can be used to distinguish between daatkight scenes. Shad-
owing is an asymmetric process. Black patches are ofterdfoushadowed areas,
whereas white patches are rarely found there. Speculalidtiggh are very bright
compared with other areas, and never darker. A strong asymymeses through
surface inter-reflection. For example, white patches damihate nearby patches,
while black patches do not. Langer [2] points out that shadamd inter-reflections
are in some sense symmetric with each other, as an intensiysion transforms
shadows into areas that look like inter-reflections and-viesa. The symmetry is
not exact, however, and the shadows and inter-reflecti@stk produced are often
unlikely to be observed. There are other reasons for thedhak exact symmetry.
One reason is that all white surfaces illuminate nearbyatbjevhile only some
black surfaces are shadow regions. Another is that the \phiiehes 'cause’ the il-
lumination of nearby surfaces, while shadows are causedh®yr surfaces. So the
intensity inversion must also imply a causal inversion,tesshadow regions now
become illuminating regions and vice-versa.

In color images, there are additional asymmetries to be doés Myin [3]
points out, color is just a multidimensional intensity m&as and the asymme-
tries associated with intensity transfer to color as wellcé@mmonly considered
transformation is spectral inversion. There are many foomghis, but the most
common is the independent inversion of each channel in an R&Re (e.g.
R =Rmx— R G =Gmx— G, B = Bmax— B). White/Black patches are desat-
urated, and this persists under spectral inversion. Miggcare often highly satu-
rated, and this also persists under spectral inversiord@hareas are always desat-
urated, while illuminated areas can be highly saturateds dasymmetry is reversed
through spectral inversion, as dark areas appear coloctighm areas (which now
correspond to shadowed or dark areas in the world) appeatulated. Thus low
saturation values can indicate shadowed areas in the méd;yvmo matter whether
the RGB values are inverted or not.

3 Statistical Measures of Scene Brightness

Figure 2 suggests that one could obtain a measure of brigghtnelooking at statis-
tics of the sensor response distributions. In the rangewhiah the light-dark range
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asymmetry exists, as the scene illuminance increases tiserseesponse distribu-
tion becomes more spread out. There are many differendstissthat could be
used to capture this spreading out. For example, one coeldhgsvariance of the
distribution or its entropy. Figure 3 shows the entropy & sensor value distribu-
tion of the situation associated with figure 2. It can be sbanthe light-dark range
asymmetry results in a rising entropy value as long as theesileminance is rela-
tively low. Beyond a certain point the high-end saturatiéthe sensor comes into
play and begins to reduce the entropy with further increasssene illuminance.
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Fig. 3 Entropy of the distribution of sensor values as a function of sééuminance for a simple
scene having a uniform distribution of object albedo. Thectité the light-dark range asymmetry
is evident as well as its breakdown at the extremes of scenktbess.

So far we have been considering global measures applicablgite scenes. We
could narrow our focus to look at small scene or image patahdsask whether we
can find measures of patch brightness that are in some semasiain to the specifics
of the sensing process. One extension of the ideas discesasket is to apply the
statistical measures such as variance or entropy to sntaligmin the image. The
idea here being that bright patches would have a higher @sintneasure (such as
variance or entropy) than dark patches.

There is some psychological evidence for such an approachstudy that pro-
duced the effect bearing his name, Stevens [4] found thgéstshviewing a gray
patch in a white surround perceived the contrast betweepdtshes to increase
as the intensity of the illumination (see figure 4 for an exbngs this effect). The
background brightness was perceived to increase via a pewemwith exponent
0.33, with respect to its luminance. The brightness of tlag gatches, on the other
hand, had a variable exponent, which became negative feedpatches. Overall,
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the effect is that the perceived contrast increased withillilnination intensity.
Hunt [5] observed an analogous effect in the perception tdred patches - he
found that as overall intensity increased so did the peeckdolorfulness.

Fig. 4 The Stevens Effect: Shown are image patches with constanmasbaind increasing mean
intensity. Human observers usually perceive the contrast teaseralong with the mean intensity
of the patch.

It has long been informally conjectured that a form of “irseiStevens effect”
exists. That isperceived intensity increases with image contrast (see figure 5 for an
example of this effect). As Fairchild [6] points out, photaghers often underexpose
a high contrast scene (e.g. a dim indoor scene) and overexdosv contrast scene
(e.g. a bright outdoor scene). Fairchild did a psychoplaysstudy to investigate
this conjecture [6]. His results were inconclusive, howggbowing a wide inter-
subject variability. Some subjects had the supposed airitreensity relation while
others had no relation, and still others had a relation irdtrextion opposite to that
supposed.

Fig. 5 Inverse Stevens Effect: Shown are image patches with constamt imensity and increas-
ing contrast. Some observers perceive the intensity to incréasg &ith the contrast.

A straightforward implementation of this concept would berteasure the con-
trast (or entropy) of the histogram of pixel values in an imagtch patch. In gen-
eral, however, doing this produces only a weak dependaniteensity, and mainly
produces a result similar to astige detection operation. Indeed, entropy has fre-
quently been employed as a feature in edge detection sy$eegag7]. In addition,
as illustrated by figure 6, there can be instances of imagdeathat are bright but
have low contrast or patch variability and others that amd dat have relatively
high patch variability. To remedy these problems, we prepbat the variability
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(entropy) of learnedtonditional distributions based on many image patches ob-
served over time should be used. The idea is that, while irengmage patch there
may only be a loose correlation between patch brightnesatuh variability, a
stronger correlation may be observed over a large datatiasege patches asso-
ciated with a particular central image intensity. Thusgegia pixel or small image
region with a particular intensity value, the entropy of tharned distribution of
pixel values conditioned on this immediate value can be asealmeasure of patch

brightness.
VAN *

—

high variability over experience highperceivedintensity
Statistical models of the image
contexts excited by the stimulus
I
low perceived intensity

low variability over experience

Fig. 6 Simple image patch variability measures cannot be used to meagyhtnbss since some
bright patches can have low patch variability and some daheatcan have relatively high patch
variability. Instead, the variability of previously expereed image patches associated with a given
central value can be used.

This suggests an explanation of the Stevens effect. Theisdbat, through vi-
sual experience, an observer learns an association besuetace brightness and
the entropy of the surface patch intensity values. Our thinks motivated by the
ideas of Norwich [8] who suggests that perception arisesitin reduction of uncer-
tainty. In his view, a more intense stimulus has more unogyteand hence higher
entropy. Furthemore, he proposes thatdhigective impression of the intensity of
a stimulus is related to the entropy of the stimulus. Thigd$e@a the hypothesis that
the subjective impression of increased contrast with leigimages that comprises
the Stevens Effect is a result of a learned association legtwentrast and entropy.
That is, high contrast patches in natural images will diatiy tend to have higher
entropies than low contrast image patches.

4 Surround Entropy in Natural |mages

To test our hypothesis that patch brightness can be relatdktentropy of condi-
tional distributions, we carried out an empirical studyla# tonditional statistics of
surrounds in a database of natural images. For our studyegeauset of 136 images
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from the van Hateren database [9]. Each of these images hiad afsl024x1536
pixels. Figure 7 shows four of the images that were used irstudy.

Fig. 7 Samples of the images used in the empirical study. These imagesakereftom the van
Hateren image database (van Hateran and van der Schaaf, 1998).

The raw image values were scaled by calibration factorsigeovwith the
database. These factors account for variations in seibgiti@used by aperture set-
tings and shutter speeds, and permit us, to some extentyipase intensities across
images in the database. Details of the image acquisitiorbediound in [9]. The
image pixels we used were 12-bits each, with a linear intgissiale. These were
obtained from the 8-bit van Hateren images which were cosgge using a non-
linear quantization scheme. The 12-bit linear pixels wétaioned using the look-up
table provided by van Hateren. We smoothed the scaled inwigles 5x5 averag-
ing kernel before computing entropies. This is to removerésédual effects of the
non-uniform quantization scheme which would otherwisatze relative decrease
in entropy with intensity, due to the greater spread betwgemntization levels at
high intensities than at low. We also eliminated images tvieichibited noticeable
saturation at the high intensity end, as indicated by exatiun of the images’ in-
tensity histograms. Saturation results in an excessivebeumf pixels having the
same value, which would reduce the compute entropy valseecally at high in-
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tensity levels. Although the images that were used in thdystlid not appear to
exhibit any saturation, examination of the conditionatdggsams (in figure 8) show
that there is still at least a low level of saturation, aséatid by the blip on the high
end of the highest intensity conditional histogram.

To construct the conditional histograms for a given centadliel, we searched
the database images for pixels with values in the rdhdet+ Al]. Then we com-
puted the histogram of the pixels in an 11x11 neighborhoodeced on these pix-
els. These individual surround histograms were then sumimegve the overall
conditional histogram for the value
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Fig. 8 The conditional histograms of the surround pixel values gitencentral pixel value (for
15 different ranges of central pixel values).

The conditional entropy is shown in figure 9. It is seen to,rédmost linearly,
for low intensities, and then flatten out, and finally to drog® again.

The curves shown in figures 3 and 9 have a similar shape, asdeitripting to
claim that the empirical result can be completely explaibgdhe light-dark range
asymmetry with sensor saturation. However, as mentionditieave deliberately
omitted images from our test set which exhibited noticeaklesor saturation, and
examination of the conditional distributions shown in figd reveals very little
saturation, if any. The conditional variation of entropyshbe due, at least in part,
to other effects. Our view is that the situation is compkchtas there are many
factors which act to determine the surround distributiod hence its entropy. Not
all of these are dependent on the surround brightness. Ithaaypat the human
visual system is able to factor out these various contimstiand isolate those that
are related to intensity. The paper [10] developed stedisthodels for the surround
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Fig. 9 The entropy of the conditional distributions of surround ealgiven the central value, for
15 different central value ranges.

using a Maximum Entropy approach and looked at the effectarek ecological
processes: shadowing, occlusion, and inter-reflectioas@lprocesses all introduce
asymmetries with respect to brightness which can act tegetith the light-dark
range asymmetry to shape the dependance of patch brightitegstch variability.

It is an open question whether humans can adapt to chandes senhsing appa-
ratus which do not alter the physical asymmetries we havaidsed. For example,
one could photometrically invert the image presented toibigal system. Such an
adaptive capability would be predicted by our theory. Hosveat least one study
has been done which shows that humans are not able to re-inverted inten-
sity, at least not without a long time for adaptation [11] plrticular, detection of
shadows seems to rely crucially on the shadows being darkearthe illumination
regions [12]. This is not a fatal blow to our theory as it cobé&lthat to adapt to such
inversions requires an extensive learning process in doddevelop a new set of
conditional statistical models.

A recent study Mante et al [13] used the van Hateren databhaddoand no
correlation between patch intensity and contrast. Thehgatthey used were quite
large, however, being circular with a diameter of 64 pixalso, they only looked at
correlations of luminance and contrast within individuakiges, and then averaged
these correlations across all of the images in the dataBaseaesults are based on
small patches and statistics were gathered over all images.
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5 Summary

This paper suggests that various physical asymmetrieb,asithe light-dark range
asymmetry, provide a means for measuring scene brighthassst invariant to
some manipulations, for example inversion, of the sensspamses. We propose
that brightness perception is mediated, not by the levehefraw photoreceptor
signals, but by a statistical learning of the associatidween a particular localized
sensor signal and the variability of a learned distributtdsurround sensor values
conditioned on the localized sensor signal value. Follgvitme ideas of Norwich
we propose that humans learn to associate the entropy ahalgs with the inten-
sity of that stimulus. We examined a small set of natural iesagand observed that
there was, indeed, a relationship between an image pixeéand the entropy of
the distribution of surrounding pixel values which woulg&in the Stevens effect
- the perceived increase of contrast as scene intensityases.
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