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Fig.  2.  The  true  spectrum. 
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Fig. 3. The  MCE  spectrum  based  on  20  cepstral coefficients. 
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Analysis of the Error  in  the  Reconstruction  of 
N-Dimensional Stochastic Processes 

JAMES J. CLARK A N D  PETER  D.  LAWRENCE 

Abstract-This  correspondence  derives a frequency  domain  expres- 
sion for the error in the  reconstruction of an N-dimensional  stochastic 
process  from its uniformly distributed samples  when  the reconstruc- 
tion  technique of Petersen and Middleton is used  with an  arbitrary 
reconstruction filter. 

INTRODUCTION 
In  this  correspondence  we  present  a  derivation  of  the  mean 

square,  and  average  mean  square  error  (averaged  over  a  sample 
cell),  of  the  reconstruction  of  a  stochastic  process  from  uniformly 
distributed  samples  of  that  process.  The  reconstruction  method so 
analyzed is that  of  Petersen  and  Middleton [l], who  derived an 
expression  for  the  reconstruction  error  in  the  case of  ideal  filtering. 
We  extend  their  analysis  to  the  case of  nonideal  reconstruction fil- 
ters,  such as truncated  ideal  filters. 

Frequency DEFINITIONS 
Fig.  4.  The  20th-order AR spectrum. In this  section  we  present  some  definitions  that  will  be  used  in 

the  following. 

that is much  closer  to  the  true  spectrum  than  that  produced by the 
autoregressive  method. 

N is  the  number of dimensions. 
m 

VI. CONCLUSION s, = XlXZ s c  * * * JXN=-- 
In conclusion,  the MCE method  proposed by Tzannes et al. can 

be  derived  without  Lagrange  multiplier  formalism  and  can be solved 
without  explicit  solution of nonlinear  equations. w w 2  
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{f(2)] is  an  ensemble of  random  functions  and  represents  a 

fR(2)  is  the  reconstructed  value of one of the  random  functions 

The  ensemble  average  covariance is  given by 

wide-sense  homogeneous  ("stationary")  stochastic  process. 

in  the  ensemble. 

K(?) = E { f ( z ) f ( y ' ) }  = K ( 2  - y') (5) 

and  has  a  Fourier  transform,  which  exists  everywhere  except pos- 
sibly at isolated  delta  function  singularities: 

+(;) = j' K ( 2 )  e-jz ' X' X .  -+ (6) 
X 

RECONSTRUCTION OF N-DIMENSIONAL STOCHASTIC  PROCESSES 
The  reconstruction  method  of  Petersen  and  Middleton  is  sum- 

marized  below in  the  form of  a  theorem  (abstracted  from [l]; this 
theorem  is  also to  be  found in [2]). 

Theorem: Let  the  processf(x')  be  sampled at  points on the  uni- 
form  sampling  lattice  defined by 

{x',} = {?:x' = ZI 31 + 1 2 3 2  + * + l N 3 N }  (7) 

where  the Zk are  integers  and  the Sk are  independent  vectors.  Let 
the  hypervolume of a basic  sampling  cell  be  denoted Q.. Define  the 
dual,  frequency  domain,  sampling  lattice  to {?,} by 

{3,} = (3:w' = Z I u ' l  + Z2ii2 + + l N u ' N  (8) 
where 

- + +  uj uk = 2djk;  j ,  k = 1 ,  2, * , N (9) 

and 6 j k  is  the  Kronecker  delta.  Let us define  the  reconstruction of 
f(x') from its  samples { f (2 , ) }  to  be as foliows: 

f R ( I )  = {z}f (2s)  - (10) 

where g ( 2 )  is  the  reconstruction  filter,  whose  Fourier  transform  is 
G( 3) . 

If +(;) vanishes  outside of the  basic dual  lattice  cell  (e.g.,  the 
hypervolume  with  sides i i k ,  k = 1 , 2 ,  * , N), and if G(3) equals 
Q where +(w') is  nonzero,  is zero_ where  the repetitive  images 
+(3 + 2,) are  nonzero  (for 3, # 0), and  is  arbitrary  everywhere 
else,  then the mean  square  error  of  the  reconstruction 

e2(;) = E{[ f (2 )  - fR(x')12} (1 1) 
vanishes  everywhere. 0 

Derivation of the Mean Square Error 
If the  reconstruction filter G(3) does  not  satisfy  the  conditions 

outlined  in  the  theorem, or if the  stochastic  process is  not  suitably 
bandlimited to the  basic  samping  cell in the  frequency  domain,  then 
the mean  square  error will  not  vanish for  all x': 

The mean square  error,  for  the most  general  case,  can  be written 
as 
- 
e'(?) = ~(6) - 2 C K(X' - I,) g(2  - 2,) 

h 1  

+ C C K(x',l - 2,;) g(2  - ; , I )  g(x' - (12) 

Petersen  and  Middleton [l]  derive the, mean  square  error  for  the 
case  of  reconstruction  with  the  ideal  reconstruction  filter  which  was 
defined  in  the  theorem. Their result  is 

{ X % )  (1.) 

2(7) = K(6)  - c K(x' - x'$) g ( 2  - 2,) 

(13) 
This  equation  gives  the mean  square  error  (as a  function  of 2) in 
the  reconstructed  process for  the  case  of  an ideal  filter and  an  ar- 

bitrary,  not  necessarily  bandlimited,  process.  However,  it  is  more 
often  the  case  that  the  reconstruction filter is not  the  ideal one re- 
quired by the  theorem. We will  now  derive  the  mean  square  error 
for  the  case  where  both g ( 2 )  and f(7) are  arbitrary. 

It can  be seen  from (13) and  the  fact  that 

K(0) = - 1 ip(3) d3 
+ 

(27r)N 62 

that the first two  terms  in  the  general  expression (12) for  the  mean 
square  error  can  be  written 

K(6)  - 2 c K(x' - 2,) g(x' - 2,) 
(4 

Thus, in order  to  get a complete  expression  for  the  mean  square 
error,  we  need  to find an expression  for  the  third  term  in (12). Let 
us  call  this t e p  T for  convenience. 

We can  expand T in  terms  of  delta  functions  as  follows,  using 
the  integral  properties  of  the  delta  function: 

n n  

T = J,J, K(7 - d )  g(x' - 7)  g ( 2  - a)  

It  can  be  shown  (using  the result  of [ l ,  Append. A]) that 

Thus, we can write 

T = -  c c K(7 - ?) g(x' - 7 )  g ( 2  - a)  1 
Q2 ( 3 )  {&I Jx .!x 
. e j ? , &  e j ? . & 2  d? d?.' (1 8) 

If  we make  the  change  of  variables y' = 3 - x' and 2 = a - 2, 
and  assume  that g ( 2 )  and K(3)  are  even  functions,  we  obtain 

= CY h s, ~ ( y '  - g(y') g(z) ,j?.&  ,E.;,? d y ' d Z  (19) 

where  we  have  defined, for  simplicity, 

Separating  out  the  functions  that  depend  only  on y' gives us 

T = CY ix g ( y )  K(y' - 2) g(?) d i  dy'. (21) 

The integral  inside the  brackets  can  be  recognized  as a  convolution. 
Hence,  we  can  write 

[ !X 1 
T = a l x g ( y )  ejT'zsI [ K ( y )  . g(y') ejy.jr21 dy'. (22) 

Replacing  the  bracketed  term by its  Fourier  transform  representa- 
tion  gives 

(23) 

Replacing y' by - y, assuming g( y) = g( -y), and  rearranging 
gives us 
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Evaluation of the  bracketed  integral  as  a  Fourier  transform  yields 

We  can now  write  down  the  complete  frequency  domain  expression 
for  the  mean square  reconstruction  error,  valid  for  arbitrary G(3) 
and @(w'): 

+ G(w' - G(; + ;,2) 

Q2  

Derivation of the  Average Mean Square  Error 

An  often  more  useful  error  measure,  and  one  that  is  more  readily 
computed,  is  the  mean  square  error  averaged  over  a  sampling  cell. 
Let  us  call  this  measure Eavg and  denote  the  spatial  support of an 
elemental  sampling  cell by r. It  can  be  seen  that Eavg is  given by 

Making  a  change  of  variables ( y' = x' - 2,) and  noting  that  the 
summation  of  integrals  over  the  elementary  sampling  cells J? is the 
same  as integrating over  the  entire  space X allows us to  write 

(28) 

and  hence, 

Eavg = K(0) - - K(2) g ( 2 )  dx' + - 
- ;Jx Q r  ' S  

Let us define  the  function r(x') as  follows: 

r ( 2 )  = 1, x' E r 
r (2 )  = 0 ,  otherwise. 

The third  term  of  (29)  can  be seen  to  equivalent  to 

Using  the  definition of T [i.e.,  the third  term  of  (12)]  and the 
expression  for  Tgiven by (25),  we  can  rewrite (31) as  follows: 

s, a(;) G(w' - 2,J G(W' - ;,J d;. (32) 

Recognizing the  first  integral in  the  above  expression  as  a  Fourier 
transfrom  allows us to  rewrite  this  expression as 

where R(;) is  the  Fourier  transform of r(x') .  Petersen  and  Middle- 
ton [l, Append. Dl show  that 

+ 
R(w',) = Q  for GS E (3,) = 0 

This  means  that  since + Gs2 E I.',}, R(GSl + Gs2) = Q if 
wsI = -GS2 and is  zero  otherwise.  Thus,  we  can  rewrite (33) as + 

1 
(2n)N~2 2) In '('1 "(; + '$1 do'. (35) 

Combining  this  result  with  (14)  and  (29), we obtain 

- e ix K ( 2 )  g(x') dx'. 
2 

We now will  derive  a  frequency  domain  expression  for  (2/Q) 
jx K(x') g(2)  dx'. First,  we  replace K(x') g(x') by its  Fourier  trans- 
form  representation: 

where . denotes  the  convolution  operation.  We  can rewrite  thls as 

Evaluation  of  this  gives 

Writing  out  the  convolution  integral  and  setting ; = 0, we  get 
[assuming G(Z) = G( - w')] 

+ 

s, K(x') g(x') dx' = - 1 a(;) G(2) d;. 
(27r)N n (40) 

We  can  now  write  the  complete frequency  domain  expression for 
the  average  mean  square  error. It is 

If G(G) is  the  ideal  reconstruction  filter,  then  the  expression  for  the 
average  mean  square  error  reduces  to  the  following: 

This  result  was  also  obtained by Petersen  and  Middleton [l]. The 
main  difference  between  the  results  for  the  nonideal  and  ideal  re- 
construction  fitlers  is  that  the  average  mean  square  error  in  the  non- 
ideal  case is a  function of the  sample  set,  whereas in  the  ideal  case 
the  average  mean  square  error is independent of the  sample  set. 

Clark  [3]  provides  examples of the  computation  of  the  average 
mean  square  error in two  dimensions,  for  the  case of Gaussian  re- 
construction  filters. He  also  discusses  extensions of the  derivation 
given  in  this  paper to  the  case of reconstruction  from  nonuniformly 
distributed  sample  sets. 
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SUMMARY 
We  have  presented  a  derivation of frequency  domain  expressions 

for  the  mean  square  error,  and  the  mean  square  error  averaged  over 
a  sampling  cell, in the  reconstruction of an  N-dimensional  stochas- 
tic  process  from  its  samples on a  uniform  grid.  This  extends  the 
work of Petersen  and  Middleton [ l ]  in  that it allows  for  arbitrary 
(nonideal)  reconstruction  filters. 
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Comparison of Various  Time  Delay  Estimation 
Methods by  Computer  Simulation 

ANTON1 FERTNER AND ANDERS  SJOLUND 

Abstmct-This  correspondence  provides  qualitative  estimates  of  the 
magnitude  of  the  error  in  the  measured  delay  time  resulting  from  the 
error  on  the  observed  cress-correlation  curve.  The  variances of five 
time  delay  estimators  have  been  obtained by computer  simulation  to 
demonstrate  the  accuracy  of  all  five  methods.  The  comparison  of  the 
different  correlation  techniques  shows  that  the  average  magnitude  dif- 
ference  function  gives  results  almost as accurate  as  direct  correlation. 

I.  INTRODUCTION 
Correlation  techniques  have  been  used  extensively  in  various 

scientific  and  technological  fields  for  a  number of years  [1]-[7]. 
Time  delay  is  a  basic  estimate  in many applications. A common 
application  comprises  two  spatially  separated  sensors  which  reg- 
ister  the  signal  emanating  from  a  remote  source.  The  correlated 
signals  are  assumed  to be bandlimited  stationary  Gaussian  pro- 
cesses  corrupted by noncross-correlating  noise.  The  position of 
the  peak in an  observed  cross-correlation  curve  is  interpreted  as  the 
time  delay  estimate. 

Because of practical  interest,  the  implementation of different 
methods  has been  a  research  topic  for  a  long  time.  Several  methods 
exist  for  computing  cross  correlation  from  data  which.are  related 
but not identical.  However,  their  implementations  for  practical  ap- 
plication  have  been  limited by the  high hardware  costs.  Thus,  the 
choice of suitable  methods  compromising  accuracy  and  economy 
requirements  is of particular  importance. 

The  purpose of this  correspondence is to  provide  qualitative  es- 
timates of the  magnitude of the  error of the  measured  delay  time. 
Computer  simulation  seems  to be a  particularly  attractive  method 
because it allows  empirical  comparison of the  variance of the  time 
delay  estimator  for  all  the  methods  under  the  same  circumstances. 

11. DEFINITIONS AND METHOD OF COMPARISON 
Different  time  delay  estimators have been  proposed,  discussed, 

and  used  in  specific  applications  [7]-[lo].  In  this  correspondence, 
we shall  report  the  simulation  studies  concerning  variance of the 
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Fig. 1 .  Sampled  autocorrelation  function  (ACF)  and  power  spectral  den- 
sity  (PSD) of the  random  time  series s(iAt). 

time  delay  estimators  as  a  function  of  signal-to-noise  ratio (SNR), 
number of samples  (N), and  quantization  accuracy. 

The  computer  experiment  starts with the  generation of the ran- 
dom  sequence s(iAt) with  autocorrelation  function  and  spectral 
density  shown in Fig.  1.  The  signal-plus-noise  sequences x,(iAt) 
and x2(iAt) are  formed by adding  two  independent  Gaussian  se- 
quences nl(iAt) and n2(iAt) to s(iAt) and  its  delayed  version 

~[ ( iAt )  = ~(iAt) + nl(iAt) 

x2(iAt) = s(iAt - 0) + n2(iAr) (1) 

where D is the  time  delay  and At denotes  the  sampling  interval. 
For  each  realization  of xl( iAt)  and x,(iAt) the  location of the  cor- 
relation  peak  was  determined by the  following  methods. 

1) Direct  correlation [lo]: 

2) Hybrid-sign  correlation [lo]: 

R ~ s ( 7 )  = - x,(iAf) . sign (x2(iAt + 7)). 
1 

N 
3) Polarity-coincidence  correlation  [8], [ 101: 

4) Average  magnitude  difference  function [9] : 
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