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A panel of computer vision researchers recently convened and produced
a document concerning the relatively new field of “Active Vision” [36].
Although there is no precise definition of what active vision is, most
researchers would agree that active vision is concerned with controlling
camera parameters, such as position, focal length, aperture width, and
so on, in ways that serve to make vision processing more robust and
more closely tied to the activities that a robotic system may be engaged
in.

In this chapter of the book we will concern ourselves with two aspects
of the active vision paradigm. First, we will motivate the desirability
of directed, or attentive, trajectory control of camera position. Second,
we will describe details of how such control can be implemented in an
actual robotic system. In particular, we detail the implementation of
a visual servo control system which implements attentive control of a
binocular vision system through specification of gains in parallel feed-
back loops. The servo type of control that we propose is based on models
of mammalian oculomotor control systems [10, 23, 31].

10.1 Directed and Attentive Vision

Humans and other advanced animals process visual data in a dynamic
fashion, where instead of applying image analysis operations to a sin-
gle “snapshot” of the environment, they operate in an purposive and
integrative manner on a temporal and spatially disparate sequence of
images.

One can view the dynamic nature of animate vision in two ways: on
one hand, processing of image sequences is a neccessity because animals
move about in a changing environment and the vision system must deal
with these changes; on the other hand one can argue that sensor motion
actually helps in extracting information from visual sense data. Both
of these viewpoints have been put forth as motivation for active vision
research. The view taken in this paper is the latter (this is not to say
that the former viewpoint is without merit). In accepting this viewpoint
we need to answer the important question: What does the ability to
move image sensors give us in terms of solving vision tasks? There have
been produced a number of replies to this question, some obvious, some



2 Clark and Ferrier

subtle, and some which are summarized below.

Occasionally a viewpoint of a scene will be such that there are acci-
dental alignments of objects or illuminants which make interpretation
of the image difficult. A gross motion of the camera can then result
in a viewpoint where these accidental alignments are no longer present.
Thus camera motion can be used to increase the robustness of vision
algorithms by improving the quality of data being operated on. An ex-
ample of this is in viewing a highly specular surface. If the camera is
aligned with the specular angle relative to the light source, then the
intensity of the light incident on the camera may be very high. If the
camera has poor dynamic range, and becomes saturated, then details
such as surface albedo changes (surface markings) will be washed out.
If the camera is moved a little away from the specular direction, the
camera will no longer be saturated and the surface details will be more
readily distinguished. Similar examples can be found in obtaining depth
maps from viewpoints where very rapid changes in depth are present (i.e.
those caused by highly slanted surfaces rather than true depth discon-
tinuities caused by one object occluding another). In this case a small
motion of the camera in the proper direction will result in a viewpoint
where the change in depth is smaller. Thus directed motion of cameras
is useful in obtaining generic views of objects [17].

Aloimonos et al [1] showed that camera motion can be used to make a
vision problem that is ill-posed in the single image case into a well posed
one. This is possible due to the availability of extra constraints from the
additional images obtained in the active vision process. These added
constraints may be enough to convert an underdetermined problem into
an overdetermined one, and hence allow a robust solution to be obtained.
Examples of the application of this type of active vision include shape
from shading. Aloimonos and Basu[2] show how additional information
can come from the optical flow induced in the image by the motion of
the camera relative to the object surface. Images of points on the surface
move in directions that are functions of the surface normal. Knowing
how the images of points move (the optical flow), and the lighting, along
with the observed intensity, the object shape (surface normal vectors)
can be uniquely determined.

Motion of the camera can induce object dependent optical flows that
can be used to determine object shapes and estimate depths to points
in the scene (the structure from controlled motion process). Much work
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has been done on structure from motion algorithms, even before the
current interest in active vision. What the active approach brings to the
structure from motion problem is the control over the motion, thereby
both simplifying the problem [2] and allowing specification of optimal
motions. An example of using directed motion to aid in a visual pro-
cessing task was detailed by Ferrier [17]. In her work she determines
the motion needed to make the active shape determination process of
Aloimonos and Basu most robust to noise in the data..

Small, controlled motions of the camera can aid in solving the very
difficult problem of feature correspondence in binocular stereo vision.
Geiger and Yuille [19] describe a stereopsis algorithm which relies on
small controlled eye movements to simplify the binocular feature cor-
respondence problem. This is an example of a class of active vision
algorithms in which eye or camera movements are used to provide con-
straints that simplify the computation of visual features [7]. A related
process is that of incremental stereo [27] where the baseline between a
pair of cameras is slowly increased from a small distance. At each incre-
mental step the correspondence problem is easily solved. Controlled eye
movements can also be used to help in a calibration process, wherein
geometrical information regarding the imaging system is obtained [7].

Burt [9] describes active sensing (or “smart” sensing) as the selective,
task oriented gathering of information. In this form of active vision one
focusses the “attention” of the visual system on a portion of the scene
that is important to the task at hand. As the demands of the robotic
task evolve this focus of attention may shift. Such a form of active
vision could be referred to as attentive vision to distinguish it from the
active vision in which movements are made in order to provide additional
constraints for solving a given vision problem. Bajcsy [3, 4] extends the
concept of active perception to include the presence of feedback. In this
extension, information obtained through the visual process, both high
and low level information, is used to control the data acquisition process.

An obvious application of camera motion is in exploration, where one
moves the camera so as to bring into view parts of the world that were
occluded or hidden from view in the previous camera position. In this
case, active vision serves to help the vision task by providing new infor-
mation about the scene. In general the concept of visual exploration is
more subtle than one may at first think. Consider that the real reason for
needing camera motion for exploration purposes is due to the spatially
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limited nature of the camera. The camera only samples a finite portion
of the entire scene. In order to obtain information about more of the
scene, the camera must move. The need for camera motion is not lim-
ited to the strict limits on the sensitive areas of the camera. For reasons
of computational efficiency (as eloquently argued in Tsotsos’ complex-
ity level analysis [38]) one may wish to concentrate the computational
resources one has at their disposal on a portion of the camera data. In
the situation of a foveal camera, where the density of photorecpetors
in the camera is nonuniform, with greatest concentration of sensors in a
central region (or fovea), this shifting of computational resources implies
moving of the camera, so as to foveate on different parts of the scene.
By acquiring a part of the scene within the fovea, a detailed analysis
can be made of this region. Visual tasks such as object recognition re-
quire the movement of the eyes to closely examine areas of interest for
the particular task, while allotting only a small portion of the compu-
tational resources to the part of the scene which is viewed peripherally.
Experiments have shown that directing attention to a location for one
task increases visual capabilities for other tasks in that region [34, 35].
This region of increased visual attention has been likened to a spotlight
or variable powered lens [14, 21]. Such capabilities are desirable in an
active vision system. An efficient vision process would benefit from such
a “spotlight” in which to devote most of its computational power, while
processing the rest of the field at low resolution.

In most of the examples of active vision given above, the required mo-
tion of the camera is directed. In such cases, the vision system carrying
out the vision task speficies a definite trajectory for the camera. We will
refer to this form of active vision as directed vision. The other types
of active vision, such as the standard structure from motion methods,
which operate with arbitrary (although possibly constrained) camera
motions, will be referred to here merely as generic active vision.

10.2 Camera Motions for Directed Vision

The camera motions in a system using directed vision must come from
the vision subsystem. Depending on the type of robotic system the
camera is attached to, this motion can be carried out in a number of
ways. The most common situations are:
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e Camera rigidly fixed to a mobile platform. In this situation, the vision
system will have control over the motion, typically left-right-forward-
backward in a plane, of the mobile platform.

e Camera rigidly attached to a robot arm, which can itself either be fixed
to a base (such as a typical industrial robot), or to a mobile platform.
In this case the vision system will have control over the motion of the
robot arm, and perhaps control over the base if it is mobile. If the vision
does not have any control over the motion of the base then there may
be information directly transmitted to the arm controller from the base
controller to permit any motion of the base to be compensated for by
the arm, without needing any additional visual processing.

e Camera attached to a head, which is attached to a (mobile or fixed)
base. This arrangement has less flexibility and more restricted range
of motion than where the camera is attached to a six degree of freedom
arm, but will typically be faster and more precise. In this case the vision
system will have control over the relative position of the camera with
respect to the neck of the head. This approach has the advantage that
the motion of the arm and base are free for manipulation activities.

The form of the control that we have over camera position is clearly
application dependent and will vary with the particular directed vision
process that is needed. For gross exploration, where the camera needs
to peer behind objects or look into rooms, clearly the use of a mobile
base is indicated. For situations where the exploration is only needed
in a limited region, such as the workspace of a fixed industrial region,
mounting a camera on a dextrous robot arm may be sufficient. This type
of system could used in the active object mapping approach of Ferrier
[17] as that method requires that the camera be moved about an object,
but does not require motion over large distances. In cases where directed
exploration is not required, a head type of camera motion may be all
that is required. A head system may be used, for example in the optimal
active shape from shading technique described in [16] or the incremental
stereo technique of Geiger and Yuille [19]. In both of these examples the
small precise motions available in a head camera system are all that are
required.

An important class of directed vision processes, and ones that are ap-
propriate for head camera systems, are those involving what is commonly
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termed attentive vision. By attentive vision we mean visual processes
in which the computational resources available to the vision system are
focussed on different parts of the scene. This focussing can operate ei-
ther by moving the camera so that different parts of the scene become
visible, or by changing which parts of the image are being processed at
any given time. This mode of attention forms the basis for Ullman’s
visual routine paradigm [39], in which sequences of elementary image
analysis operations are performed to obtain properties of, and relations
between objects, in a scene. Focus of attention may also refer to the
selection of a given set of image processing operations that are to be
used to extract information from the scene. For example, a given visual
task may require that corners of objects be detected, while another vi-
sual task may require that the color of objects be determined. In each
of these two cases different features would be attended on.

As we are concerned here with active vision, where camera motions are
paramount, we will only talk about the type of attentive vision in which
shifts in the focus of attention are created through camera motions.
Furthermore, since most of the attentive vision algorithms are those
that are suitable for head camera systems we will for the rest of the
paper concern ourselves only with head camera systems, although much
of what we say will be applicable to arm and base mounted camera
systems as well.

10.3 Saliency Based Feedback Control of Camera Mo-
tion

In all of the proposed directed and attentive active vision algorithms
there are two common tasks to be performed. One is to figure out where
to direct the camera gaze next (the next look problem [36]), and the
other is to then carry out the motion that will let one look there.

In directed vision applications there are two different forms that the
camera motion can take. The first is a saccadic motion which brings
the camera to view on a particular part of the scene. An exploratory
algorithm will typically generate a sequence of such camera motions.
The second form of camera motion is a pursuit motion where the desired
motion is a non-constant smooth trajectory. Examples of algorithms
which generated this type of motion include those which track moving
objects, the optimal shape from shading technique of Ferrier and Clark
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[16] as well as their active object mapping algorithm [17].

One can think of an approach for deciding what camera motion to
carry out that bases the decision on a measure of the saliency of a given
point in the camera’s positional configuration space. That is, based on
the visual data coming from the camera, and depending on the particular
directed vision algorithm being performed, a saliency value is computed
for each possible position (or perhaps each increment in position) that
the camera can acheive. The camera is then moved to the configuration
of maximum saliency. At this point a region of interest (ROI) processor
may perform more complicated visual tasks. A pursuit motion or other
trajectory can be obtained by constantly changing the saliency map so
as to shift the point of maximum saliency over time in the required
direction.

Assuming that one adopts such a saliency based camera motion con-
trol scheme, one must answer the question of how to determine what is
the saliency measure to be used, and how is it to be computed? In the
context of human visual search, or exploration, Treisman and Gelade [37]
identified a “preattentive” stage wherein certain features, primitives, are
detected in parallel across the visual field. Possible primitives include
colour, line ends (terminators), spatial frequency, motion, line orienta-
tion, binocular disparity, and texture (see [5, 8, 21, 18, 26, 37, 40]). These
features could then be combined to produce a saliency map by forming
a weighted combination of the feature values. Depending on the precise
weights, the point of maximum saliency will appear at different points.
Changing these weights corresponds to shifting the point of maximum
saliency, and hence, in our view, changing the focus of attention.

One can describe the control of a mechanical system through a dif-
ferential equation relating the effect of control inputs to the state of the
system as follows:

#(t) = f(z(t)) + G(z(®))o(t) ; y(t) = h(z(t)) (10.1)

where z(t) is an n-dimensional state vector, v(t) is a m-dimensional vec-
tor of controls and y(t) is a p-dimensional vector of sensor signals (which
depends on the system state z). The system state usually includes the
positions of the various mechanical degrees of freedom of the structure.
The function G(-) relates the effect of the control vector v(t) on the sys-
tem state. The control vector can be independent of the sensor variables
y(t) in which case we have open loop control, or it can depend on the
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sensor variables in which case we have closed loop control (assuming, of
course, that the sensor variables are functions of the system state).

To make the open loop/closed loop distinction more explicit one can
write the control vector as the sum of an open loop component and a
closed loop component as follows:

u(t) = u(t) + k(y(t)) (10.2)

The term u(t) represents a vector of open loop control inputs, or set-
points, that we wish the system to follow. The function k(-) operates
on the sensor variables y(t) to provide the state feedback required for
closed loop control.

The above formalism captures both the physical nature of the system
(through the G and f functions) and the activities the system is to
undertake (through the u, k, and y functions). One can absorb the
definition of the y(t) functions into the k function by assuming that all
possible observations are available and that the &k selects the observations
that are used in any given control scheme. The k function is of critical
importance in our saliency based scheme. Let us assume that k is a
linear operator, i.e.

3(t) = @(t) + k(t)F(t) (10.3)

where k(t) is a time varying matrix of feedback gains. Let us further
interpret the vector §(t) as a feature vector, derived from the camera
image. It is clear that by altering the elements of k(t) we alter the
relative effect that the various features have on the control signal (t)
and hence on the position of the camera.

In the remainder of the chapter we present details of of an attentive vi-
sion system that we have implemented that is based on this servo model
of attention. This system is a dual level system. The first, or inner, level
performs automatic vergence and pursuit operations based on set points
and mode controls supplied by the outer level. The outer level sends set-
points and feedback gains to the inner level which are themselves based
on a set of setpoints and feedback gains provided by the user as input to
the outer level. In this case the outer level gains k’s describe what visual
routines, or modes, are to be applied to the binocular visual input (the
y(t)’s) to generate the control signals (the v(t)’s). Changes in attention
are implemented by supplying the outer level motion control component
with a new set of feedback gains. Visual routines which involve many
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shifts in attention are implemented by sending the controller a mode
containing a sequence of feedback gains and setpoints.

10.4 The Harvard Head Oculomotor Control System

In this section we describe the physical configuration of our robotic
“head” and describe the implementation of the low level oculomotor
control system for our attentive binocular vision system. This control
system is based on models of mammalian oculomotor control systems.

The mechanical structure of our binocular image acquisition system is
shown in figure 11.1. This mechanism can be attached to a mobile plat-
form or it may be rigidly fixed to a worktable overlooking the workspace
of a robot for assembly or inspection tasks. The “head”, shown in fig-
ure 11.2, has seven degrees of freedom that must be controlled. Three
of these degrees of freedom are associated with the orientation of the
cameras, while the other four have to do with the state of the cameras’
aperture and lens focus. The three mechanical degrees of freedom are:
1) Pan, which is a rotation of the inter-camera baseline about a vertical
axis, 2) Tilt, which is a rotation of the inter-camera baseline about a
horizontal axis, and 3) Vergence, which is an antisymmetric rotation of
each camera about a vertical axis. With these three degrees of freedom
one can theoretically place the intersection of the optical axes of the two
cameras (what we will refer to as the fixation point) anywhere in the
three dimensional volume about the head. In practice, the volume of
accessible fixation points will be restricted due to the limited range of
motions of the degrees of freedom.

The distance to the surface of exact focus can be controlled with the
electronic focus on the lens. This distance ranges from a near distance of
about 30 cm to essentially an infinite distance away. The focus control
is an integral part of any attentive vision system as it allows us to focus
on the point of fixation. With no focus control, the features that we
are fixating on may be out of focus. The ability to control lens focus
also allows us to obtain depth information monocularly through focusing
[25], or through defocus measurements [22, 29]. Our system also allows
control over the lens aperture, which affects the amount of light received
by the image sensor, and the depth of focus (not to be confused with the
depth of the surface of exact focus). It is important to be able to adjust
the aperture to maintain sufficient light levels for the image sensor. The
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A schematic view of the Harvard head showing the sign conventions for the pan,

tilt, and vergence angles.
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Figure 10.2
A frontal view of the Harvard head.

aperture control in our system is automatic, and responds to changing
light levels, and is not dependent on any attentive inputs. DC motors
are used to drive the pan, tilt, and vergence axes. The pan axis is
driven directly, while the tilt axis is belt driven, mainly due to space
considerations. The vergence motor drives a lead screw, which then
causes the camera rotations through a kinematic chain. The relationship
between the vergence motor rotation (or the lead screw displacement)
and the camera vergence angle is approximately linear (within 1 percent
over the range of travel) which makes the programming of the vergence
control simple. The focus motion is generated via a motor encased
in the lens housing. Control signals to this motor are generated by
an integrated circuit also located in the lens housing. A digital data
stream, suitably encoded, must be sent to the focus motor driver I.C.,
to command a change in focus. The manufacturer of the lens, Canon,
would not release details on the specifications of the required command
data streams, so we determined the proper data sequences ourselves.
These details are available from the authors, subject to certain disclosure
conditions.
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One can partition the control of the pan, tilt, and vergence axes of
the head mechanism into three descriptive regimes. These are, saccades,
pursuit, and vergence. Taken together, these three modes of operation
allow control over shift in attention, and maintenance of attention. A
saccade is a rapid motion of the pan and tilt axes which causes a coupled
motion of the optical axes of the two cameras, resulting in a change in
the direction of gaze of the cameras. In a saccade, both cameras move
in the same direction. This motion is not enough to allow independent
control of the gaze direction of each camera. To obtain this one uses a
vergence movement. A vergence movement is a coupled motion of the
two cameras wherein the the two cameras rotate in opposite directions.
Taken together, the saccadic and vergence systems allow the fixation
point of the binocular camera system to be arbitrarily controlled. Once
the saccadic and vergence systems have fixated the cameras on a feature
in the scene, the pursuit system is then used to track the feature. The
pursuit system adjusts the velocity of the pan and tilt axes so as to
minimize the retinal velocity (the velocity as measured in the camera
images) of the fixated feature. This will keep the feature fixated as
long as it does not move in depth. If it moves in depth the vergence
system will adjust the vergence angle (the relative angle between the
two cameras) to maintain fixation.

The human oculomotor system is very complex and it is not yet fully
understood. It contains many interacting functional modules, such as
[23] the Frontal Cortex (for making plans and intentions), the Occipital
Cortex (for visual reflexes and smooth pursuit tracking movements), the
Pontine Reticular Formation (for both saccadic and pursuit movements),
the Cerebellum (for coordinate transformations), the Superior Colliculus
(for relating visual input to oculomotor commands), and the Vestibular
System (for allowing the eyes to compensate for body motions). The
control system that we have described in this chapter takes on the func-
tionality of many of these modules, and we do not claim our system as a
model for any particular part of the human oculomotor control system.
We have, however, used some models of the human oculumotor system
in developing our system.

In humans, the physiological evidence indicates that saccades are con-
trolled with a sampled data system, while pursuit motions are contin-
uously controlled [31, 33]. The latency, or reaction time of the human
saccadic system has been determined to be about 200 milliseconds [31],



Attentive Visual Servoing 13

although it has been observed that anticipatory behaviour can reduce
this latency time [11]. This latency is the time it takes from the moment
of change in retinal position of an attended feature to the moment that a
motor command is given to generate the saccade. Presumably the bulk
of this time is taken up in processing the retinal image to determine
the position of the feature. During this period the oculomotor system is
insensitive to further changes in the retinal position of the feature, and
the saccade that is generated is that appropriate to the retinal position
of the feature as it was 200 milliseconds prior to the generation of the
saccade. If the feature moves during this refractory period the saccade
will result in a position error. From this observation came the sampled
data model of the oculomotor control system, originally proposed by
Young and Stark [43].

Young and Stark treated the pursuit system as a sampled data sys-
tem as well. Upon further psychophysical examination (e.g. see [32])
this assumption turned out to be incorrect, and the pursuit system is
now thought to use a continuous time data system, or at least a sam-
pled data system in which the sampling rate is much higher than the
sampling rate for the saccadic system [32]. It has been observed [10]
that pursuit movements are not always smooth, but will include sac-
cadic components if the visual feature being pursued has a large retinal
velocity. Presumably these saccades are neccessary if the pursuit sys-
tem can not keep up with the moving object. In this case a cumulative
position error builds up, and when this error reaches a certain threshold
a saccade is generated in order to reduce the position error.

The control scheme that we use to control the pan, tilt, and vergence
degrees of freedom of our head system is based on the model of human
oculomotor control described by Robinson in [31]. This model postulates
separate subsystems for pursuit and saccadic motion. These subsystems
are depicted in figure 11.3 (adapted from [31]).

There are two interesting features of Robinson’s model. The first is
that the sampled data nature of the saccadic system. The desired retinal
position, Ep is sampled (with a pulse sampler), and held by a first
order hold (an integrator). The output of this sample/hold is then used
as a setpoint to the plant (in this case the local motor controller). The
actuator will then try to move the camera to the desired position. During
the period between sampling pulses, the output of the sample/hold is
being held constant, and hence the desired eye position is being held
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Figure 10.3
Robinson’s model for the human oculomotor control system. TOP: Saccades,
BOTTOM: Pursuit.
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constant, even though the image of the feature to be attended to may
be moving. A sample/hold does not appear to be present in the pursuit
system.

The second feature of Robinson’s model to be noted is that there is
internal positive feedback in the control loop. This positive feedback
is neccesary in the case of the pursuit system (figure 11.3b) to prevent
oscillations due to delays in the negative feedback loop. The negative
feedback is provided by the vision system which, in the case of the pur-
suit system, detects the velocity of a feature, computes the retinal veloc-
ity error (which is equal to the retinal velocity since the desired retinal
velocity is zero for tracking purposes), and causes the eye to move in a
manner to reduce this error. However, these computations can not be
done instantaneously, so there is a delay between the time at which an
visual observation is made and the time at which the control command
based on this observation is available. To eliminate the oscillations that
can occur with this feedback, a compensatory internal positive feedback
is inserted into the loop. This is done by adding a delayed “efference
copy” of the current eye velocity to the computed retinal velocity error.
The delay is such that the efference copy that is added to the velocity
error is that measured at the same time that the visual observation (that
the retinal velocty error is based on) is made. The sum of the retinal
velocity error and the delayed efference copy gives a new desired eye
velocity which is input to the plant (eye muscles or motor driver). The
effect of this positive feedback path is to essentially eliminate the nega-
tive visual feedback. The saccadic system is modeled in the same way,
except that position control is being done instead of velocity control. In
the saccadic system, however, the internal positive feedback is not really
needed to ensure stability, as stability is gained through the use of the
sample/hold. Nontheless, the available evidence indicates that the hu-
man saccadic system does use internal positive feedback to compensate
for delays.

Note that the internal positive feedback scheme implies that the sac-
cadic system directs the eye to move to an absolute position, in head
coordinates, rather than to move by a certain displacement in a given di-
rection. The issue of whether saccadic control of eye movements is head
coordinate based or retinotopic coordinate based has been long a subject
of discussion among neurophysiologists. The current evidence, accord-
ing to Robinson [31] and others, suggests that head based coordinates
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are used.

Details on a model for the vergence system are sketchy, but Robinson
[31] indicates that the vergence system is continuous (no sample/hold is
used) and uses internal positive feedback (although this is by no means
certain). This is similar to the pursuit system save that position control
is being done instead of velocity control and that the vergence system
responds more slowly than the pursuit system.

Based on Robinson model as described above we have implemented
the control scheme that is depicted schematically in figure 11.4 for the
Harvard head. The pan, tilt, and vergence motors are driven by a pulse

Horizontal
Components

X of Feature
Position
Vector

le—Left Video

v l«—Right Video

- Start Saccade

Saccade/Pursuit
Mode

Figure 10.4
The control system used for the Harvard head.

width modulated MOSFET amplifier. The input to this amplifier is
derived from the output of a Dynamation motor controller board [13].
The Dynamation board is indicated in figure 11.4 by the box taking in
the shaft encoder position from the motor and which outputs a drive
signal to the motor amplifier. The Dynamation board takes set point
inputs over a VME bus connection to a SUN computer. These setpoints
can either be position setpoints (in the case of vergence or a saccade) or
velocity setpoints (in the case of pursuit). The Dynamation can output
to the VME bus (and then on to the SUN computer) an efference copy
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of the current motor position. This efference copy is delayed, in the SUN
computer, by a time equal to the time taken to perform visual feature
localization, and added to the current position errors, determined by
the visual feature localization process. The Dynamation board does not
have a tachometer, so that an velocity efference copy is not available.
Thus we generate one by differentiating the position efference copy. The
sampling rate of the Dynamation board is very high (more than 1000
samples per second), however, so that this estimate of velocity should
be accurate.

The feature detection and localization is performed in a special pur-
pose image processing system, manufactured by Datacube [12]. This
system can do image processing operations such as 8x8 convolution, his-
togramming, and logical neighborhood operations on a 512x512 pixel
image at video rates (30 frames per second). Thus the latency per oper-
ation is 33 milliseconds. Most feature detection operations require more
that one frame time however. In our initial experiments we implemented
a feature detector that could detect black blobs or white blobs, in about
3 frame times. Therefore the latency of our feature detector was about
100 milliseconds. The Datacube system, after it detected the presence
of a feature, would output the position and velocity of the feature over
the VME bus to the SUN workstation. The SUN workstation then com-
putes the quantities GRE + HLE, éRm + éLm; QRy + 0Ly, éRy + éLy; and
Or, — 01, where fp_ is the x component of the retinal disparity in the
right camera, 0, is the y component of the retinal disparity in the right
camera, §r,_ is the x component of the retinal disparity in the left cam-
era, 01, is the y component of the retinal disparity in the left camera,
and 6 indicates a retinal velocity. The difference in the left and right
x components of the retinal position is added to the delayed position
efference copy of the vergence motor. Thus this difference will be driven
to zero. The sum of the left and right retinal position errors in both the
x and y directions are added to the delayed position efference copies of
the pan and tilt motors respectively. This will, during a saccade, drive
these sums to zero. Combined with the driving of the difference of the x
retinal position errors to zero by the vergence, the result will be that the
x and y retinal position errors in both cameras will be driven to zero,
as desired. A saccade trigger signal (that opens up the sample/hold)
is generated by the feature detection system when the retinal position
error is greater than threshold value. During the saccade, visual process-
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ing is turned off to prevent saccades being generated while the saccadic
motion is being performed.

During pursuit the sum over the two cameras in each of the x and y
retinal velocity errors will be driven to zero. If the system has the correct
vergence, then the x and y component of the retinal velocity error will
be driven to zero in each eye, and not just the sum of the errors in the
two eyes.

We have performed simple blob tracking experiments which show that
the system operates as desired, in that the vergence and saccadic modes
result in fixation of the feature as we move it about in space.

10.5 Modal Control of Attention

The inner level control loop described in the previous section is controlled
by an outer loop which implements attentional shifts in camera positions.

The first stage in our visual attention model acquires the images and
extracts “primitives” in parallel across the visual field. The results from
this stage are a set of feature maps y;(x,y,t) which indicate the pres-
ence or absence of a feature at each location in the image. Simple feature
maps may indicate the presence of a specific color or line orientation.
Complex feature maps may perform texture and figure-ground segmen-
tation or more complex feature maps may implement inhibition from
neighboring regions to compute which regions are different from their
surroundings.

The next stage of the model combines the results from the feature
maps. The output from the feature maps are “amplified” with differ-
ent “gains”, k;(t) for each map y; and then these amplified values are
summed to form the saliency map, S(z,y,t). The value of the map at
each location is a numeric indicator of how “salient” is the information
at that location. Hence finding the location with the maximum value
will give the most salient location with respect to the given amplifier
gains, k;(t). As the notation indicates, these gains may vary over time,
thus changing the location of the most salient feature. If more than one
location shares the same maximum value, one location must be chosen
(it does not make sense to attend to a location in the middle of two
salient features, one or the other location must be picked). Figure 11.5
shows this attention model.

It can be seen that this model incorporates many of the psychophysical
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Figure 10.5
Saliency based attentive feedback control of camera position.

results observed earlier. Adjusting the gains of a particular feature map
will direct attentional resources to occurences of that feature. A decaying
gain function, k(t), will decrease the saliency of a location over time
and hence another location will become more salient and attention will
change to a new location. For example, consider the detection of a red
T in a field of green L’s. Suppose attention is first be directed at the
red T. As the gain in the feedback path corresponding to the color red
decreases and the gain corresponding to the color green increases, the
focus of attention will change locale, to attend to the nearest green L.
Another psychophysical result which is captured in our model is that
higher cognitive levels can actively select which features to attend to
by adjusting k;(¢). Human attention can be consciously applied to a
visual task so humans must be able to consciously select the more salient
features.

Koch and Ullman [24] describe the Winner-Take-All (WTA) network
which will locate the most conspicuous location (one whose properties
differs most from the properties of its neighbors). The locations which
differ significantly from their neighbors are singled out and a numeric
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value representing the “conspicuousness” is assigned. The results from
each primitive detector are combined into a global saliency map which
combines the value from each feature map and assigns a global measure
of conspicuity. The WTA network finds the maximum value of “con-
spicuity” and locates that maximum. Attention can be allocated to the
position which gave the highest value for further processing.

It can be seen that the WTA scheme uses the same models of attention.
The values assigned in the global saliency map of Koch and Ullman
corresponds to the saliency map of this model when using an appropriate
set of gains. The WTA scheme is an implementation which deals with
the problem of finding the maximum of the saliency map and localizing
it. The notion of winner-take-all is appropriate since only one location
can be attended to at one time. Koch and Ullman actually suggest
the idea of a higher cognitive process adjusting the “conspicuousness”
of a feature to selectively inhibit or attend on a specific feature, which
corresponds to changing k(¢) in this model.

We implement our modal attention scheme with two nested feedback
loops. The gains of the inner feedback loop which is concerned with
setpoint control of the head positioning motors remains constant, as
the load on the head motors remain roughly constant. One need only
determine the position feedback gains k once, such that the step response
of the motor to the inner level setpoints is critically damped. These
gains are set in the Dynamation controller board, which handles the
inner level control loop. The sensory input to the inner level is the
motor shaft position, measured with the shaft encoders. The velocity
of the motor shafts are not measured directly but are computed from
the position measurements through differentiation as described in the
previous section. The inner control loop is switched between position
control and velocity control by the outer control level. This is done, in
effect by sending a (u, k,T') triple (following Brockett [6], we refer to this
triple as a mode , where T is a time interval, u is a setpoint or trajectory
during this time interval, and k are the feedback gains to be used in
this interval) in which the k’s decide which measurement (position or
velocity) will be used to control the motor. The setpoints u that are
input to the inner level control loop also come from the outer control
loop in these (u, k,T) triples.

The k’s in the (u, k,T) motion control system definitions concerned
with the outer, visual, feedback loop will change due to changes in the
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focus of attention. The feedback selection process at this level is much
more complicated than the inner level feedback selection in which only
direct position or velocity feedback was being selected for. In the outer
level, one still selects for position or velocity feedback but, in addition,
one must select the feature(s) to be used to detect the scene element
whose position or velocity is fed back. This feature selection is per-
formed by adjusting the weight we apply to a given feature in the control
feedback loop.

The outer control level consumes modes which allocate attention to
specific features and produces different modes for the inner loop. The
output modes consist of position and velocity setpoints and a time in-
terval in which to apply these setpoints. The modes consumed by this
outer level are again of the form (u, k,T) where u is the desired postion
(always 0 for foveation — to center target on visual field), k is a vector
which represents which features to detect (the amplifier gains) and T is
the time period in which the mode is to be applied.

In the language given earlier, y(t) is the feedback vector. In this case,
y(z,y,t) is a pair of images (left and right “eyes”). Referring to the
model given earlier, K (t) = (k1 (t), k2(t), ..., kn(t)) is a vector containing
the “weights” to be applied to the results from the primitive operations
(feature maps). With these gains, the saliency map can be computed
and the maximum found. The location of the maximum must then un-
dergo a coordinate transform in order to obtain the setpoints in head
coordinates. This transformation will depend on the camera parameters
and the particular configuration of the “head” and hence can be ab-
sorbed in the G(-) term in equation (1). The idea that alteration of the
gains of visual feedback paths result in shifts in attention, (or vice versa)
has some support from physiological studies [20, 28, 30, 41, 42] which
indicate that the responses of neurons involved in visual perception are
modulated by changes in the focus of attention.

Figure 11.6 shows the lowest two stages of the modal control. A mode,
(u, k,T), which was generated at a higher level, is “fed” into the inter-
mediate level (denoted M2). Over a time period, 0 < t < T the weights
associated with the feature maps will be K (t) = (k1(t), k2(t), ..., kn(t))-
At each instant of time, ¢, a location (z,y) will be output as the “most
salient feature” of the image. These positions are output to the inner
loop (denoted M1) where they generate positional errors used to drive
the head motors.
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Figure 10.6
The two lowest stages of the modal control system.

10.6 Summary

In this chapter we have provided a brief explanation of the desirability
of active vision. We gave a number of typical applications of active
vision. We described a control system for a binocular camera mechanism
which allows shifts in focus of attention to be made in a natural, device
independent manner. Shifts in focus of attention is accomplished via
altering of feedback gains applied to the visual feedback paths in the
position and velocity control loops of the binocular camera system. By
altering these gains we can perform a feature selection operation, by
which the saliency, in the sense of Koch and Ullman [24], of a given
feature is enhanced, while the saliency of other features are reduced.

The control system that we have described in this system is a two
level one. The first, or inner, level performs the direct control over the
position and velocity of the motors attached to the cameras. This level
is based on models of the human oculomotor control system. The outer
level controls the focus of attention, in that it determines what features
are going to be used in determining where to look next.
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