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Abstract. Selective attention plays an important role in visual pro-
cessing in reducing the problem scale and in actively gathering useful
information. We propose a modified saliency map mechanism that uses
a simple top-down task-dependent cue to allow attention to stay mainly
on one object in the scene each time for the first few shifts. Such a method
allows the learning of invariant object representations across attention
shifts in a multiple-object scene. In this paper, we construct a neural
network that can learn position and viewpoint invariant representations
for objects across attention shifts in a temporal sequence.

1 Introduction

Processing the massive amounts of visual information produced by the human
eyes or by video rate robot cameras is challenging. Selective attention can address
this challenge by focusing on a small fraction of the total input visual informa-
tion [8], [13], thus breaking down the problem into several sequential smaller-scale
visual analysis sub-problems. Shifting of attention enables the visual system to
actively, and efficiently, acquire useful information from the external environ-
ment for further processing. Recent work in our group [5] provides evidence that
saccade target features are attended as a result of the preparation to move the
eyes and such shifting of attention is important to aid the visual system in pro-
cessing the recently foveated saccade target after a saccade ends. This work also
reveals a possible temporal association mechanism across attention shifts.

Temporal association is influential in the development of transformation in-
variance when we consider the importance of the continuous properties of an
object in both space and time domain in the world. An object at one place on
the retina might activate feature analyzers at the next stage of cortical process-
ing. Psychophysical studies by Wallis and Biilthoff [19] revealed the importance
of temporal information in object recognition and representation, which sug-
gests that humans are continuously associating views of objects to support later
recognition, and the recognition is not only based on the physical similarity but
also the correlated appearance in time of the objects.

There are some models where the visual input is filtered into a focus of
attention (therefore an object of interest pops out in the center of the attention
window) and then fed into a recognition system for position or scale invariant
recognition [14], [6]. The dynamic routing circuits employed in these models
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Fig. 1. The system is composed of two modules: an attention control module and a
learning module. The attention control module is an attention shift mechanism that
generates attention shift signals to trigger the learning processes in the learning module
and selects local features falling within the attention window as input to the learning
module.

efficiently select the regions of Focus of Attention (FOA) to perform position and
scale invariant recognition in an associative (or knowledge) network. However,
these models focus on the recognition of features such as a whole object in the
FOA, which ignore the facts that attention not only moves between objects but
also moves within objects. We will study the more general cases of attention
shifts over objects and the learning of invariant representations of objects across
attention shifts.

In this paper, we will first propose an approach to saliency map construction
that uses both the bottom-up saliency cues and simple task-dependent cues,
enabling the attention to stay mainly on a single object of interest for the first few
shifts. Then we will apply this saliency map to generate a sequence of attention
shifts, to guide the process of the temporal learning of invariance.

2 System composition

The overall system is composed of two sub-modules, as illustrated in Figure 1.
One is the attention control module, which generates attention-shift signals ac-
cording to a saliency map. The module obtains as input local feature images from
the raw retinal images via a dynamically position-changing attention window.
The second sub-module is the learning module, which performs the learning of
invariant neuronal representations across attention shifts in temporal sequences.

3 Attention shift control

The traditional saliency map mechanism follows the idea that human attention
is mostly likely to focus on the most salient features in the scene. It is mainly



based on bottom-up image-based saliency cues [7]. There is another important
factor to be kept in mind, however, which is that humans also tend to keep
the attention on the attended object or its proximity within a very short time
period [2], [8], even when the points to be attended following the first attention
shift have no more saliency than other points in the scene. This consideration is
very helpful when in a short time interval we need a sequence of attention shifts
remaining mostly fixed on a targeted object when multiple objects are present in
the scene. Such a requirement in the attention shift control can be implemented
by introducing a top-down task-dependent cue. The following few paragraphs
describe the implementation of the saliency map mechanism with an extension
to force the first few attention shifts to stay on the same object.

The saliency map is a weighted sum of the intensity features and the orienta-
tion features. The algorithm to calculate these features is that proposed by Itti
et al. [7], which we will describe briefly in the next paragraph.

Intensity features, I(o), are obtained from an 8-level Gaussian pyramid com-
puted from the raw input intensity, where the scale factor o ranges from [0..8].
Local orientation information is obtained by convolution with oriented Gabor
pyramids O(o,8), where o € [0..8] is the scale and 6 € [0°,45°,90°,135°]
is the preferred orientation. Feature maps are calculated by a set of “centre-
surround” operations, which are implemented as the difference between fine (at
scale ¢ € [2,3,4]) and coarse scales (at scale s = c+J , with § € [3,4]). In total,
30 feature maps, 6 for intensity and 24 for orientation, are calculated and com-
bined into two “conspicuity maps”, I and O, at the scale ( # = 4) of the saliency
map, through a cross-scale addition where all feature maps are down-sampled
into scale four and made an element-by-element addition.

In addition to the intensity and orientation features, we introduce a center-
region priority R which has a high value in the center of the image. This is used
because, in practice, objects in the center of the view are much more likely to
attract attention for humans. Such an eccentricity effect is interpreted by Wolfe
and his colleges [21] as an attentional bias that allocates attention preferen-
tially to central items. R is expressed in the form of a two-dimensional Gaussian
function:
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where o and yg are the center coordinates of the retinal image, and o, and oy
is the standard deviation in horizontal and vertical directions respectively.
The initial saliency map is formed by:

_I+O0+R

S
3

(2)

Once the saliency map is calculated, a competitive Winner-Take-All (WTA)
algorithm [16] is used to determine the location of the currently most salient
feature in the saliency map. In the WTA algorithm, a unit with the highest value
wins the competition and the rest are suppressed. This winner then becomes the



target of the next attention shift. An Inhibition-Of-Return (IOR) mechanism
is added to prevent immediate attention shifts back to the current feature of
interest, to allow other parts of the object to be explored. In our implementation,
instead of inhibiting the region near the current fixation point, the JOR function
inhibits all these small regions around the fixation points in a recent history
trace of the fixation points. Therefore in the algorithm, we will keep a trace of
these fixation points in a vector called tp. When an overt attention shift occurs,
the image point with fixed world reference coordinates will have a coordinate
translation accordingly in the retinal image coordinate reference system. The
information of the coordinate offset resulting from each attention shift is used to
update the whole trace, reflecting the newest positional change on the fixation
points in the history appearing in the new retinal image.

In order to solve the problem how the attention stays on the same object
during the learning process, we introduce into the calculation of the saliency
map a spatial constraint which forces the next attention target to stay close to
the current fixation point. The spatial constraint (SC) is implemented by adding
a trace of neighbours of the fixation points in the history of the observation
duration:

SC(t)=ax SC(t—1)+ Y _ NB(p,t) (3)
pPELp

where SC(t) is a spatial constraint function of time ¢, and NB(p,t) is a function
that puts a neighboring region at high values around the fixation point p at
time ¢ from the trace list ¢p, which is likely to receive high saliency of attention.
In our method, for simplicity, we choose NB(p,t) to have high values uniformly
distributed in a small rectangular region centered at the current fixation point
and with low values elsewhere.

Each time after an attention shift, the saliency map is updated by:

S'(t) = S(t) Q) SC(1) (4)

where ) is an element-by-element multiplication between two matrices.

We include the time index here because we want to emphasize that the
saliency map is dynamically changed each time an attention shift occurs to
foveate the target. The attention shifting consequently causes changes in the
input retinal image, and in its corresponding saliency map as well. This is the
reason why we need to keep a trace of the positions of the previous fixation points
in the history and transform their relative positions in the retinal coordinates to
maintain consistency with each shifting. Similarly, we need to re-calculate the
SC function each time, as well as the IOR function, because they all depend on
their positions on the retinal images.

The spatial constraint helps to focus on the same object during the first
few attention shifts (here we use five shifts) over an object. This assumption
is consistent with the result of neurophysiological studies of attention shift. In
the real world, objects are typically be viewed for 0.5 - 1 sec or more, with a
saccade occuring every 200 - 300 msec [20]. Therefore, statistically there would
be around 2 - 5 shifts of overt attention over the object during the observation.



4 Temporal learning of attention shift invariance

The time interval between attention shifts is rather short when compared with
time taken during self-motions of the object or even of the observer. An assump-
tion could be made that within the duration of the first few attention shifts on
a targeted object, there are no changes in the viewing condition of the object,
either due to its self-movements or the observer’s slow head or body motions.
The learning rule is composed of two terms, one is a Temporal-Difference
(TD) reinforcement learning term as in [3], and the other is a temporal perceptual
stability constraint, as proposed by the authors in previous papers [9], [10].

AW (8) = 5 x [(R(t) + 7 x C(t) — C(t — 1)) +
kx (Ot —1) =6 x O@)] x 3(t) (5)

with
AC’(t) =a; x (C(t) — C’(t —-1))

AS(t) = as x (S(t) = (S)(t — 1))

Here S represents the input neural responses, after sparse encoding of local
features at a high resolution scale within the attention window. C' is the output
layer neural responses, C is the short-term memory trace keeping a history record
of C, and W is the updating rule of the weight matrix. R(t) is the canonical
representation as the reinforcement reward, which in this case is chosen to be the
object of interest at a coarse resolution scale right after the first attention goes
to the object. The parameters 1, a; and as are learning rates with predefined
constant values.

The weight update rule correlates this reinforcement reward R(t) and (an
estimate of) the temporal difference of the output layer neuronal responses with
the memory trace of the input layer neuronal responses. The constraint of tem-
poral perceptual stability also requires that updating is necessary only when
there is a difference between the current neuronal response and previous neu-
ronal responses kept in the short-term memory trace. The parameter k is an
importance factor and lies in the range [0, 1]. It is used to emphasize the im-
portance of the perceptual stability constraint in driving the learning towards a
better performance. When the value of k is near zero, the constraint term has
no effect on the learning rule. The updating of the weight matrix relies totally
on the TD reinforcement-learning term, in which case it is similar to the ap-
proach in [3], except for the longer time scale of the temporal difference used
in this rule. Conversely, a value near one will give the constraint term the same
importance as the TD reinforcement-learning term. We also use a sparse coding
approach [15] to ensure a sparsely distributed neuronal responses to the input
image patches.

To bound the growth of the weight matrix, the matrix can be either explic-
itly normalized, as in many competitive networks, or by using a local weight
bounding operation [4], [20], the implementation of which is more biologically
relevant.



5 Learning of Viewpoint Invariance

Invariances associated with other visual-related self-actions such as scale invari-
ance and viewpoint invariance can also be obtained when we extend our proposed
model to accommodate head or body motion signals. In this section, we will in-
vestigate the visual motor actions such as head and body motion, and propose
a possible extension to achieve viewpoint invariance. Other invariances can be
implemented in a very similar way.

Although some psychophysical studies on humans [17,18] and monkeys [11,
12] have indicated a view-dependent theory of object recognition (e.g. a pop-
ulation of inferior temporal cortex (IT) neurons are selective to views of the
training objects), there does exist a much smaller set of view-invariant neurons
tuned to objects the monkey had been trained to recognize from any view-
point [11]. Meanwhile some psychophysical experiments have also revealed that
humans actively exploit temporal information such as contiguity of images in
object recognition [1]. Evidence from these experiments support the idea that
better associations can be learned between object viewpoints that are close to-
gether in time sequence such as those produced by body movements around the
object, rather than viewpoints randomly generated. Following this idea, we pro-
pose that certain degrees of viewpoint invariance can be learned from view-based
representations of an object associated with body motion.

When head or body motions are performed, the three-dimensional spatial
relation between the observer and the target object will change. The depth
between the observer and the object can become larger or smaller, resulting in
changes in size when the object is projected onto the retinal surface. With free
body motions of the observer, the projection of the retinal images would be even
more complicated. Not only could the viewing depth vary, but also the viewing
angle, which leads to the views of the observed object changing significantly if
the velocity and amplitude of the motion become large.

It is true that the slowness in the nature of head/body motions would in a
way violate our learning assumption that the variation of an object in the retina
images arises entirely from the fast visual motor action rather than the object self
motions. As head/body motions take longer than saccades, the possibility that
the object moves within the duration of the action becomes higher. However,
such violation to our assumption can be compensated for using a mechanism
described as follows.

In our current models of position invariance learning, the learning is trig-
gered by the saccadic motion signal. It can be implemented by introducing a
learning-rate parameter, which switches between 0 and 1 before and after an eye
movement so that the updating is either inhibited or permitted. Then we can
handle the relative slowness of body motion by having a continuous updating
but with a time-varying learning-rate parameter, which becomes higher when a
body motion occurs. This parameter is set to be proportional to the velocities
of the executed motions. One reason for this is that when a slight body motion
occurs, the change between the successive input images is small, so that a small
learning rate is enough to make the updating because the neuronal responses



are almost constant; a drastic body motion will result in a larger change in the
input images so that updating is necessary to maintain the constant neuronal
responses with a large value of the parameter. The other reason is related to
the probability that an external object motion occurs during a slow (long) body
motion in comparison with a fast (short) body motion. When a body motion is
slow, it is more likely that during this motion period an object moves and there-
fore its appearance changes. Such change due to the slowness of body motions
would impair our assumption that most of the change in the image is due to
motion of the visual-related self-actions rather than the motion of the object.
In this sense, the slow body motion should receive a low credit for gating the
learning.

Viewpoint invariance means the system is invariant to different views of an
object due to the changes in viewpoint. Different views correspond to different
appearances. Temporal continuity again plays an important role in correlating
the different views of an object in a temporal sequence. We therefore modify the
functionality of the higher layers of our current model from learning the tempo-
ral integration of attention-shift invariance across attention shifts into learning
viewpoint invariance across a sequence of body motions. The structure of the
current model remains intact; only the motor control module needs modification
to produce a body motion signal instead of a saccade signal. To be consistent
with the conceptions in the previous sections, at this stage we only consider the
condition that the local features in this learning are the different views of the
whole object in the coarse resolution level. However, viewpoint invariance with
a fine resolution level can be achieved by adding one more layer on the top of
the existing layers that learn attention-shift invariance. This top layer tempo-
rally correlates different views with the attention-shift-invariant representations
obtained from the lower layers. Or more generally, without changing the exist-
ing layers of the proposed model, local features at both resolution levels can be
temporally correlated in the same layer where the attention-shift invariance is
learned, as long as head and/or body motions and saccades can be unified in the
motor control module to trigger the learning procedure.

6 Simulation and Results

6.1 Effects of the modified saliency map mechanism

The spatial constraint (Equation 3) is aimed at forcing the attention to stay close
to the region previously visited, to some extent guaranteeing that the attention
will shift within the same object for a certain duration. In this section we will
examine the effect of the spatial constraint on the saliency map mechanism
during the attention shift, which confines the shifts to stay near the same object
in a multi-object scene. The scene is relatively simple in the sense that the scene is
static, as all objects within the scene have a low probability of overlapping, and a
black background is used to eliminate any distraction from the background. The
images we used in this experiment are 320x240 pixels in size, and the attention
window is 60x60 pixels in size. The IOR region is 72x72 pixels in size, and the



Fig. 2. A sequence of attention shifts on a scene with three objects. Attention shifting
is guided by a saliency map without (A shows the saliency map and B shows the local
features) and with (C shows the saliency map and D shows the local features) the
spatial constraint.The small black rectangles in the figure are the regions influenced by
the IOR.

spatial constraint is applied to a region of 90x90 pixels in size centered at the
fixation point.

We use a scenario where three toys are displayed before a black background.
We compare the result of attention shifts based on the saliency map without and
with the spatial constraint respectively. In Figure 2, A and C show the post-
attention-shift saliency maps with the IOR regions without and with the spatial
constraint respectively. The small black rectangles in the figure are the regions
influenced by the IOR. The saliency map is shifted accordingly when an attention
shift is executed to put the target point in the center of the view window. B and
D show the local features falling within a rectangle attention window accordingly.
In the scene, the right-most toy has the most salient feature; therefore the first
attention shift is focused on it. Without the spatial constraint, attention is likely
to be shifted from the focused object to other objects that have high salient
values during the observation (Figure 2 B). However, the problem can be fixed
when we introduce the spatial constraint into the saliency map. As shown in
Figure 2 D, the first several attention shifts stay on the same object.

From the above demonstration, we are able to declare that with the spatial
constraint employed in recalculation of the saliency map during the sequence of
attention shifts, it is possible for attention to stay mostly on the same object in
a relatively simple multiple-object scene. Therefore, an adequate attention shift
sequence can be performed to guide the learning of position and attention-shift
invariance for the following experiments.
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Fig. 3. Local features obtained after the first six attention shifts for the same two
objects appearing at five different positions.

The modified saliency map mechanism is very useful in gathering valid train-
ing data sets as input to our proposed neural network. A limitation of this
method would be that it requires the distribution of the objects in a scene to be
sparse, i.e., having no overlap between objects. If any two objects are placed very
close, they are likely to be deemed as one object due to their spatial closeness.

One useful property is revealed from the study on this saliency map mech-
anism. That is that the position differences of an object on the images can be
screened out when we focus on only the local features obtained across atten-
tion shifts, using the modified saliency map mechanism to perform the task of
position-invariant object representation and recognition. Each time with atten-
tion selecting out the local feature associated with current fixation point, the
global position information of the object is of no importance. What really mat-
ters is the content of the local feature and its relative position to the object.
Two objects were placed at five different positions, and the first six attention
shifts were observed following the saliency map mechanism. We notice in Figure
3 that the first few attention shifts usually select similar local features of an
object appearing at different positions due to its saliency map distribution. This
observation leads us to think that at a fine detail level of object representation,
via temporally correlating local features of an object across attention shifts, the
global position difference can be canceled out by focusing on only the attended
parts of an object.

6.2 Invariance over attention shifts

Attention usually goes more easily to some unwanted features from the distrac-
tions of the background in a real world environment. To eliminate such distrac-



Intensity features D Orientation features

Obj1

41 N

~HBENE
| O | ¥

Fig. 4. Sequences of attention shifts over three objects in the scene. Following the
saliency map calculated as shown at the top, the attention first stays on objl, then
moves to obj2, and so on.

tions and focus solely on the objects themselves, in this experiment we will use a
simple multiple-object scene where three objects are sparsely arranged in front
of a black background.

The first five attention shifts were performed following the guide of the
saliency map with the spatial constraint. Local features of an object with the
highest saliency in the saliency map were recorded. In this implementation, after
five attention shifts on an object, the region covering the object will be inhib-
ited so that the attention goes to another object in the scene. Figure 4 shows
iterations of attention shifts over the three objects in the scene and their corre-
sponding local features following the shifts. These local features are fed into the
network as the training data.

In this experiment we use the sparse coding strategy for the output layer
neuronal representation, so the neuronal responses to the local features across
attention shifts are sparsely distributed. To understand the activity of the neu-
rons, their responses to local features are plotted with respect to the first five
attention shifts from one object at a time. The activities of the eight most active
neurons are shown in Figure 5. The activity curves show each neuron favors one
specific object during the attention shifts.
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Fig. 5. Neuronal activities of the eight most active neurons responding to local features
belonging to three objects in the scene across five attention shifts.

6.3 The influence of the temporal factor x on learning

We examine the learning performance with (when x = 1) and without (when
k = 0) the temporal perceptual stability constraint term in the learning rule.
The performance is evaluated by the measurement of the mean variance of the
output neuronal responses in both cases over the learning iteration. The value is
sampled every 25 simulation iterations. The value of the mean variance stays low
when the neuron tends to maintain a constant response to the temporal sequence
of local features across attention shifts; while a higher value means less stability
for the neuronal responses across attention shifts. In other words,if the model is
to exhibit attention-shift-invariance, the output neuron responses should remain
nearly constant and therefore have a low variance.

As seen from Figure 6, the learning both with and without the perceptual
stability constraint term converges to a certain point with a low standard de-
viation, demonstrating the correctness of the learning direction. But from the
figure we can also observe that, although the two curves descend over time, the
one with K = 1 descends faster than the other and reaches a lower value of stan-
dard deviation. This result reinforces the importance of the perceptual stability
constraint in achieving a better and faster performance in the learning of in-
variance in our approach, and it also demonstrates that this proposed approach
surmounts the performance of the approach in [3].

6.4 Learning of Viewpoint Invariance

To illustrate the learning of viewpoint invariance, we use a very simplified version
of the whole model. In this experiment, two objects are used: one is a toy baby
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Fig. 6. Comparison of learning performance using the perceptual stability constraint
(¢ = 1) and not using it (k = 0) by the measurement of mean variance over the
simulation iteration.

and the other is a toy bear. Each time only one object is displayed in the scene
as the feature of interest. The sequence of the observation is as follows.

To collect training data in a fast way, we reverse the motion order before
and after the saccade. First the digital camera mounted on the PTU puts the
observed object in the center, the image of which will be the post-saccade image.
Then the PTU performs a random pan-tilt motion to put the object in the
different positions on the images, which will be the pre-saccade images. The PTU
is then moved to another viewing angle of the object, and the same actions are
repeated from this position. Such scenario mimics the situation when a human
observes an object never seen before. One would probably observe the object
from one viewing angle for a while, shifting attention back and forth over the
object. At this stage, a position invariant representation of the specific object
view might be formed. Then one would walk around the object and try to get a
viewpoint invariant representation by associating different views of the object.

The pre- and post-saccade image pairs are used to train the position-invariant
local feature extraction in the lower layers. When the view of the object changes,
that means a body motion signal instead of an attention-shift motor signal fires,
the higher layers begin to correlate the output from the lower layers to form a
constant response over all views of the object.

In Figure 7, the sequences of observing two objects are displayed. Two views
of each object are recorded, and from each view angle the object is observed at
five randomly chosen positions. The training result is shown in Figure 8. The
neurons in the output layer respond to objects with different preferences in spite
of various viewpoints. As shown in the figure, out of 10 neurons in the output
layer, neuron #7 responds strongly to both views of the toy baby at five different
positions, while neuron #5 favours the toy bear regardless of the position and
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Fig. 7. Images sequences of two objects, each viewed from five different positions and
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viewpoint variations. The result further illustrates that the position invariance
is achieved at the same time.

7 Conclusions

In this paper, we have presented a modified saliency map mechanism that uses
a simple top-down task-dependent cue (a neighborhood of the current fixation
point is likely to attract most attention within a short observation period), which
enables attention to stay mainly on an object of interest for the first several shifts
in a multiple-object scene. Then the saliency map mechanism is applied to a
neural network model that learns invariant representations of objects temporally
across attention shifts.

Experimental simulations have demonstrated that the modified saliency map
mechanism is able to generate a sequence of attention shifts that stay mostly
on a single object during the short period of observation. And the proposed
neural network model performs well in the learning of invariant representations
for objects in a scene with respect to position variance and attention shifts.
However, invariance to scale is not considered here, and future work needs to be
done on this aspect.
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