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Abstract

Recently, soft biometric trait classification has been re-
ceiving more attention in the computer vision community
due to its wide range of possible application areas. Most
approaches in the literature have focused on trait classifica-
tion in controlled environments, due to the challenges pre-
sented by real-world environments, i.e. arbitrary facial ex-
pressions, arbitrary partial occlusions, arbitrary and non-
uniform illumination conditions and arbitrary background
clutter. In recent years, trait classification has started to
be applied to real-world environments, with some success.
However, the focus has been on estimation from single im-
ages or video frames, without leveraging the temporal in-
formation available in the entire video sequence. In addi-
tion, a fixed set of features are usually used for trait clas-
sification without any consideration of possible changes in
the facial features due to head pose changes. In this pa-
per, we propose a temporal, probabilistic framework first
to robustly estimate continuous head pose angles from real-
world videos, and then use this pose estimate to decide on
the appropriate set of frames and features to use in a tempo-
ral fusion scheme for soft biometric trait classification. Ex-
periments performed on large, real-world video sequences
show that our head pose estimator outperforms the cur-
rent state-of-the-art head pose approaches (by up to 51%),
whereas our head pose conditioned biometric trait classi-
fier (for the case of gender classification) outperforms the
current state-of-the-art approaches (by up to 31%).

1. Introduction

As the cost of the cameras has decreased in recent years,
the size of the available real-world, e.g. surveillance, video
data and its range of possible applications has increased
substantially. Some of these application areas include face
recognition/verification, human tracking, human computer
interaction and electronic customer management. Consid-

ering the size of available surveillance data, optimizing and
automating such applications is required. For this, soft bio-
metric traits, such as gender, age, height, weight, eye color
and ethnicity, can be used [ 14, | 1]. Soft biometric traits can
be used for video indexing to reduce the search space or to
boost the human tracking across difference cameras.

Face classification from unconstrained environments is
not a trivial task considering the challenges presented by
real-world environments (Figure 1). Despite the wide liter-
ature on soft biometric trait classification [30, 22, 9, 24, 13,

, 4,16, 32,29,6,23,5, 10, 19, 33] and head pose esti-
mation [25, 31, 1, 26, 3, 8], most of these approaches are
not built for unconstrained environments (see Section 2 for
details). Humans, on the other hand, are good at such clas-
sification/estimation tasks in real-world environments since
they take into consideration not only the facial features, but
also the conditions under which these features are collected,
such as the head pose for the case of biometric trait classifi-
cation. Thus, in this paper, we argue that it would be better
to perform trait classification from real-world face videos
conditioned on head pose estimates.

The methodology introduced in this paper is developed
in the context of arbitrary variations in the scene, namely:
(1) arbitrary face scales, (ii) non-uniform illumination con-
ditions, (iii) arbitrary partial occlusions, (iv) motion blur,
(v) background clutter, (vi) wide variability in image qual-
ity, (vii) subject variability, and (viii) the existence of
frames where face detection fails, i.e. no facial features are
detected. To achieve such a framework, we represent face
images with facial codebooks which are learned from local
scale invariant features extracted from the detected faces in
the training database. Once the faces in the training and
testing databases are represented by a codebook, we use
codeword statistics to achieve robust head pose estimation
and soft biometric trait classification. The proposed frame-
work is a two-stage Bayesian approach: (1) temporal head
pose estimation, and (2) temporal soft biometric trait clas-
sification conditioned on estimated head pose. In the first
stage (Section 3.1), the proposed head pose estimator lever-



Figure 1. Some of the challenges of real-world environment shown on the McGill Real-World Face Video Database: (a) various illumination
conditions and background clutter, (b) arbitrary face poses and scales, (c) arbitrary partial occlusions. (d) More example video frames
showing the challenges mentioned in (a), (b) and (c). Note that to fit all the images to this figure, we cropped the facial area.

ages the temporal information available in a video sequence
by building generative models of pose variation. This per-
mits accumulating evidence in the pose estimate probabilis-
tically over the test video sequence. The proposed pose esti-
mator is different from the current state-of-the-art head pose
approaches since it is a temporal framework which provides
posterior probabilities on the continuous head pose (yaw)
angles, and it is developed for real-world videos. In the sec-
ond stage (Section 3.2), a Bayesian trait classifier tempo-
rally estimates the probability of each trait hypothesis over
the entire video sequence, conditioned only on those frames
with high confidence pose estimates obtained from the pre-
vious stage. At each selected frame, trait classification is
done on the corresponding pose dependent codebook which
are learned from the training images with the corresponding
pose label. The proposed soft biometric trait classifier is dif-
ferent from the current state-of-the-art approaches, since it
is a temporal, probabilistic trait classification scheme that
uses pose-specific features rather than a general, viewpoint-
invariant representation [30, 17, 9].

In the experimental results section, we provide qualita-
tive and quantitative evaluations of both steps, i.e. head
pose estimation and soft biometric trait classification. Even
though the proposed method is applicable to any trait, in this
paper, we choose to test the framework on the task of gen-
der classification due to the recent attention it has received
(e.g. [30, 9]. We compare the performances of these two
steps to the current state-of-the-art approaches ([3, |, 8] for
head pose and [30, 9] for gender) on the McGill Real-World
Face Video Database (Figure 1). The experimental results
show that the proposed video-based head pose estimator
and gender classification steps significantly outperforms the
current state-of-the-art approaches despite the large number
of video frames containing no reliable face information (i.e.
face detection failure, and very few detected features).

2. Related Work

Most approaches in the gender classification literature
have focused on controlled environments, due to the chal-

lenges presented by real-world environments, i.e. arbi-
trary facial expressions, arbitrary partial occlusions, arbi-
trary and non-uniform illumination conditions and arbitrary
background clutter [22, 2, 18, 24, 12, 13, 28]. These ap-
proaches have incompatible stages with real-world environ-
ments, such as the need for good face alignment (no ex-
treme head pose is allowed), and the requirement for spe-
cific facial regions to track (no occlusion is allowed). Fur-
thermore, such approaches focus on analyzing images with
limited degrees of freedom. For instance, some work well
on multi-view (e.g. specific, non-arbitrary) face images, but
with optimal indoor lighting whereas some others work well
on images with arbitrary background clutters, but without
any occlusions, or non-uniform lighting.

Due to the wide range of possible applications for real-
world, e.g. surveillance, videos, recently gender classifica-
tion from real-world environments has been receiving more
attention [30, 17, 9]. Except for the work by [9], these ap-
proaches are single-image based approaches which do not
leverage the temporal information available in a video se-
quence. Kumar et al. [17] achieved robust face verification
from real-world frontal face images using several facial at-
tributes, e.g. gender, ethnicity, age, hair color, face shape.
The facial attribute classification was done using an SVM
(similar to [24, 28]) on appearance features from the de-
tected faces. The approach by Toews and Arbel [30] created
a viewpoint-invariant appearance model for face detection
purpose. The model used local invariant features, i.e. SIFT
[21], to probabilistically create a geometrical model robust
to various transformations based on which faces are de-
tected and localized. Later, the model features were used for
gender classification from multi and arbitrary viewpoints.
Demirkus et al. [9], on the other hand, modeled the gender
trait temporally using a Bayesian sequential approach. Es-
timation of the posterior probability of a face trait at a spe-
cific time was achieved via the viewpoint-invariant model
in [30]. Later, a Markov model was used to model temporal
dependencies. It was shown that such a temporal frame-
work outperformed both the alternative single image-based



trait classification methods.

The literature on head pose estimation from 2D images
can be divided into several groups (see the survey by [25]):
appearance template methods, manifold/subspace embed-
ding methods, geometric (facial landmark) methods, and
tracking methods. Most of these approaches assume that
the entire set of facial features typical for frontal poses is
always visible. Facial features are often manually labeled in
the testing data, rather than automatically extracted. How-
ever, many of these requirements and assumptions are not
feasible in the context of real-world videos.

Estimation of head pose from uncontrolled environments
has recently been receiving more attention [31, 1, 26, &].
Orozco et al. [26] and Tosato et al. [31] addressed the prob-
lem of head pose estimation in single, low resolution video
frames of crowded scenes under poor lighting, where they
treated the problem as a multi-class discrete pose classifi-
cation problem. Demirkus et al. [8], on the other hand,
proposed spatial and probabilistic pose templates which are
obtained from local codewords. Overall, most approaches
treat the head pose estimation problem as a classification
problem, that is, assigning a face image to one of discrete
poses, rather than perform continuous head pose estimation.
One exception is the work by Aghajanian and Prince [1]
proposing a patch-based regression framework to estimate
continuous head pose from single images. Finally, all the
approaches mentioned are developed for single face images,
and do not attempt to leverage the relative head pose infor-
mation available between consecutive video frames.

3. Methodology

The proposed framework works as follows: First, we run
a face detection algorithm to detect faces in the training and
testing images. Once the faces are detected, local invariant
features extracted from the detected faces are mapped into
a codebook, which can be learned by sophisticated cluster-
ing methods (e.g. [30]). The motivation behind the use of a
codebook is its high degree of robustness to various trans-
forms, such as the changes in scale, viewpoint, rotation and
translation. Next, we estimate pose probabilities for each
single frame using the association between the codeword
statistics and head pose. Afterwards, we develop a novel
temporal and probabilistic pose estimation scheme on these
estimated pose probabilities. Later, we train on the biomet-
ric trait for each estimated pose to get a pose specific code-
book. Online, we condition trait classification on the most
confident pose estimates, and do trait classification tempo-
rally over the entire video sequence.

3.1. Temporal Modeling of Head Pose Over a Video
Sequence

3.1.1 MRF-based Head Pose Temporal Model

The goal of our pose framework is to estimate an entire set
of pose probability density functions throughout a video.
Assume that we have a codebook with N codewords. For
each codeword, we define some statistics f Let ' =
{ ﬁ, f;, e f;v} be a vector of codebook statistics. Each
f;» has the following attributes: {o;,1;,a;} where o; is the
occurrence statistic of the i-th codeword, a; is the anatomi-
cal region labeling and /; is the location on the face image.
0 = {é1,da,...,0r} is the set of possible head pose an-
gles. The observation from a video sequence F is defined as
F = (F\,Fs,--- , Fy) for M video frames, and the con-
figuration of the underlying head pose in a video sequence
O is defined as © = (61,62, ,0).

Our goal is to calculate the posterior distribution p(©|F),

where p(O|F) = %. It is evident that p(F) is a normal-
ization constant Z with respect to ©, such that p(O|F) =
—p(©,F). Note that, if Z can not be calculated directly,
p(©,F) becomes an approximation to the posterior distri-
bution p(O|F). We wish to estimate the most likely con-
figuration of the posterior distribution ©*. Computing ©*
can be difficult without any approximations [!5]. Thus, we
use a graphical model to model the head pose over a video
sequence ©. Now, we can express the posterior distribution
as an MRF with pairwise interactions:

L (M M-1
p(OfF) = - (HM&»E)) (H @(91',9]')) (D

where 9(0;, F;) is the unary compatibility function account-
ing for local evidence (likelihood) for 8; and ¢(6;, 6;) is the
pairwise compatibility function between 6; and 6; (which
corresponds to the horizontal edges of the model and j =
1+ 1).

3.1.2 Inference through Belief Propagation

One way to estimate the most likely head pose configu-
ration is by calculating the MAP estimate, i.e. ©* =
argmaxgp(O|F), which can be achieved through Belief
Propagation (BP) [27]. BP is an inference method devel-
oped for graphical models, which can be used to estimate
the marginals or the most likely states, e.g. MAP. In our ex-
periments, we adapt the “sum-product” BP algorithm which
estimates the probability distributions. BP provides the ex-
act solution if there is no loop (cycle) in the graph, i.e. if
the graph is a chain or a tree [27], which is the case here.In
order to estimate the marginal distributions, the BP algo-
rithm creates a set of message variables which are updated
iteratively via passing between neighbors. m;;(6;) corre-
sponds to the message sent from node ¢ to node j about the



degree of its belief that node j should be in state 6;.The BP
algorithm updates the messages according to:

mz(§+1) Z@ 0170 elaF’L H m
keN(i)\j
2
t+1) . o
where Z =9, M (6;) is a normalization factor, and

the set of nodes in the neighborhood of i is denoted by N (4).
(t + 1) and (t) represent the iteration indices. The initial
messages mg) (.) are typically initialized to uniform posi-
tive values. In a general graph, the update procedure is re-
peated iteratively until the messages converge to a consen-
sus, then the marginals (beliefs) are calculated (Equation 3).
Since our graph here is acyclic, two passes are sufficient to
compute all messages, making the algorithm efficient.

The belief (b;) is an estimate of the marginal distribution,
derived from converged message variables as follows:

bi(6;) = ~1991,F [T mwi(6:) (3)
' kEN (i)

where Z; is a normalization factor guaranteeing that
> 9, bi(0;) = 1. Since our graph does not have loops,
the beliefs are guaranteed to be the true marginals p(6;|F).
Note that in the case of “sum-product” BP, the belief is an
estimate of marginals whose maximal point indicates the
most likely state. We define the unary compatibility func-
tion for each node i, i.e. ¥(0;, F;), as the joint distribution
p(0;, F;) = p(0;|F;)p(F;) where p(F;) is assumed to be
uniform. We make this assumption because F' is sparse,
and it is difficult to obtain a more informed prior. p(6;|F;) is
obtained via the approach explained in Section 3.1.3. Fur-
thermore, the pairwise compatibility function ¢(6;,0;) is
assumed to be a Gaussian distribution N (i, A) with mean
1 and covariance matrix A.

3.1.3 Continuous Head Pose Estimation from a Single
Video Frame

We first summarize the previously introduced approach in
[8] to obtain samples from the head pose distribution given
a set of observed codewords, i.e. p(f|F) estimated from
a single image. Next, we explain how we take these pose
samples to the continuous pose space in order to use them
later in the Belief Propagation as the unary compatibility
function ¥(6, F).

The  approach in [8] first learns  five
(—90°,—45°,0°,4+45°,490°) spatial and probabilis-
tic codebook pose templates from the training database.
Each template provides a probabilistic representation of
the head pose class and anatomical labeling distribution,
and each of them will be used to estimate the probability
of observing the related head pose for the given face

image. The general Bayesian MAP classification task
is to infer the most probable pose angle qg, such that
& = maxyeq p(¢|F) = maxge {%} Since the
denominator p(F') is just a normalizing factor, one can
write: ¢ o maxgseco {p(F|p)p(¢)}. Here, p(¢) is the a
priori probability density function on the pose class value
and p(F'|¢) is the likelihood for the class, conditioned
on the codewords observed in the image. Furthermore,
one can assume the conditional independence of observed
codewords given ¢ since (i) there is a the strong possibility
of occlusion, and (ii) an individual codeword is not neces-
sarily providing any information about another codeword
given the pose, i.e. p(F|¢) = Hivzl p(f;|¢). Finally, using
the definition of ﬁ and the chain rule:

N
p(¢|F) o< [ [ plaslli, 0i, 8)p(liloi, $)p(oild)p(¢) ~ (4)

i=1

where p(o;|¢) models the probability density describing
the probability of observing the i-th codeword for a spe-
cific pose ¢. p(l;|o;, d) is the spatial density of features
around location [; given ¢, where the i-th codeword (o;)
occurs. p(a;|l;, 04, ¢) models the probability of observ-
ing an anatomical label a; around location /; in all train-
ing images with the given ¢ in which i-th codeword has
been detected. To be able to estimate the probabilities
p(li|os, @) and p(a;|l;, 0;, $), we need to learn the spatial
density of features and the probability distribution of the
anatomical regions over training images for each head pose
class ¢, namely head pose specific probabilistic codebook
templates. Furthermore, as suggested in [8], we used his-
togram estimation followed by kernel density smoothing in
the vicinity of codeword location while obtaining p(l;|0;, ¢)
and p(a;|l;, 0i, §).

Note that, unlike the 5 anatomical regions used in the
original formulation in [8], here we modeled each visible
anatomical region adding up to 23 unique anatomical re-
gions over 5 bins of angles (—90°, —45°,0°, +45°, +90°).
For example, right eye from —90°, mouth from 0° and left
ear from +45°. Next, we estimate the entire pose density
p(0|F) in the range [—90°,+90°]. To be able to achieve
this, we tested a number of parametric and non-parametric
density estimators, namely Gaussian, Cauchy and kernel-
based (gaussian kernel), on our validation data. We ob-
served that, among all, Gaussian model fitting provides the
best results (see Section 4.3). Gaussian models perform
well due to their ability to smooth over false positives.

3.2. Temporal Biometric Trait Classification

Our goal now is to infer the most probable soft bio-
metric trait value (c¢*) for a video sequence using (i) the
facial local invariant features obtained from each video
frame, and (ii) MAP estimation of head pose for each video
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Figure 2. Head pose statistics for the test database of 30 unique
subjects (videos): (a) The change in the yaw angle. Each ¢ shows
the mean viewpoint angle for a specific subject, and the bars show
pose range for each subject. (b) The number of frames (out of 300
frames per video) which contain reliable face information. Note
that out of 9000 video frames, only 6732 of them have available
face information (i.e. face reliably detected), so we need to inter-
polate the head pose estimation of 2268 frames (25.2%) using our
temporal model.

frame which is provided by provided by Section 3.1, i.e
¢ = ma {p(¢|F)}. For this purpose, we define a Bayesian
€

classifier over the posterior probability of the soft biometric
trait class C given the observed codebook statistics obtained
in all previous frames until time ¢, F = {F;, F}_1,..., F1}
where F; = {f1, f2,..., fn} and codeword f; = o;:

(C:C|Ft,Ft1,...,F1)} (5)

* p
¢ =mazx<lo
¢ { Ip(C=eF, Fiy,..., ]

Since, in this paper, we consider the binary trait of gen-
der (i.e. male or female), C' = cor C' = ¢, where c and ¢ are
opposing genders. One can define the posterior probability
density function in Equation 5, such that:

p(Ftth—17"'7F1|c)
F Foq,...,F1)=
p(c‘ b ’ 1) p(Ft;thlw"vFl)

plc) (6)

where p(c) is the a priori probability on the class trait value
¢, which is set to be uniform, and p(F}, Fy_1,...,F1) is
the joint probability density function over all the features,
which is not needed to be calculated since it is omitted due
to the ratio in Equation 5. Furthermore, to model the like-
lihood function p(F}, Fy_1, ..., Fi|c), one can assume the
conditional independence of observed codebooks given c,
ie. p(Fi, Fi_1,...,Filc) = p(Fi|e)p(Fi—1]c) ... p(Fi|c).
Such an assumption is reasonable should we only choose a
subset of frames, i.e. confident frames decided based on a
confidence measure which will be explain later in this sec-
tion, from which to estimate the biometric trait. Modelling
the trait likelihood function p(F;|c) requires the codebook
to be learned from an appropriate set of facial features, so
that the facial local invariant features extracted from test im-
ages are mapped to the appropriate codeword. Our obser-
vations show that the codebook changes dramatically when

the head pose changes. Thus, we propose to use for each
frame pose specific codebook statistics (F,) which are ob-
tained from a codebook learned from the training images
with pose ¢. To achieve this, we first obtain the MAP es-
timation of head pose for the ith frame, i.e. qu using the
algorithm in Section 3.1, and then using codebook statis-
tics F'; obtain the trait class likelihood function for the ith
frame, i.e. p(F; [c). Thus,

i

C* = max lO p(Fé)t C)p(F(l;t71 |C) . .p(FAl |C)p(C)
= me gp(Fq;t 5)p(Fqgt71 |5) .. p(FAl |E)p(é)

To model the likelihood function p(Fy; |c), we can as-
sume the conditional independence of observed codewords
given c since (i) there is a the strong possibility of occlusion,
and (ii) an individual codeword is not necessarily providing
any information about another codeword given the gender:
p(Fy lc) o vazl p(f,]c). One can learn the probabil-
ity p(f;,[c) via the frequencies obtained from the training
database.

In our formulation we considered five poses, i.e. § =
(—90°, —45°,0°,445°,4+90°). One can increase the num-
ber of head poses to better model the relationship between
the gender and the head pose; however, the time cost of
learning a codebook for each pose should also be consid-
ered.

The conditional independence assumption that we make
on observed codebooks allows us to model each frame inde-
pendently in the video sequence, and select only a subset of
frames whose confidence measure is higher than a threshold
T. Here, we define this confidence measure as p(6|F’) ob-
tained from Section 3.1. Thus, in Equation 7, we use only
the frames whose head pose estimation probability is higher
than Tp(9|p).

4. Experiments
4.1. Experimental Setup

Although there are several face detectors developed for
unconstrained environments [34], we used the OCI model
[20] to detect faces and create a SIFT [21] based face code-
book since it was shown to robustly model and detect fa-
cial features in a viewpoint invariant manner in cluttered
scenes. For training purposes, we built a database from
3500 FERET images from 700 unique subjects (350 fe-
male and 350 male) containing an equal number of im-
ages from each of the five head poses. The motivation be-
hind learning on a clean (i.e. no occlusion) and controlled
database is to be able to increase the number of samples
for each codeword in the codebook as much as possible.
We noted empirically that when training on a subset of the



test dataset during cross-validation experiments, the num-
ber of codeword samples available during training was sub-
stantially reduced, indirectly leading to reduced trait dis-
tinctiveness. This training database was used to (i) learn
the OCI model [30] to localize faces, (ii) learn a viewpoint
invariant face codebook representation, and the spatial and
anatomical region probabilistic pose templates [8] to obtain
a robust head pose distribution (see Section 3.1.3), and (iii)
learn the pose specific gender codebook representation, and
the corresponding codebook statistics (Fy) for gender de-
tection purpose (see Section 3.2).

4.2. McGill Real-World Face Video Database

This test database consists of 30 unconstrained (real-
world) videos from 30 unique subjects (15 female and 15
male). Each video was collected with different illumina-
tion conditions and backgrounds, and each subject was free
in his/her movements, resulting in arbitrary face scales, ex-
pressions, viewpoints, local and/or global occlusions (due
to closed eyes, glasses, hand, coffee cup, scarf or hat) (see
Figure 1). For each subject, a 60-second video with 30
fps at 640x480 resolution was recorded. The face scale
changed (on average from 113x104 to 222x236) not only
from one video to another, but also within the same video
sequence. The sub-sampling of frames was empirically
set to 5 frames per second, leading to 300 x 30 = 9000
video frames in total. Each of these frames are labeled with
the correct gender class and the closest pose angle from
{=90°,—45°,0°, +45° 4+90°}. The individual frames in
the McGill Database exhibit wide variability in head pose
in terms of angle, yaw and partial occlusions. For instance,
36.7% of the frames are beyond the range [—45°, +45°] of
which 36.5% is either —90° or +90° (see Figure 2(a)). Fur-
thermore, each subject in the video database has a broad
variety of viewpoints, so that our experimental results were
not biased by any specific subject (see Figure 2(a)).Please
note that, the database we use in this paper is the latest ver-
sion, which is publicly available.

4.3. Evaluation of the Head Pose Estimation

In this section, we aim to show that the algorithm de-
scribed in Section 3.1 is a robust head pose estimator, thus
suitable for the later use in the gender detection phase.
Thus, we tested our pose estimation algorithm explained
in Section 3.1 and compared the results with several other
“state-of-the-art” approaches. Here, we relied on the man-
ual pose labels provided in Section 4.2 which served as
coarse “ground truth” for the experiments. Although we
estimated a continuous head pose density function at each
frame in the sequence, we were bounded by the precision
of the manual labeling of the database. Thus, we could only
evaluate the performance of the proposed and the state-of-
the-art algorithms in terms of classification accuracy, which

Accuracy (%)

BenAbdelkader [3] 7.80
Aghajanian and Prince [1] | 25.5
Demirkus et al. [8] 43.7

Proposed pose approach | 58.8
Table 1. Comparison of the head pose classification accuracies
over 9000 video frames from McGill Real-World Database.

in this context is defined as the number of times the esti-
mated pose angle fell into the correct pose bin. For the
proposed framework, the MAP of the probability density
function served as the estimated angle.

Over the 9000 real-world face images, we evaluated the
performance of the approaches mentioned in [1], [8] and
[3]. During the training procedure of [I1], we used the
same training parameters described in [!]. Following the
approach presented by the authors, we transformed the de-
tected face images to a 60x60 template using a Euclidean
warp. The best average accuracy of 25.5% was obtained
for 10x10 grid resolution and ¢ = 11.25. Next, we eval-
uated the algorithm in [8]. During the training, we used
1000 FERET images (Section 4.1) to learn the spatial and
anatomical region pose templates, as was performed in [8].
Furthermore, we observed that we could obtain a better pose
representation once we defined 23 anatomical regions rather
than 5, as specified in the paper [8] (see Section 3.1.3 for
details). Since the framework is probabilistic, we used the
MAP over p(¢|F) (see Equation 4) to estimate the pose
class. This led to an accuracy of 43.7%. The results we
obtained via BenAbdelkader’s supervised manifold-based
approach [3] were the lowest in terms of classification ac-
curacy: 7.8% for a 2D manifold. We had tried different
embedding dimensions, i.e. 2D, 3D, 8D and 20D (50D and
more was leading to unstable manifolds). To eliminate the
possibility that this low accuracy was due to our implemen-
tation, we tested our implementation on the same FacePix
[20] database used in [3] and achieved similar results to
those reported.

Finally, we tested the proposed approach over the 30
videos containing 9000 video frames. Note that we empiri-
cally set the parameters of ¢ (6;, 0;) in BP as = [91 91]7,
o7 = 2500, o; = 5000 and p = 0.8 (correlation coeffi-
cient). As shown in Table 1, using the temporal framework,
a classification accuracy of 58.8% was achieved, which is
significantly higher than the other approaches. This rela-
tively high accuracy was obtained despite the large num-
ber of frames (i.e. 25.2%) which contain no reliable face
information (see Figure 2(b)). The low accuracies of the
image-based state-of-the-art approaches were mainly a re-
sult of frames containing no reliable face information (see
Figure 2(b)). Because the proposed framework treats each
video as an MRF and uses the BP-based algorithm to in-



fer the entire sequence of poses in a video, it can robustly
estimate the poses even with frames containing no reliable
face information, and to correct for inconsistent head pose
labels. Moreover, as shown in Figure 3, the proposed ap-
proach is able to robustly classify pose with small angular
changes in pitch and roll, even when only presented with
head pose variation in the yaw angle in the training set.

4.4. Evaluation of the Gender Estimation

We tested the proposed gender classification algorithm
explained in Section 3.2 and compared the results with al-
ternative state-of-the-art approaches (see Table 2). In our
experiments, we examined the following possible methods:
(i) the proposed temporal approach, (ii) the temporal gen-
der classification approach by Demirkus et al. [9] based
on pose-invariant features, (iii) the static image-based (non-
temporal) approach by Toews and Arbel [30], and (iv) the
static image-based (non-temporal) approach using majority
voting with SVM classification on pixel intensity values.

Over the 9000 real-world face images, we applied the
SVM classifier (using libsvm [7]) for gender detection pur-
pose. The best classification accuracy is obtained by using
no-normalization and downsampling detected face images
to 24x24 (similar to the findings in [22, 9]). We trained
the SVM classifier on the training database, i.e. FERET
database. The best SVM parameters for the RBF kernel
(y = 0.0078125,C' = 32) were obtained using a grid
search. Later, for each of 30 videos, we obtained the gender
class based on the majority voting leading to 62% accuracy.
Next, we tested the single image-based gender classifier in-
troduced in [30] over 9000 real-world face images. The ap-
proach in [30] uses the posterior probability of the gender
trait given a pose-invariant codebook (p(c|F')) rather than
using pose specific codebook (p(c|Fy)) -like the proposed
approach does- for gender detection purpose, and its accu-
racy was limited to 66%. Next, we evaluated the temporal
model introduced in [9] over 30 video sequences each of
which has 300 frames. Similar to [30], this approach uses
the pose-invariant codebook representation to obtain gender
trait, i.e. p(c|F). However, the algorithm in [9] is a tem-
poral approach whereas the one in [30] is a single image-
based approach. We used the original implementation, pro-
vided by authors, for [9], and at the end of 300 video frames
(t = 300), we obtained 80% accuracy. Lastly, we eval-
uated the proposed temporal approach explained in Sec-
tion 3.2. We observed that at the end of 300 video frames,
we achieved a gender classification accuracy of 93% by set-
ting the frame selection threshold 77,9y to 0.28 (see Ta-
ble 2 and Figure 3). The value of T}, ) is empirically
decided based on our validation data. The obtained classi-
fication accuracy was due to not only using the right set of
codewords statistics (F) for gender estimation, but also re-
moving the frames which didn’t provide reliable head pose

Accuracy (%)

SVM 62
Toews and Arbel [30] 66
Demirkus et al. [9] 80

Proposed temporal approach | 93
Table 2. Comparison of the gender classification performance of
the proposed and the current state-of-the-art approaches on McGill
Real-World Face Video Database.

estimation. We observed that such unreliable frames consist
of ones which contained (i) no reliable face detection, (ii)
the presence of false accepted codewords, e.g. codewords
falsely detected outside of the face area.

5. Conclusions

In this paper, we propose a two-stage temporal and
probabilistic framework which first estimates the continu-
ous head pose angle, and then uses this pose estimate to
choose the frames with strong confidence in the pose es-
timate, and then condition trait classification on the pose
by using the pose-specific codeword features. Experi-
ments performed on a large, real-world video database
show that the two stages of the proposed approach sig-
nificantly outperforms the state-of-the-art approaches de-
spite the existence of video frames with no reliable face
information. One avenue for our future work is to inves-
tigate other features (e.g. SURF) to explore their ability
in further improving the discrimination of soft biometric
trait.
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