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Abstract This paper considers the problem of estimating the brightness of visual
stimuli. A number of physical asymmetries are seen to permitdetermination of
brightness that is invariant to certain manipulations of the sensor responses, such as
inversion. In particular, the light-dark range asymmetry is examined and is shown
to result, over a certain range, in increased variability ofsensor responses as scene
brightness increases. Based on this observation we proposethat brightness can be
measured using variability statistics of conditional distributions of image patch val-
ues. We suggest that a process of statistical learning of these conditional distribu-
tions underlies the Stevens effect.

1 Introduction - Is it Dark or Bright?

Suppose one is viewing a scene, such as looking out onto a busystreet on a bright
sunny day, or looking around your moonlit kitchen for a midnight snack with the
lights turned off. In this paper we will be concerned with theperception of how
bright a viewed scene is, and consider the question “what makes one scene appear
bright while the other appears dark?”. The termbrightness denotes the subjective
perception of theluminance of a visual stimulus, where luminance is a photometric
(i.e. perceptually weighted) measure of the intensity of light (either reflecting from
a surface or being emitted from a light source) per unit area traveling in a particular
direction.

A naive answer to the question of what determines the perception of brightness
would be to simply associate “dark” with low sensor signal values and “light” with
high sensor signal values, as depicted in figure 1.
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Fig. 1 Is the perception of brightness based on the firing rates of neurons in the brain?

There are a number of problems with this naive approach, however. To begin
with, the sign of the variation in sensor signals with the luminance of the visual
stimulus is an arbitrary convention. One could just as easily have sensors whose
signals are high when the luminance of the stimulus is low andvice-versa. For ex-
ample, in the human retina both types of sensors are found, where bipolar cells
either respond to the presence (ON-cells) or to the absence (OFF-cells) of incident
light [1].

Some sensors respond to spatial or temporal contrasts (or derivatives). To take
a specific example, consider that signals to the visual cortex from the retina are
in the form of ON-Center/OFF-Surround and OFF-Center/ON-Surround signals.
These could be integrated to recover the luminance, but the ambiguity in the sign
remains. This also implies that the sensor signal may dependon the spatial and
temporal ”surround”.

The issues just mentioned suggest that brightness is perceived in a way that in-
volves more than just the raw signal levels from the image sensors. This paper de-
scribes a possible approach for doing this, one that is basedon consideration of
physical asymmetries that reveal differences between light and dark.

2 Physical Asymmetries Underlying Brightness Perception

The most fundamental asymmetry that we will look at is the so-called light-dark
range asymmetry. This asymmetry can be understood by noting that there is a wider
range of sensor values possible in a bright scene than in a dark one. Suppose, for
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argument’s sake, that we have a strictly increasing monotonic visual sensor with
an infinite dynamic range. That it, its response is a strictlyincreasing function of
the intensity of the incident light. If this sensor views a scene consisting of a single
non-luminous textured convex Lambertian object, illuminated by a single point light
source having illuminanceL, there will be a finite maximum value that this sensor
could produce. This maximum value will depend on the sensitivity of the sensor,σ ,
the maximum albedo of the object, and the illuminanceL of the object surface. The
range of albedo values for a non-luminous object must be in the range[0,1]. Thus
the range of sensor values will be[0,Lσ ]. As the surface illuminanceL increases,
so does the range of possible sensor values. This increase ofthe range would persist
even if the sensor was instead taken to have a strictly decreasing response (corre-
sponding to a negativeσ ) or had a constant offset (so that the sensor had a non-zero
response to a zero incident intensity).

The analysis is more involved, but the light-dark range asymmetry will also be
present for more complicated scenes, with multiple non-Lambertian objects and
multiple distributed illuminants. Singularities such as caustics created by mirrors
and lenses can create infinite intensities, but only over vanishingly small areas. Sen-
sors with finite extent will have a finite response to such caustics, and this response
will be scaled by the illuminance of the light source.

2.1 Breakdown of the Light-Dark Range Asymmetry due to
Saturation

Practical physically realizable sensors will saturate beyond some range of incident
light intensity, at both the low and high ends of the sensor’srange. The saturation on
low end implies that the sensor will be insensitive to scene brightness changes below
a certain level. The saturation on the high end, however, will not remove all sensitiv-
ity to brightness changes. This is because, in a scene which contains shadowing, or a
range of surface albedos that includes zero albedo surfaces, there will be parts of the
scene which result in sensor responses below the high-end saturation limit. Figure
2 shows the histogram of sensor values for different scene illuminances given an
assumption of uniform distribution of object albedos. We can see the breakdown of
the light-dark asymmetry due to saturation. At very low scene illuminances the his-
togram contains a single impulse at the minimum response value of the sensor. As
the scene illuminance increases, some of the values rise above the minimum level,
up to a value that scales with the scene illuminance. The height of the impulse at the
minimum level drops as fewer sensor responses are below the minimum value. As
the scene illuminance increases further, some of the incident light has an intensity
above the sensors high-end saturation level. Thus an impulse at this level begins
to form. As the scene illuminance increases further, there will always be some re-
sponses in the operational range of the sensor but these willbecome a smaller and
smaller fraction of the total. Thus the histogram becomes more and more concen-
trated in the impulse at the high-level saturation value. Thus we can see that the
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histogram for the very high and very low scene illuminances are symmetric. It is
only for intermediate illuminances, where the sensor does not saturate significantly,
that the light-dark range asymmetry is present.

zero intensity

very low intensity

low intensity

medium intensity

high intensity

very high intensity

sensor response value

Fig. 2 Sensor saturation causes a breakdown of the light-dark range asymmetry at the extremes of
scene brightness.

An automatic gain control, such as that provided by the pupilin the human eye,
can extend the range of validity of the light-dark range asymmetry. A perfect gain
control would seem to obviate the possibility of brightnessperception, since the
sensor response would always be the same. However, the gain control signal itself
can be used as the brightness measure since the gain control mechanism will nec-
essarily exhibit a light-dark asymmetry. Even if one inverted the sensor signal, the
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gain control signal would not be inverted (e.g. a camera’s aperture would still need
to be closed down as the scene illuminance increased).

2.2 Other Asymmetries

The light-dark asymmetry is not the only sort of physical asymmetry that permits
differentiating between light and dark. There are also important sensori-motor asym-
metries (such as what happens when you close your eyes, or turn off lights, or oc-
clude objects) that can be used to distinguish between dark and light scenes. Shad-
owing is an asymmetric process. Black patches are often found in shadowed areas,
whereas white patches are rarely found there. Specular highlights are very bright
compared with other areas, and never darker. A strong asymmetry arises through
surface inter-reflection. For example, white patches can illuminate nearby patches,
while black patches do not. Langer [2] points out that shadows and inter-reflections
are in some sense symmetric with each other, as an intensity inversion transforms
shadows into areas that look like inter-reflections and vice-versa. The symmetry is
not exact, however, and the shadows and inter-reflections that are produced are often
unlikely to be observed. There are other reasons for the lackof an exact symmetry.
One reason is that all white surfaces illuminate nearby objects while only some
black surfaces are shadow regions. Another is that the whitepatches ’cause’ the il-
lumination of nearby surfaces, while shadows are caused by other surfaces. So the
intensity inversion must also imply a causal inversion, as the shadow regions now
become illuminating regions and vice-versa.

In color images, there are additional asymmetries to be found. As Myin [3]
points out, color is just a multidimensional intensity measure, and the asymme-
tries associated with intensity transfer to color as well. Acommonly considered
transformation is spectral inversion. There are many formsof this, but the most
common is the independent inversion of each channel in an RGBimage (e.g.
R′ = Rmax −R, G′ = Gmax −G, B′ = Bmax −B). White/Black patches are desat-
urated, and this persists under spectral inversion. Mid-tones are often highly satu-
rated, and this also persists under spectral inversion. Shadow areas are always desat-
urated, while illuminated areas can be highly saturated. This asymmetry is reversed
through spectral inversion, as dark areas appear colored and light areas (which now
correspond to shadowed or dark areas in the world) appear desaturated. Thus low
saturation values can indicate shadowed areas in the real-world, no matter whether
the RGB values are inverted or not.

3 Statistical Measures of Scene Brightness

Figure 2 suggests that one could obtain a measure of brightness by looking at statis-
tics of the sensor response distributions. In the range overwhich the light-dark range
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asymmetry exists, as the scene illuminance increases the sensor response distribu-
tion becomes more spread out. There are many difference statistics that could be
used to capture this spreading out. For example, one could use the variance of the
distribution or its entropy. Figure 3 shows the entropy of the sensor value distribu-
tion of the situation associated with figure 2. It can be seen that the light-dark range
asymmetry results in a rising entropy value as long as the scene illuminance is rela-
tively low. Beyond a certain point the high-end saturation of the sensor comes into
play and begins to reduce the entropy with further increasesin scene illuminance.
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Fig. 3 Entropy of the distribution of sensor values as a function of scene illuminance for a simple
scene having a uniform distribution of object albedo. The effect of the light-dark range asymmetry
is evident as well as its breakdown at the extremes of scene brightness.

So far we have been considering global measures applicable to entire scenes. We
could narrow our focus to look at small scene or image patchesand ask whether we
can find measures of patch brightness that are in some sense invariant to the specifics
of the sensing process. One extension of the ideas discussedearlier is to apply the
statistical measures such as variance or entropy to small patches in the image. The
idea here being that bright patches would have a higher contrast measure (such as
variance or entropy) than dark patches.

There is some psychological evidence for such an approach. In a study that pro-
duced the effect bearing his name, Stevens [4] found that subjects viewing a gray
patch in a white surround perceived the contrast between thepatches to increase
as the intensity of the illumination (see figure 4 for an example of this effect). The
background brightness was perceived to increase via a powerlaw, with exponent
0.33, with respect to its luminance. The brightness of the gray patches, on the other
hand, had a variable exponent, which became negative for darker patches. Overall,
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the effect is that the perceived contrast increased with theillumination intensity.
Hunt [5] observed an analogous effect in the perception of colored patches - he
found that as overall intensity increased so did the perceived colorfulness.

Fig. 4 The Stevens Effect: Shown are image patches with constant contrast and increasing mean
intensity. Human observers usually perceive the contrast to increase along with the mean intensity
of the patch.

It has long been informally conjectured that a form of “inverse-Stevens effect”
exists. That is,perceived intensity increases with image contrast (see figure 5 for an
example of this effect). As Fairchild [6] points out, photographers often underexpose
a high contrast scene (e.g. a dim indoor scene) and overexpose a low contrast scene
(e.g. a bright outdoor scene). Fairchild did a psychophysical study to investigate
this conjecture [6]. His results were inconclusive, however, showing a wide inter-
subject variability. Some subjects had the supposed contrast-intensity relation while
others had no relation, and still others had a relation in thedirection opposite to that
supposed.

Fig. 5 Inverse Stevens Effect: Shown are image patches with constant mean intensity and increas-
ing contrast. Some observers perceive the intensity to increase along with the contrast.

A straightforward implementation of this concept would be to measure the con-
trast (or entropy) of the histogram of pixel values in an image patch patch. In gen-
eral, however, doing this produces only a weak dependance onintensity, and mainly
produces a result similar to anedge detection operation. Indeed, entropy has fre-
quently been employed as a feature in edge detection systems(e.g. [7]. In addition,
as illustrated by figure 6, there can be instances of image patches that are bright but
have low contrast or patch variability and others that are dark but have relatively
high patch variability. To remedy these problems, we propose that the variability



8 James J. Clark

(entropy) of learnedconditional distributions based on many image patches ob-
served over time should be used. The idea is that, while in a given image patch there
may only be a loose correlation between patch brightness andpatch variability, a
stronger correlation may be observed over a large database of image patches asso-
ciated with a particular central image intensity. Thus, given a pixel or small image
region with a particular intensity value, the entropy of thelearned distribution of
pixel values conditioned on this immediate value can be usedas a measure of patch
brightness.

Fig. 6 Simple image patch variability measures cannot be used to measure brightness since some
bright patches can have low patch variability and some dark patches can have relatively high patch
variability. Instead, the variability of previously experienced image patches associated with a given
central value can be used.

This suggests an explanation of the Stevens effect. The ideais that, through vi-
sual experience, an observer learns an association betweensurface brightness and
the entropy of the surface patch intensity values. Our thinking is motivated by the
ideas of Norwich [8] who suggests that perception arises through reduction of uncer-
tainty. In his view, a more intense stimulus has more uncertainty, and hence higher
entropy. Furthemore, he proposes that thesubjective impression of the intensity of
a stimulus is related to the entropy of the stimulus. This leads to the hypothesis that
the subjective impression of increased contrast with brighter images that comprises
the Stevens Effect is a result of a learned association between contrast and entropy.
That is, high contrast patches in natural images will statistically tend to have higher
entropies than low contrast image patches.

4 Surround Entropy in Natural Images

To test our hypothesis that patch brightness can be related to the entropy of condi-
tional distributions, we carried out an empirical study of the conditional statistics of
surrounds in a database of natural images. For our study we used a set of 136 images
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from the van Hateren database [9]. Each of these images had a size of 1024x1536
pixels. Figure 7 shows four of the images that were used in ourstudy.

Fig. 7 Samples of the images used in the empirical study. These images were taken from the van
Hateren image database (van Hateran and van der Schaaf, 1998).

The raw image values were scaled by calibration factors provided with the
database. These factors account for variations in sensitivity caused by aperture set-
tings and shutter speeds, and permit us, to some extent, to compare intensities across
images in the database. Details of the image acquisition canbe found in [9]. The
image pixels we used were 12-bits each, with a linear intensity scale. These were
obtained from the 8-bit van Hateren images which were compressed using a non-
linear quantization scheme. The 12-bit linear pixels were obtained using the look-up
table provided by van Hateren. We smoothed the scaled imageswith a 5x5 averag-
ing kernel before computing entropies. This is to remove theresidual effects of the
non-uniform quantization scheme which would otherwise create a relative decrease
in entropy with intensity, due to the greater spread betweenquantization levels at
high intensities than at low. We also eliminated images which exhibited noticeable
saturation at the high intensity end, as indicated by examination of the images’ in-
tensity histograms. Saturation results in an excessive number of pixels having the
same value, which would reduce the compute entropy values, especially at high in-
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tensity levels. Although the images that were used in the study did not appear to
exhibit any saturation, examination of the conditional histograms (in figure 8) show
that there is still at least a low level of saturation, as indicated by the blip on the high
end of the highest intensity conditional histogram.

To construct the conditional histograms for a given centralvalueI, we searched
the database images for pixels with values in the range[I, I + ∆ I]. Then we com-
puted the histogram of the pixels in an 11x11 neighborhood centered on these pix-
els. These individual surround histograms were then summedto give the overall
conditional histogram for the valueI.

Fig. 8 The conditional histograms of the surround pixel values given the central pixel value (for
15 different ranges of central pixel values).

The conditional entropy is shown in figure 9. It is seen to rise, almost linearly,
for low intensities, and then flatten out, and finally to drop once again.

The curves shown in figures 3 and 9 have a similar shape, and it is tempting to
claim that the empirical result can be completely explainedby the light-dark range
asymmetry with sensor saturation. However, as mentioned earlier, we deliberately
omitted images from our test set which exhibited noticeablesensor saturation, and
examination of the conditional distributions shown in figure 8 reveals very little
saturation, if any. The conditional variation of entropy must be due, at least in part,
to other effects. Our view is that the situation is complicated, as there are many
factors which act to determine the surround distribution and hence its entropy. Not
all of these are dependent on the surround brightness. It maybe that the human
visual system is able to factor out these various contributions and isolate those that
are related to intensity. The paper [10] developed statistical models for the surround
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Fig. 9 The entropy of the conditional distributions of surround values given the central value, for
15 different central value ranges.

using a Maximum Entropy approach and looked at the effects ofthree ecological
processes: shadowing, occlusion, and inter-reflection. These processes all introduce
asymmetries with respect to brightness which can act together with the light-dark
range asymmetry to shape the dependance of patch brightnesswith patch variability.

It is an open question whether humans can adapt to changes in the sensing appa-
ratus which do not alter the physical asymmetries we have discussed. For example,
one could photometrically invert the image presented to thevisual system. Such an
adaptive capability would be predicted by our theory. However, at least one study
has been done which shows that humans are not able to re-invert inverted inten-
sity, at least not without a long time for adaptation [11]. Inparticular, detection of
shadows seems to rely crucially on the shadows being darker than the illumination
regions [12]. This is not a fatal blow to our theory as it couldbe that to adapt to such
inversions requires an extensive learning process in orderto develop a new set of
conditional statistical models.

A recent study Mante et al [13] used the van Hateren database and found no
correlation between patch intensity and contrast. The patches they used were quite
large, however, being circular with a diameter of 64 pixels.Also, they only looked at
correlations of luminance and contrast within individual images, and then averaged
these correlations across all of the images in the database.Our results are based on
small patches and statistics were gathered over all images.
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5 Summary

This paper suggests that various physical asymmetries, such as the light-dark range
asymmetry, provide a means for measuring scene brightness that is invariant to
some manipulations, for example inversion, of the sensor responses. We propose
that brightness perception is mediated, not by the level of the raw photoreceptor
signals, but by a statistical learning of the association between a particular localized
sensor signal and the variability of a learned distributionof surround sensor values
conditioned on the localized sensor signal value. Following the ideas of Norwich
we propose that humans learn to associate the entropy of a stimulus with the inten-
sity of that stimulus. We examined a small set of natural images and observed that
there was, indeed, a relationship between an image pixel value and the entropy of
the distribution of surrounding pixel values which would explain the Stevens effect
- the perceived increase of contrast as scene intensity increases.
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