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Abstract. The investigation of low light imaging is of high importance1
in the field of color science from different perspectives. One of the2
most important challenges that arises at low light levels is the issue3
of noise or, more generally speaking, low signal-to-noise ratio (SNR).4
In the present work, effects of different image sensor noises, such as5
photon noise, dark current noise, read noise, and quantization error,6
are investigated on low light color measurements. In this regard,7
a typical image sensor is modeled and employed for this study. A8
detailed model of noise is considered in the process of implementing9
the image sensor model to guarantee the precision of the results.10
Several experiments have been performed over the implemented11
framework and the results show the following: first, photon noise,12
read noise, and quantization error lead to uncertain measurements13
distributed around the noise free measurements and these noisy14
samples form an elliptical shape in the chromaticity diagram;15
second, even for an ideal image sensor, in very dark situations,16
stable measurement of color is impossible due to the physical17
limitation imposed by the fluctuations in photon emission rate; third,18
dark current noise reveals dynamic effects on color measurements19
by shifting their chromaticities towards the chromaticity of the20
camera black point; fourth, dark current dominates the other sensor21
noise types in the image sensor in terms of affecting measurements.22
Moreover, an SNR sensitivity analysis against the noise parameters23
is presented over different light intensities. c© 2014 Society for24
Imaging Science and Technology.25
[DOI: 10.2352/J.ImagingSci.Technol.2014.58.3.030404]26

27

INTRODUCTION28

The human visual system is able to work under different29

lighting conditions. It is desirable to have imaging devices,30

such as cameras, that are able to operate in similar light31

levels. The ability of the human visual system to work even32

under low light situations leads to the importance of studying33

low light levels. However, most of the theories, measures,34

models, and methods in color science are developed for35

high intensities.1 These theories, measures, methods, and36

models cannot be used for low light situations, since they37

fail to comply with the necessary conditions for which they38

are feasible. For instance, a color difference formula that is39

derived for photopic conditions (i.e., luminance levels greater40

than 5 cd/m2) cannot be leveraged in evaluating techniques41

developed for assessing dark images.2 This issue implies the42

importance of investigating low light conditions. Moreover,43

the addressing of low light or, more generally speaking,44

low signal-to-noise level situations has a wide range of45
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applications in photography,3 designing biosensors,4 image 46

processing,5 machine vision, and color science.6 47

For both imaging devices and the human visual system, 48

as the light level goes down, the effect of noise becomes 49

more significant.6 In this situation, an imaging device will 50

acquire a noisy signal with a low value of signal-to-noise ratio 51

(SNR). In human vision, lower signal-to-noise level results 52

in changes in the appearance of measured colors. Several 53

works have discussed the impact of light level onhuman color 54

perception.7–10 It is unanimously accepted that reducing the 55

light level gives rise to color shifts, and this effect is mostly 56

attributed to the rod intrusion into the mesopic vision (dim 57

light situation in which both rods and cones contribute to 58

vision).11,12 However, the issue of noise at low light levels is 59

still an open problem for artificial image sensors. 60

To the best of our knowledge, the effect of noise at low 61

light levels on the color measurements of imaging devices 62

has not been addressed yet. One of the most recent works 63

concerning this topic is the work performed by Kirk and 64

O’Brien, proposing a tonemapping approach to convert high 65

dynamic low light images to a perceptually closer result to the 66

human mesopic vision experience.13 However, the authors 67

did not take into account any noise type in their mesopic 68

color appearance modeling and left it as a future work. 69

Our article is concernedwithmodeling the performance 70

of color image sensors under low signal-to-noise ratios. 71

Our methodology involves tracking photons in the imaging 72

sensor pipeline from the emission to the detection and 73

recording level. In this regard, physical rules governing 74

photon emission are employed to estimate the low light 75

version of quantities describing the light coming to the 76

imaging device; then, an image sensormodel is implemented 77

and leveraged to study the luminance and noise induced 78

effects on the sensor color measurements. Camera or image 79

sensor models have been presented in different works.14,15 80

The rationale behind modeling digital camera imaging 81

systems is, first, to reconstruct hyperspectral images taken 82

by spectrometers, or to be used in computer graphics 83

applications16, or, second, to evaluate the camera design 84

and output image quality, or to optimize the performance 85

of the camera in terms of some adjustable parameters (e.g., 86

exposure time or ISO setting).17,18 87

In terms of application, the results of this study can 88

be utilized in developing low light image quality mea- 89

sures, introducing efficient denoising algorithms, developing 90

realistic color noise perception models,19 addressing low 91
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signal-to-noise levels in digital cameras, and developing an92

automatic labeling system for micro-array sensor biochips.2093

The remainder of this article is organized as follows.94

The background for light emission is presented in the95

second section followed by introduction of the image sensor96

modeling in the third section. Experiments, results, and97

discussion are reported in the fourth section. Finally, the fifth98

section concludes the article.99

BACKGROUND100

Light consists of energy packets called photons. Photons are101

characterized by their frequency and polarization state.21102

Each photon carries an amount of energy determined103

by its frequency. This energy is equal to {hc/λ}, where104

h = 6.626,176 × 10−34 (J s) is the Planck constant, c =105

2.997,925 × 108 (m/s) represents the light speed, and106

λ denotes the wavelength (inverse of frequency) of the107

photon. Photon emission from a light source follows a108

Poisson distribution. For a monochromatic light source of109

a particular wavelength λ0 and known average number of110

emitted photons per second g , the probability of emitting n111

photons per unit of time can be obtained as follows22:112

P(g , n)=
gne−g

n!
. (1)113

Given the spectral radiance, L(λ), the average emitted114

number of photons, per unit time, per unit area, per unit115

steradian, for a central wavelength λ0 can be obtained by116

calculating the following integral over an infinitely small117

range of [λ0− δ/2, λ0+ δ/2]:118

g (λ0)=
1
hc

∫ λ0+δ/2

λ0−δ/2
λL(λ)dλ. (2)119

The wavelength range of the spectrum, [λmin, λmax], can120

be discretized into N intervals of the length δ such that121

{λmax− λmin =Nδ}. Hence, g (λi) of the ith wavelength bin122

can be approximated as123

g (λi)=
1
hc

∫ λi+δ/2

λi−δ/2
λL(λ)dλ≈

λiL(λi)δ
hc

. (3)124

Let L(λ) represent the high intensity radiance of a light. Our125

goal is to derive an estimation of this spectral radiance at an126

arbitrary lower intensity. The high intensity spectral radiance127

is themost complete description of the light and this quantity128

at any lower intensity can be predicted from the given high129

intensity spectrum as described in the following.130

The Poisson distribution, Pois(g (λi)), corresponding to131

each bin of the high intensity spectral radiance is fully132

characterized by knowing the g (λi) values. We define the133

intensity factor F ≤ 1, which is a multiplier to change the134

light level. The estimated spectral radiance after applying135

the intensity factor F can be obtained by drawing samples,136

{G̃F (λi)}N1 , from {Pois(F × g (λi))}N1 distributions. Hence,137

the estimated spectral radiance, L̃F (λ), for the intensity factor138

F and central wavelength λi is given by 139

L̃F (λi)=
G̃F (λi)× hc

λiδ
. (4) 140

By taking this approach, we can establish the effect of 141

shot noise on estimates of low light spectral radiances. It 142

is worth mentioning that L̃FN (α, β, λ), which denotes the 143

quantal number of photons falling on the location (α, β) of 144

the image sensor in photons/sec/m2/sr/nm, can be obtained 145

from the radiance quantity, L̃F (α, β, λ), as 146

L̃FN (α, β, λ)=
L̃F (α, β, λ)× λ

hc
. (5) 147

IMAGE SENSORMODELING 148

A typical digital camera is comprised of the following 149

elements: an optical system, an image sensor, and an image 150

processor.16 The focus of this section is on modeling 151

and simulating the image sensor of a digital camera. We 152

consider the image formation model, noise model, and 153

analog-to-digital converter (ADC) components in the image 154

sensor model. Figure 1 shows a diagram of the image sensor 155

model, which is a modified version of the model introduced 156

in Ref. 18. 157

When the shutter of a camera opens, a stream of photons 158

enters the camera and falls on the image sensor. A color 159

image sensor consists of three sensor types, which usually 160

are referred to as R, G, and B sensors. The exposure setting 161

determines the number of photons captured by the sensors. 162

Each sensor type has a specific spectral quantum efficiency 163

(i.e., the proportion of electrons generated as a result of 164

photon catches for an area of 1 (m2) that subtends 1 (sr)). A 165

pixel of an image sensor consists of a photodetector, a color 166

filter, and a readout circuit. The rain of photons hitting the 167

photodetector produces a photocurrent. This photocurrent 168

together with the photodetector dark current, which will be 169

explained later, is accumulated during the integration time 170

as far as the sensor capacity allows. The maximum sensor 171

charge capacity is known as full-well capacity and determines 172

the level of saturation for each sensor. When the integration 173

time is over, the readout circuit is responsible for measuring 174

the voltage produced in the pixels. This process is prone 175

to noise, known as the readout noise. The structure of the 176

readout circuit is the main difference between CCD and 177

CMOS type image sensors. 178

Noise Model 179

Noise can be defined as any unwanted event that hampers 180

the image quality. In our simulation framework, we assume 181

an additive model for the noise and the following noise 182

types are considered as the most significant sources of noise 183

underlying the image distortion. 184

Photon Shot Noise 185

Photon shot noise can be defined as the variation in the 186

number of photons emitted from the light source and, 187
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Figure 4. The results of scenario I performed over the RGB598 database. (a) The generated samples for each selected data point of the RGB598
database together with the fitted ellipses to those samples are plotted. (b) The generated samples and the fitted ellipses for different intensity factors for data
point number 3. (c) The log number of incident photons at different luminance levels for color patch number 3 is depicted. (d) The estimated inclination
angles of ellipses obtained from the PCA algorithm for different intensity factors are shown for all color patches. (e) The sizes of fitted ellipses corresponding
to different intensity factors for all selected color patches are compared. (f) The average of 1Eab values over the samples of each intensity factor.

Here a question may arise, which is ‘‘is it correct to use314

CIE photopic colorimetry in a low light mesopic range?’’315

There are two reasons behind the choice of CIE XYZ316

color matching functions: first, CIE photopic colorimetry is317

commonly used in cameras in the process of creating the318

output image; second, to the best of our knowledge, current 319

camera technology does not use any known color space or 320

model specific for mesopic conditions. A CIE system for 321

mesopic photometry was proposed in Ref. 27; however, the 322

use of it is still not widespread. 323
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The experiments were carried out over three scenar-324

ios and followed by an SNR sensitivity analysis. Before325

explaining the results, we state the main assumptions and326

considerations of this work as follows.327

(1) The temperature is assumed constant, hence the dark328

noise parameters are fixed during the experiments.329

(2) The noise model is additive in the image sensor330

simulation framework.331

(3) The image sensor linearly responds to light intensity332

variations before its saturation limit. Sensor linearity is333

discussed in Ref. 28more profoundly. In Ref. 28, Barnard334

and Funt mention that ‘‘The Sony DXC-930 camera that335

we used for our experiments is quite linear for most of its336

range, provided it is used with gamma disabled.’’337

(4) Raw output images are considered for our analysis.338

(5) Reset noise, photodetector response nonuniformity339

(PRNU), and dark signal nonuniformity (DSNU) are340

not incorporated in our modeling, and, for our research,341

we assume that their impact on the introduced model342

is negligible. For further details the reader can refer to343

Ref. 25.344

Scenario I: Ideal Image Sensor and Light Intensity345

In the first scenario, we consider the case where there is no346

noise corrupting the output image, we have a perfect image347

sensor able to detect single photon events, and the sensor can348

respond without saturation. We want to investigate at which349

luminance value the photon noise becomes significant. In350

this regard, twenty data points shown in Fig. 2 are considered351

for this experiment. The log of the intensity factor is set to val-352

ues log(F) ∈ {0,−7,−8,−9,−10,−11,−12,−13,−14}.353

The results of the experiment are shown in Figure 4. Fig. 4(a)354

indicates that the generated samples form an elliptic shape in355

the chromaticity diagram. The principal component analysis356

(PCA) algorithm is used to find a fitted ellipse for the357

generated samples of each data point.29358

The generated samples and the fitted ellipses of the third359

data point for different intensity factors, and the number of360

incident photons on the image sensor for various luminance361

values are plotted in Figs. 4(b) and 4(c) respectively. In362

Fig. 4(b), the distance between consecutive ellipses grows363

exponentially as the light intensity decreases. Figs. 4(d)364

and 4(e) show the inclination angle and size of the fitted365

ellipses for some intensity factors. The size of each ellipse366

is approximated as
√
a2+ b2, where a and b represent367

the sizes of the semi-major and semi-minor axes of the368

ellipse. The inclination angle represents the angle between369

the semi-major axis and the x-axis of the xy-chromaticity370

space. The results indicate that the inclination angles, with371

a good approximation, are independent of the intensity372

level; however, the size of the ellipses inversely changes with373

intensity, proving that even if we had an ideal image sensor374

with no internal noise, we still had to deal with the photon375

noise and uncertainties imposed by physical limitations. It376

should be borne in mind that the photon noise becomes377

noticeable at very low light levels, when the number of 378

incident photons is less than 100. Since distances in the 379

chromaticity diagram do not correspond to the human visual 380

system color discriminability, 1Eab is used as a figure of 381

merit to show to what extent the effect of noise on color 382

measurement at different intensities would be noticeable to 383

a human observer from trial to trial. In this regard, for each 384

data point, the1Eab measure is derived as follows: 385

(1) the standard D65 illuminant is assumed as a white 386

reference for the calculations at the luminance of 387

100 cd/m2 (theY value of the reference white is kept 388

constant during the entire experiment); 389

(2) the XYZ values of each sample are scaled to equalize the 390

Y value of the sample and that of the standard illuminant 391

to be able to compare the color coordinates of the low 392

intensity samples (F < 1) and the high intensity sample 393

generated at (F = 1); 394

(3) CIELab coordinates of each sample are obtained; 395

(4) 1Eab is calculated between each sample and the average 396

color coordinates of corresponding high intensity sam- 397

ples; 398

(5) the average of 1Eab values over the samples of each 399

intensity factor is reported. 400

The result of 1Eab calculation is shown in Fig. 4(f), 401

indicating that as the light level falls off, the color change 402

between different trials of each data point becomes more 403

noticeable. 404

Scenario II: Effects of Dark Current on Image Sensor 405

Responses at Low Light Intensity 406

It is shown in the first scenario that photon noise may 407

bring about uncertainties in the measurements at very 408

low light levels when the image sensor is deemed ideal 409

and no other noises may disturb the measurement. In 410

this subsection, the effect of dark current is examined 411

separately from the other intrinsic noise types, when only 412

photon noise and dark current are affecting the image 413

sensor, and the sensor saturation function is not considered 414

in the sensor model. The intensity factor is set to F ∈ 415

{1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001} during each trial of 416

the experiment. For the sake of this experiment, only the 417

boundary data points (indices 1–13) from the initial 20 data 418

points are picked to make the resulting figures clearer. 419

The results are shown in Figure 5, indicating that the 420

dark noise may cause much more significant effects on 421

the color measurement at lower intensities than the photon 422

noise. The result is that the dark noise pushes the low 423

intensity measurements towards the average chromaticity 424

of the image sensor’s black point. In comparison to the 425

photon noise, which became noticeable at intensity factors 426

of the order of 10−13 and lower, the dark current noise 427

effect becomes visible for F ≤ 0.1. This issue indicates the 428

greater effects of dark noise compared with photon noise 429

in hampering the quality of measurements. The angle of 430

inclination of the ellipses, θ , induced by the dark noise is 431
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Figure 5. The results of scenario II performed over the RGB598 database when only photon noise and dark noise are taken into account in the image
formation model. (a) Samples drawn for each selected data point of the RGB598 database and the ellipses fitted to the samples are plotted. (b) The
subfigure in part (a) is regenerated after removing the samples and specifying the centers of the ellipses together with the line of movement of each data
point with the light level. (c) The result of subfigure (a) is magnified for data point number 3. (d) The estimated inclination angles of ellipses obtained from
the PCA algorithm for different intensity factors are shown for all color patches. (e) The sizes of fitted ellipses corresponding to different intensity factors for
all selected color patches are compared. (f) The average of 1Eab values over the samples of each intensity factor.

totally different from that of the photon noise. The ellipses432

are aligned more horizontally for low intensities, and their433

angles of inclination are more separated from each other434

in different intensity factors than the results of scenario I.435

Another interesting point is the opposite behavior of the436

ellipse size variations as a function of the color patch index437

in different light intensities. In scenario I, the size of the 438

ellipses is more uniform for lower intensity factors than for 439

higher values of F ; however, in scenario II, the opposite of 440

this pattern is exhibited, as seen in Fig. 5(e), where the size of 441

lower intensity ellipses is more uniform than high intensity 442

values. 443
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Figure 6. The results of scenario III performed over the RGB598 database when only photon noise and dark noise are taken into account in the image
formation model. (a) Samples drawn for each selected data point of the RGB598 database and the ellipses fitted to the samples are plotted. (b) The
subfigure in part (a) is regenerated after removing the samples and specifying the centers of the ellipses together with the line of movement of each data
point with the light level. (c) The result of subfigure (a) is magnified for data point number 3. (d) The estimated inclination angles of ellipses obtained from
the PCA algorithm for different intensity factors are shown for all color patches. (e) The sizes of fitted ellipses corresponding to different intensity factors for
all selected color patches are compared. (f) The average of 1Eab values over the samples of each intensity factor.

Scenario III: Real Image Sensor Simulation444

A similar scenario to scenario II is obtained with all445

noise types and the saturation function being active. In446

this experiment, only data points 1–13 are used. Figure 6447

depicts the results. In Figs. 6(a) and 6(b), some data448

points make the sensor saturated at high intensity factors.449

Nonlinear effects imposed by these saturated samples are450

explicitly revealed in Fig. 6(b). Moreover, the quantization 451

level in the model leads to sparse samples in the chromaticity 452

diagram, since it is not possible to have all chromaticity 453

values in the output of the image sensor. Aside from this, 454

the pattern of results of this scenario resembles that of 455

scenario II, implying the dominant influence of dark noise in 456

low light levels. 457
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SNR Sensitivity Analysis458

In this subsection, an analysis of the sensitivity of the SNR459

value (given in Eq. (14)) to the parameters of dark current460

and read noise and including or excluding the quantization461

noise is presented. In this regard, only one noise is considered462

at a time (the other noises are deactivated in the model)463

and the parameters corresponding to that noise are set based464

on the values given in Table I. For the dark current and465

read noise, their corresponding parameters ((σ i
dark)

2 and466

σread respectively) are incremented by 10% and the change467

in the SNR value is averaged over 200 samples drawn in468

each trial. In Table I, the dark current parameter is given for469

the temperature of 20◦C. Based on the dark current versus470

temperature curve given in Ref. 25 for a CCD image sensor,471

to increase the dark current by 10% at 20◦C, the temperature472

should go up by approximately 1◦C–2◦C. The read noise473

parameter depends on the type of image sensor (CCD or474

CMOS) and the ISO setting of the camera. In Fig. 2 of Ref. 30,475

the read noise values of three image sensors are compared,476

and it is indicated that changing the ISO setting of a CCD477

chip between the consecutive stepsmay change the readnoise478

standard deviation by around 10–20%.479

The SNR change can be obtained by the following480

formula:481

1SNR (%)= 100×
SNR1− SNR2

SNR1
, (17)482

where SNR1 and SNR2 represent the SNR values before483

and after incrementing the parameters respectively. Since484

the noise parameters used for SNR2 are greater than485

those of SNR1, it is expected to have SNR1 > SNR2,486

and hence 1SNR > 0. A similar procedure is used to487

evaluate the quantization noise by comparing the SNR of488

the measurements with and without quantization noise. To489

avoid saturation effects on the results, the intensity factor490

is set to F ∈ {0.1, 0.05, 0.01, 0.005, 0.001}. This analysis is491

performed on the boundary color patches (indices 1–13),492

and the results for the data points {1, 3, 6, 8, 10, 12} together493

with the average result for all 13 points are reported for the494

R,G, and B sensor types in Figures 7–9. The maximum SNR495

change occurs in the smallest intensity factor for the dark496

current and read noise SNR sensitivity curves. However, this497

pattern is not seen in the quantization noise SNR sensitivity498

curves, as the R and G sensors have their maxima at different499

intermediate intensities. Figure 8 shows that the SNR change500

associated with read noise monotonically increases as the501

light level falls off. This statement is roughly true for the502

dark noise curves but it does not hold for the quantization503

noise sensitivity curves. In general, no consistent pattern can504

be found among the SNR sensitivity results for quantization505

noise, implying that this noise does not greatly depend on506

the intensity value. An interesting point that can be noted507

from Figs. 7 and 8 is that for each sensor type, the data508

points to which the sensor is more sensitive have lower509

SNR sensitivities in comparison with other data points. For510

example, in Figs. 7(a) and 8(a), the reddish color patch (index511

= 6) has the least SNR sensitivity for almost all intensity512

(a)

(b)

(c)

Figure 7. SNR sensitivity curves for the R, G, and B sensor types with
respect to the dark current noise parameters for different color patches are
plotted in (a), (b), and (c) respectively.

factors of the red channel; or in Figs. 7(b) and 8(b), for 513

the green sensor, the greenish color patches (index = 1, 12) 514

have lower SNR sensitivities compared with the other color 515

samples. This conclusion is only true for dark current and 516

read noise curves. Comparing the average SNR sensitivities 517

J. Imaging Sci. Technol. 000000-9 May-June 2014



Rezagholizadeh and Clark: Image sensor modeling: color measurement at low light levels

(a)

(b)

(c)

Figure 8. SNR sensitivity curves for the R, G, and B sensor types with
respect to the read noise parameters for different color patches are plotted
in (a), (b), and (c) respectively.

of the three noise types reveals that read noise variations have518

the least impact on the SNR (less than 1%); then dark noise519

affects the SNR by between 1 and 9%; and the quantization520

noise has the most significant influence on the SNR.521

(a)

(b)

(c)

Figure 9. SNR sensitivity curves for the R, G, and B sensor types with
respect to the quantization noise for different color patches are plotted in
(a), (b), and (c) respectively.

CONCLUSION 522

In this work, we examined the effects of noise on color 523

measurements of image sensors at low light levels. In this 524

regard, a typical image sensor with a detailed noise model 525
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was implemented. The image sensor model was employed526

in several experiments to investigate the quality of color527

measurements at low light intensities in the presence of noise.528

The results can be summarized as follows: first, even an529

ideal image sensor without any device noise cannot measure530

consistent colors at very low light levels due to the photon531

noise; second, in contrast to the photon noise and read noise,532

which cause the generated samples at low light levels to533

be distributed around the high intensity samples, the dark534

current noise pushes the measurements towards the center535

of the chromaticity diagram (lower saturation values); third,536

for a single color patch, the distribution of noisy measured537

samples of an image sensor in low light situations forms538

an elliptical shape, and the size and inclination angle of the539

ellipse can give us some information about the type of noise540

affecting the measurements, and the color and luminance541

of the color patch; fourth, dark current induces a much542

more severe impact on colormeasurements in comparison to543

photon noise, read noise and quantization error; last but not544

least, the SNR sensitivity analysis showed that the presence of545

quantization noise does not cause a consistent change over546

the SNR value for different intensity factors, implying that547

this noise is little influenced by the light level change.548

We believe that this work is relevant for many appli-549

cations such as developing denoising algorithms, improving550

low light imaging, addressing low light image quality551

assessment techniques, and characterizing the noise of image552

sensors. Finally, this study could be further extended by553

incorporating the exposure time and ISO setting parameters554

into the model and then a set of optimal adjustments for the555

camera could be derived for different lighting conditions to556

obtain output images with the highest SNR values.557
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