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Abstract—This paper describes a simple, yet powerful ul-
trasound scatterer distribution model. The model extends a 
1-D generalized Poisson process to multiple dimensions using 
a Hilbert curve. The model is intuitively tuned by spatial den-
sity and regularity parameters which reliably predict the first- 
and second-order statistics of varied synthetic imagery.

I. Introduction

Synthetic ultrasound (US) imagery is a powerful 
tool for the development and validation of US image 

processing algorithms. Because simulation permits fine-
grained control over the ground truth imaging and target 
parameters, it is a very useful complement to real test 
imagery. Typical US simulators, such as Field II [1], [2], 
take as input a list of spatial coordinates corresponding to 
the location of point scatterers along with their scatter-
ing strength. The user must specify these parameters to 
reflect the object to be “scanned.” As with real imagery, 
the texture of the resulting image depends on the struc-
ture of the scanned object (i.e., the type of tissue), which 
can be characterized by, among many parameters, the 
strength of the scatterers, their density, and their spatial 
organization. In the context of artificial US imagery used 
for the validation of image processing algorithms, most 
studies have focused on the first 2 of these parameters 
[3], [4]. Models for the spatial organization of US scat-
terers in multidimensional images exist, but have been 
geared mostly toward the study of clustering phenomena 
observed in blood [5], [6] rather than toward the develop-
ment of a general purpose validation platform for image 
processing algorithms.

This paper demonstrates the power and flexibility of 
a general method, first introduced in [7], for generating 
lists of multidimensional scatterer positions with variable 
strength, density, and spatial organization ranging from 
tightly clustered to nearly regular to mimic a broad range 
of tissue types. The method extends a previous 1-D scat-
terer distribution model [8], [9] by mapping its output 
to a multidimensional space filling curve. The mapping 
provides a fast means of generating multidimensional data 

for simulations, and the characteristics of the resulting 
images are predictable from the model parameters. The 
stability and flexibility of the model are demonstrated by 
comparing the first- and second-order statistics of syn-
thetic images produced using the model with theoretical 
predictions from US physics.

The rest of this paper is organized as follows. Section II 
presents the chosen adaptation of the 1-D model of [8], [9] 
to multiple dimensions. Section III compares the proposed 
model to other point distribution models used in ultrason-
ics literature. Section IV describes the pool of synthetic 
US data that was generated using the chosen model in 
conjunction with the Field II US simulator. In Section 
V, these data sets are used to validate the model against 
theoretical predictions of US speckle statistics based on 
previous US imaging research.

II. m-D Generalized Poisson Model

Consider a Poisson point process with rate 1/β. In 1-D, 
this process can be defined in terms of statistics on the 
amount of space d between 2 consecutive points. These 
statistics are exponentially distributed. The approach 
taken in [8], [9] is to generalize the Poisson process by 
making d Gamma distributed instead of exponentially dis-
tributed:
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This distribution can be reparameterized in terms of 
the mean and variance of d, d = ab  and  

s ab ad
d d= =2 2/ .  The parameter  α may then be 

viewed as a regularity parameter which, for a given point 
density, controlled by  1/d ,  tunes the variance of point 
spacing [9]. For α = 1, (1) reduces to the exponential den-
sity, and the points are randomly distributed in space. For 
α < 1, the point spacing has high variance and the points 
group in clusters, whereas for α > 1, the point spacing has 
low variance, yielding nearly periodically spaced points.

This point process is intrinsically one-dimensional. 
Sampling this model becomes difficult in 2 or more dimen-
sions, except in the trivial case α = 1. A simple heuristic to 
generate 2-D points with α ≠ 1 would be to sample points 
according to the 1-D model along several short segments 
mapped to a 2-D grid of arbitrary precision in a raster 
scan fashion. This mapping poorly reflects what is really 
desired, as it only preserves the spatial organization of the 
original 1-D points along one direction. The raster scan 
mapping is but one of many possible continuous mappings 
of a line onto a finite multidimensional space known as 
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space filling curves. More isotropic preservation of spatial 
organization can be achieved by using a different kind of 
space filling curve. Ideally, distances measured along the 
original line should correlate well with distances measured 
in the multidimensional space, a property known as pres-
ervation of locality. The Hilbert curve (shown in Fig. 1) 
is a recursively defined fractal curve which exhibits excel-
lent preservation of locality and is therefore a good choice 
[10].

The algorithm introduced in [12] can be used to ef-
ficiently determine the mapping of 1-D points onto a m-
dimensional Hilbert curve of a given precision. As a result 
of applying a Hilbert curve mapping to the output of the 
1-D generalized Poisson point process, a set of m-D points 
is obtained whose spatial organization displays similar 
characteristics to that of the original 1-D points, as sup-
ported by empirical evidence of the preservation of local 
scatterer count statistics [7].

III. Comparison With Other Models

The power and flexibility of the proposed model are 
best demonstrated in comparison with alternative point 
process models. This section focuses on multidimensional 
models studied within the context of US scattering. In [5], 
the Neyman-Scott point process is used to generate clus-
tered point patterns for the study of the characteristics of 
US signals in relation to red blood cell aggregation. Using 
this method, cluster centers are generated according to 
a Poisson process of a certain density. The actual data 
points are then generated according to the desired scat-
terer density from Gaussians centered about these clus-
ter centers, whose variance σ2 controls the tightness of 
the clusters. Sample 2-D point patterns obtained using 
this model are shown in Fig. 2(a), with the points tak-
ing a more tightly clustered configuration with larger σ. 
In these examples, the density of the cluster centers was 
taken to be the square root of the point density.

At the other end of the spatial organization continuum, 
quasi-regular point patterns can be generated by random-
ly jittering a lattice of regularly spaced points of a given 
density [13]. The randomness of the points is controlled 
by the variance κ2 of a Gaussian noise process, as shown 
in Fig. 2(b).

Neither of these approaches models the full continuum 
of spatial organizations ranging from tightly clustered to 
nearly regular. Such flexibility is embodied in Gibbs-Mark-
ov pairwise interaction point processes, which describe 
stochastic repulsive and attractive potentials on pairs of 

points. Such a model was implemented in [6] to model ag-
gregates of nonoverlapping red blood cells. A fixed, strong 
repulsive potential V enforced the latter constraint for 
pairwise distances below the diameter of a cell, while a 
distance dependent moderate potential ε drew points to-
ward a clustered or regular (depending on the sign of the 
potential) configuration for a range of larger distances. 
Fig. 2(c) illustrates point configurations obtained using a 
very similar model. Note how, for clustered configurations, 
the strong short-range repulsive potential introduces regu-
lar structure within the clusters. This same short-range 
potential also prevents the formation of truly random 
point configurations. Fig. 2(d) shows what happens when 
the short-range potential is eliminated: for negative long-
range potentials, the point configuration abruptly goes 
from random to extremely clustered, limiting the diversity 
of available clustered patterns [14]. As well as being dif-
ficult to tune, this sort of model is typically sampled using 
slow iterative algorithms whose convergence is difficult to 
assess.

Fig. 2(e) shows example 2-D point distributions ob-
tained using the proposed model for a fixed point density 
and different values of α. Note how the point configura-
tions smoothly transition from clustered, to random, to 
more regularly spaced with changes inα, making the model 

2 IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. TBC, no. TBC, TBC TBC

Fig. 1. Discrete approximations of the 2-D Hilbert curve [18]. The level 
of precision of the curves increases from 1 (left) to 5 (right).

Fig. 2. Example 2-D point distributions obtained using different models 
with fixed point density. (a) Neyman-Scott process with varying cluster 
width σ; (b) Regular lattice with varying jitter noise κ; (c) Gibbs-Mark-
ov process with short-range repulsion and varying long-range potential 
ε; (d) Gibbs-Markov process with no short-range repulsion and varying 
long-range potential ε; (e) proposed generalized Poisson process with 
varying regularity parameter α.



flexible and easy to tune. Table I summarizes the features 
of the different models compared in this section.

IV. Synthetic US Data Sets

The method described in Section II was used to gener-
ate lists of 3-D scatterer positions for all combinations of 
6 scatterer density values ranging from 0.5 to 16 scatter-
ers/mm3 and 10 regularity parameter values ranging from 
0.01 to 300, with logarithmic increments. The strength of 
each scatterer was chosen according to a lognormal dis-
tribution with mean 0.1 and variance 0.3 as suggested by 
[9]. Synthetic US data were generated from these lists of 
scatterers by Field II [1], [2] using a virtual linear array 
transducer with a central frequency of 3.5 MHz, a depth 
of 6  cm, a focus at 3  cm and a sampling frequency of 
50 MHz. For each parameter setting, 100 parallel 2-D im-
ages were generated, separated by 0.1-mm increments and 
consisting of 128 radio-frequency (RF) vectors covering a 
width of 4 cm. The scatterers occupied a cubic volume of 6 
× 6 × 6 cm, 2 mm below the transducer surface. The RF 
data were envelope detected using the Hilbert transform.

Slices from the 3-D data sets obtained for 0.5 scat-
terer/mm3, logarithmically compressed for visualization, 
are shown in Fig. 3(a), illustrating how the image texture 
varies from a very grainy to a relatively smooth aspect as 
the regularity parameter increases. It is straightforward 
to combine different types of microstructure in the same 
data set to simulate a nonhomogeneous target. Fig. 3(b) 
shows one slice of a data set made from 10 different com-
binations of scatterer density, regularity, and strength dis-
tributions.

V. Speckle Statistics of Synthetic Imagery

To be useful in the context of US image simulation, 
the proposed scatterer distribution model must be able to 
produce a broad variety of speckle images. Additionally, 
the statistics of these images should be reliably predict-
able from the model parameters and agree with theory. 
This section examines the first- and second-order statis-
tics of the synthetic imagery obtained using the proposed 
model.

A. First-Order Statistics

This section analyses 2 local first-order speckle statis-
tics of the synthetic US data, namely the signal-to-noise 
ratio R and skewness S of the echo intensity signal I (the 
square of the envelope), defined as
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These quantities (or transformations thereof) parame-
terize many of the distributions commonly used to describe 
local speckle amplitude statistics, including the Rayleigh, 
K, Rician and homodyned K distributions [4] and the Na-
kagami distribution [16]. Theoretically, for Rayleigh scat-
tering (high-density and randomly placed scatterers), R 
= 1 and S = 2. Lower density or tighter clustering of 
scatterers lead to lower values for R and higher values for 
S whereas the opposite may hold true when the scatter-
ers are periodically placed along the direction of US wave 
propagation.

The synthetic data sets of Section IV were treated 
as collections of 100 2-D US image frames each. In each 
frame, 8 nonoverlapping windows measuring 14 A-lines 
laterally by 490 samples axially were studied at 4 different 
axial depths uniformly sampled within the image. Fig. 4 
shows how R and S varies according to scatterer density, 
regularity, and axial depth.

As predicted by theory, as the scattering conditions ap-
proach those required for fully developed speckle forma-
tion, the value of R approaches 1 and S approaches 2. For 
a given depth and a random arrangement of the scatterers 
(α = 1), these results are obtained most closely for high 
scatterer densities. Clustering (low values of α) leads to 
so-called sub-Rayleigh conditions, with R < 1 and S > 
2, with low scatterer densities enhancing the effects of 
clustering. Also note the changes in R and S with depth, 
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TABLE I. Comparative Summary of Different Point Process Models Used in Ultrasonic 
Simulations. 

Model Params Clusters Regularity Speed

Poisson 1 No No Very fast
Neyman-Scott 3 Yes No Very fast
Jittered lattice 2 No Yes Very fast
Gibbs-Markov 5 Yes Yes Slow
Generalized Poisson 2 Yes Yes Fast

Fig. 3. Sample synthetic US images (a) obtained at 0.5 scatterer/mm3 
for different values of α; (b) obtained from a 3-D data set containing 10 
different tissue types.



which are especially noticeable for low scatterer densities 
and small values of α. Near the focus (row 2), the local 
resolution cell size is at its smallest, thereby reducing the 
number of scatterers per resolution cell and leading to 
sub-Rayleigh conditions.

High values of α, corresponding to more regularly 
placed scatterers, do not appear to lead to conditions very 
different from Rayleigh scattering, with R ≈ 1 and S ≈ 2. 
This result is different from those presented in [9], where 
the original 1-D model with high regularity consistently 
led to positive interference patterns and Rician statistics 
(R < 1 and S > 2). The lack of systematic positive inter-
ference effects in the multidimensional model used here is 
due to the isotropy of the Hilbert curve mapping. While 
the model preserves regularity, there is absolutely no guar-
antee that this regularity will be aligned with a particular 
direction although, as shown by some of the 2-D results 
in [7], this may occur. For positive interference effects to 
invariably occur, the scatterers must be placed quasi-pe-
riodically in the direction of wave propagation, at mul-
tiples of the transmitted wavelength. Such patterns may 
be more systematically achieved through the choice of a 
different space filling curve to map the 1-D point process 
to 3-D. The Hilbert curve mapping nonetheless provides 
a useful and efficient multidimensional extension to the 
original 1-D point process on the basis of which a broad 
range of US image textures can be synthesized.

B. Second-Order Statistics

Because of its finite beamwidth, an US transducer scan-
ning the same target at 2 locations differing by a short 
distance images much of the same microstructure in both 
locations. The resulting images are therefore correlated, 
with the correlation decreasing monotonically with the 
distance between the 2 locations, a phenomenon known 
as speckle decorrelation. Under Rayleigh scattering condi-
tions, the relationship between image correlation and the 
transducer’s elevational displacement depends entirely on 
the transducer characteristics and can be described in a 
simple parametric form [17].

Fig. 5 shows the average correlation coefficient between 
pairs of image windows centered near the transducer focus 
as a function of their elevational separation for selected 
synthetic data sets. These are compared with the decor-
relation curve for a data set obtained by placing scatter-
ers at high density according to a plain Poisson process 
(without the Hilbert curve mapping), leading to Rayleigh 
scattering conditions. It was not difficult to find condi-
tions for which the Rayleigh case decorrelation model fails 
to represent the behavior of the data, reflecting the results 
of [18] on imagery of real tissue. Also, note how the eleva-
tional second-order statistics of the synthetic data sets can 
be reliably predicted from the parameters of the proposed 
scatterer distribution model.

No principled parametric model exists which describes 
speckle decorrelation well in the general case. Such a model 
would be useful for applications like elevational transducer 
motion estimation based on speckle decorrelation [18]. A 
prospective application of the proposed scatterer distribu-
tion model would be to empirically establish a general 
speckle decorrelation model based on second-order statis-
tics obtained from a large pool of synthetic imagery with 
known transducer motion and target structure.
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Fig. 4. Echo intensity first-order statistics as a function of scatterer den-
sity, regularity and axial depth. Left column: signal to noise ratio R. 
Right column: skewness S. Axial depth increases from top to bottom. 
The dashed lines mark the R = 1 and S = 2 lines representative of Ray-
leigh scattering conditions.

Fig. 5. Average elevational decorrelation curves at the transducer focus 
for a variety of combinations of scatterer density and regularity param-
eters.



VI. Conclusions

This paper presented a scatterer distribution model 
for which the density and spatial organization of scat-
terers can be tuned for the generation of varied synthetic 
US imagery. Spatial organization of the scatterers can be 
tuned along the continuum from clustered to regular in 
an intuitive manner, making the model attractive for the 
cross-tissue validation of US image processing algorithms 
through simulation studies. The synthetic platform allows 
fine-grained control over ground truth and target param-
eters which is at best difficult to achieve in phantom stud-
ies, thereby providing a useful complementary validation 
tool for image processing algorithms. This tool applies to 
a variety of contexts, a particularly relevant one being 
texture-based image segmentation.

In future work, different space filling curves can be 
studied for the generation of more or less anisotropic 
structures. Another area of interest is the study of the 
statistical properties of the synthetic imagery generated 
by the proposed model for the development of new im-
age processing algorithms that adapt to local tissue struc-
ture.
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