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Alpha Go
Arcade gamesRobotic grasping

Recent successes of RL
Algorithms based on comprehensive theory
The theory is restricted almost exclusively to
systems with perfect state observations.



Most real world systems are partially observed



Why is it difficult to learn in
partially observable environments?
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POMDP: PARTIALLY OBSERVABLE
MARKOV DECISION PROCESS

Dynamics: ℙ(St+1 | St, At)
Observations: ℙ(Yt | St)
Reward Rt = r(St, At).
Action: At = πt(Y1:t, A1:t−1).π = (πt)t≥1 is called a policy.

The objective is to choose a policy π to maximize:

J(π) ≔ 𝔼π[
∞∑t=1γt−1Rt]

Review: Planning in partially observable environments

Agent

Environment
State St ∈ 𝒮

Obs.Yt ∈ 𝒴ActionAt ∈ 𝒜
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POMDP: PARTIALLY OBSERVABLE
MARKOV DECISION PROCESS

Dynamics: ℙ(St+1 | St, At)
Observations: ℙ(Yt | St)
Reward Rt = r(St, At).
Action: At = πt(Y1:t, A1:t−1).π = (πt)t≥1 is called a policy.

The objective is to choose a policy π to maximize:

J(π) ≔ 𝔼π[
∞∑t=1γt−1Rt]

Conceptual challenge
Action is a function of the history of observations and actions.
The history is increasing in time. So, the search complexity increases exponentially in time.

Review: Planning in partially observable environments

Agent

Environment
State St ∈ 𝒮

Obs.Yt ∈ 𝒴ActionAt ∈ 𝒜



Approx. planning and learning–(Mahajan)
3

Agent

Environment
State St ∈ 𝒮

Obs.Yt ∈ 𝒴ActionAt ∈ 𝒜

Key simplifying idea
Define belief state Bt ∈ Δ(𝒮) as Bt(s) = ℙ(St = s | Y1:t, A1:t−1).

Belief state updates in a state-like mannerBt+1 = function(Bt, Yt+1, At).
Belief state is sufficient to evaluate rewards𝔼[Rt | Y1:t, A1:t] = r̂(Bt, At).

Thus, {Bt}t≥1 is a perfectly observed controlled Markov process.

Review: Planning in partially observable environments
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Agent

Environment
State St ∈ 𝒮

Obs.Yt ∈ 𝒴ActionAt ∈ 𝒜

Key simplifying idea
Define belief state Bt ∈ Δ(𝒮) as Bt(s) = ℙ(St = s | Y1:t, A1:t−1).

Belief state updates in a state-like mannerBt+1 = function(Bt, Yt+1, At).
Belief state is sufficient to evaluate rewards𝔼[Rt | Y1:t, A1:t] = r̂(Bt, At).

Thus, {Bt}t≥1 is a perfectly observed controlled Markov process.

Therefore, we get the following results:

Structure of
optimal policy

There is no loss of optimality in choosing the action At as a function of
the belief state Bt

Dynamic Program
The optimal control policy is given by the solution of the following DP:Vt(bt) = maxat∈𝒜{r̂(St, At) + 𝔼[Vt+1(Bt+1) | Bt = bt, At = at]}

Review: Planning in partially observable environments
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Implications of the modeling framework

Implications
for planning

Allows to use the entire machinery of fully observed Markov decision
processes for partially observed systems.
Various exact and approximate algorithms can efficiently solve the DP.
Exact: incremental pruning, witness algorithm, linear support algo
Approximate: QMDP, point based methods, SARSOP, DESPOT, . . .
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Implications
for learning

The construction of the belief state depends on the system model.
So, when the system model is unknown, we cannot construct the belief
state and therefore cannot use standard RL algorithms.

On the theoretical side:
Propose alternative methods: PSRs (predictive state representations),
bisimulation metrics, . . .
Good theoretical guarantees, but difficult to scale.

On the practical side:
Simply stack the previous k observations and treat it as a “state”.
Instead of a CNN, use an RNN to model policy and action-value fn.
Can be made to work but lose theoretical guarantees and insights.

Implications of the modeling framework

Implications
for planning

Allows to use the entire machinery of fully observed Markov decision
processes for partially observed systems.
Various exact and approximate algorithms can efficiently solve the DP.
Exact: incremental pruning, witness algorithm, linear support algo
Approximate: QMDP, point based methods, SARSOP, DESPOT, . . .



paper: https://arxiv.org/abs/2010.08843
code: https://github.com/info-structures/ais

This talk: A theoretically grounded method
for RL in partially observable models

which has strong empirical performance
for high-dimensioanl environments.



Approx. planning and learning–(Mahajan)
5

The high-level view

Information state

A classical (but perhaps not well known) concept in stochastic control.
Informally, an information state is a sufficient statistic which can be
recursively updated.
Always leads to a dynamic programming decomposition.

Approximate
information state

Information state is defined in terms of two properties.
An AIS is a process which approximtely satisfies these properties.
We show tht an AIS always leads to a approximate dynamic program.
Recover (and improve up on) many existing results in the literature.

AIS based RL
There are two approximation errors in the definition of AIS.
Use these approximation errors as a surrogate loss
Performs better than SOTA RL algorithms for POMDPs.
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Stochastic
System

Control input: At
Stochastic input: Wt

Output: Yt
Reward: Rt

Yt = ft(A1:t,W1:t),Rt = rt(A1:t,W1:t).

A1W1

(Y1, R1)

A2W2

(Y2, R2)

AtWt

(Yt, Rt)

Preliminaries: Input/output modeling
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Stochastic
System

Control input: At
Stochastic input: Wt

Output: Yt
Reward: Rt

Yt = ft(A1:t,W1:t),Rt = rt(A1:t,W1:t).

A1W1

(Y1, R1)

A2W2

(Y2, R2)

AtWt

(Yt, Rt)

Let Ht = (Y1:t−1, A1:t−1) denote the history
of all observations and actions available to the
agent before taking action at time t.
Assume that the agent chooses an At ∼ πt(Ht).
Let π = (π1, π2, . . . ) denote the control policy.

The objective is to choose a policy π to maximize:

J(π) ≔ 𝔼π[
∞∑t=1γt−1Rt]

Preliminaries: Input/output modeling
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Outline

Information state

A classical (but perhaps not well known) concept in stochastic control.
Informally, an information state is a sufficient statistic which can be
recursively updated.
Always leads to a dynamic programming decomposition.

Approximate
information state

AIS based RL



Approx. planning and learning–(Mahajan)
8

From sufficient statistics to information state

Sufficient Statistics

S Y A
State Obs. Action

Z = σ(Y) is a sufficient statistic for (the purpose of) evaluating the
reward R = r(S,A) if
(P1) 𝔼[R | Y = y,A = a] = 𝔼[R | Z = σ(y),A = a]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟≕r̂(σ(y),a)
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Information state

Consider a POMDP. Suppose:Zt = σt(Ht) is a sufficient statistic for evaluating the reward Rt, andZt+1 = σt+1(Ht+1) is a sufficient statistic for evaluating the reward Rt+1.
Is Zt sufficient for dynamic programming?

In general, no. To solve a DP, we need to be able to compute:Rt + γ𝔼[Vt+1(Zt+1)|Ht = ht, At = at]
So, in addition to (P1), we need:
(P2) ℙ(Zt+1 = zt+1|Ht = ht, At = at) = ℙ(Zt+1 = zt+1|Zt = σt(Ht), At = at)

From sufficient statistics to information state

Sufficient Statistics

S Y A
State Obs. Action

Z = σ(Y) is a sufficient statistic for (the purpose of) evaluating the
reward R = r(S,A) if
(P1) 𝔼[R | Y = y,A = a] = 𝔼[R | Z = σ(y),A = a]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟≕r̂(σ(y),a)



Informally, an information state is a compression
of the history which is sufficient for

performance evaluation and predicting itself.
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Formal definition of information state

Information State

Given a Banach space 𝒵, a collection {σt∶ ℋt → 𝒵}t≥1 is called an information
state generator if there exist a reward function r̂ and a transition kernel P̂
such that they are:
(P1) Sufficient for performance evaluation:𝔼[Rt | Ht = ht, At = at] = r̂(σt(ht), at).
(P2) Sufficient for predicting itself:ℙ(Zt+1 = zt+1 | Ht = ht, At = at) = P̂(zt+1|σt(ht), at).
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Formal definition of information state

Information State

Given a Banach space 𝒵, a collection {σt∶ ℋt → 𝒵}t≥1 is called an information
state generator if there exist a reward function r̂ and a transition kernel P̂
such that they are:
(P1) Sufficient for performance evaluation:𝔼[Rt | Ht = ht, At = at] = r̂(σt(ht), at).
(P2) Sufficient for predicting itself:ℙ(Zt+1 = zt+1 | Ht = ht, At = at) = P̂(zt+1|σt(ht), at).

Info State based
dynanmic program

Let {Zt}t≥1 be any information state proces. Define

V(z) = maxa∈𝒜{r̂(z, a) + γ∫𝒵 V(z+)P̂(dz+|z, a)}
Let π∗(z) denote the arg max of the RHS. Then, the policy π = (π1, π2, . . . )
given by πt = π∗ ∘ σt is optimal.
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Markov decision processes (MDP)

Current state St is an info state

Examples of information state
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Markov decision processes (MDP)

Current state St is an info state

MDP with delayed observations

(St−δ+1, At−δ+1:t−1) is an info state

POMDP

Belief state is an info state

POMDP with delayed observations

(ℙ(St−δ|Y1:t−δ, A1:t−δ), At−δ+1:t−1) is info state

Linear Quadratic Guassian (LQG)

The state estimate 𝔼[St|Ht] is an info state

Machine Maintenance

(τ, S+τ ) is info state,
where τ is the time of last maintenance

Examples of information state
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Outline

Information state

Approximate
information state

Information state is defined in terms of two properties.
An AIS is a process which approximtely satisfies these properties.
We show tht an AIS always leads to a approximate dynamic program.
Recover (and improve up on) many existing results in the literature.

AIS based RL
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Approximate information state (AIS)

Approximate
information state

A collection (σt, r̂, P̂) is called an (ε, δ)-approximate information state (AIS) if
it satisfies properties (P1) and (P2) approximately, i.e.,
(P1) Sufficient for approximate performance evaluation:

|𝔼[Rt | Ht = ht, At = at] − r̂(σt(ht), at)| ≤ ε
(P2) Sufficient for predicting itself approximately:d𝔉(ℙ(Zt+1 = ⋅ | Ht = ht, At = at), P̂(⋅ |σt(ht), at)) ≤ δ
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Approximate information state (AIS)

Approximate
information state

A collection (σt, r̂, P̂) is called an (ε, δ)-approximate information state (AIS) if
it satisfies properties (P1) and (P2) approximately, i.e.,
(P1) Sufficient for approximate performance evaluation:

|𝔼[Rt | Ht = ht, At = at] − r̂(σt(ht), at)| ≤ ε
(P2) Sufficient for predicting itself approximately:d𝔉(ℙ(Zt+1 = ⋅ | Ht = ht, At = at), P̂(⋅ |σt(ht), at)) ≤ δ

Metrics on
probability
measures

The definition of AIS depends on the choice of metric d𝔉 on probability
measures.
There are various choices for choosing a metric on probability measures,
e.g., total variation, Wasserstein distance, bounded-Lipsctiz metric, etc.
We work with a class of metrics known as integral probability metrics
(IPM) with respect to a class of function 𝔉.
The precise approximation bounds depend on what is called the Minkowski
functional ρ𝔉 corresponding to 𝔉.
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Integral probability metrics (IPMs)

IPM

Given a measurable space 𝒳 and class of real-valued functions 𝔉 on 𝒳, the
integral probability metric (IPM) between two distributions μ and ν on 𝒳
with respect to 𝔉 is defined as

d𝔉(μ, ν) = supf∈𝔉 |∫𝒳 fdμ − ∫𝒳 fdν|.

The Minkowski function ρ𝔉 with respect to 𝔉 is given byρ𝔉(f) = inf{ρ ∈ ℝ≥0 : ρ−1f ∈ 𝔉}.
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Integral probability metrics (IPMs)

IPM

Given a measurable space 𝒳 and class of real-valued functions 𝔉 on 𝒳, the
integral probability metric (IPM) between two distributions μ and ν on 𝒳
with respect to 𝔉 is defined as

d𝔉(μ, ν) = supf∈𝔉 |∫𝒳 fdμ − ∫𝒳 fdν|.

The Minkowski function ρ𝔉 with respect to 𝔉 is given byρ𝔉(f) = inf{ρ ∈ ℝ≥0 : ρ−1f ∈ 𝔉}.

Examples of IPM

Total variation distance corresponds to 𝔉 = {f : ‖f‖∞ ≤ 1}.
Kolmogorov distance corresponds to 𝔉 = {𝟙(−∞,t]∶ t ∈ ℝm}.
Wasserstein distance corresponds to 𝔉 = {f : ‖f‖Lip ≤ 1}.
Maximum mean discrepancy corresponds to 𝔉 = {f ∈ ℋ : ‖f‖ℋ ≤ 1}, where ℋ
is a RKHS.
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Let V̂ be the fixed point of the following equations:

V̂(z, a) = maxa∈𝒜{r̂(z, a) + γ∫𝒵 V̂(z+)P̂(dz+|z, a)}
Let V denote the optimal value and action-value functions.

AIS based approximation bounds
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Let V̂ be the fixed point of the following equations:

V̂(z, a) = maxa∈𝒜{r̂(z, a) + γ∫𝒵 V̂(z+)P̂(dz+|z, a)}
Let V denote the optimal value and action-value functions.

Then, we have the following:

Value function
approximation

The value function V̂ is approximately optimal, i.e.,

|Vt(ht) − V̂(σt(ht))| ≤ α = ε + γρ𝔉(V̂)δ1 − γ .

Policy
approximation

Let π̂∗∶ 𝒵 → Δ(𝒜) be an optimal policy for V̂.
Then, the policy π = (π1, π2, . . . ) given by πt = π̂∗ ∘ σt is approx. optimal:Vt(ht) − Vπt (ht) ≤ 2α.

AIS based approximation bounds



Examples of AIS
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(P, r) (P̂, r̂)(P, r) (P̂, r̂)
Real-world

model
Simulation

model
What is the loss in performance if we
choose a policy using the simulation
model and use it in the real world?

Example 1: Robustness to model mismatch in MDPs
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d𝔉 is total variation
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Recover bounds of Műller (1997).
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(P, r) (P̂, r̂)(P, r) (P̂, r̂)
Real-world

model
Simulation

model
What is the loss in performance if we
choose a policy using the simulation
model and use it in the real world?

d𝔉 is total variation

V(s) − Vπ(s) ≤ 2ε1 − γ + γδ span(r)(1 − γ)2
Recover bounds of Műller (1997).

d𝔉 is Wasserstein distance

V(s) − Vπ(s) ≤ 2ε1 − γ + 2γδLr(1 − γ)(1 − γLp)
Recover bounds of Asadi, Misra, Littman (2018).

Example 1: Robustness to model mismatch in MDPs

Model mismatch as an AIS

(Identity, P̂, r̂) is an (ε, δ)-AIS with ε = sups,a |r(s, a) − r̂(s, a)| and δ𝔉 = sups,a d𝔉(P(⋅ |s, a), P̂(⋅ |s, a)).
Thus, V(s) − Vπ(s) ≤ 2ε + γρ𝔉(V̂)δ𝔉1 − γ .
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𝒮 𝒮̂
φ

(P̂, r̂) is determined from (P, r) using φ
What is the loss in performance if we

choose a policy using the abstract model
and use it in the original model?

Example 2: Feature abstraction in MDPs
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d𝔉 is total variation
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Example 2: Feature abstraction in MDPs

Feature abstraction as AIS

(Identity, P̂, r̂) is an (ε, δ)-AIS with ε = sups,a |r(s, a)− r̂(φ(s), a)| and δ𝔉 = sups,a d𝔉(P(φ−1(⋅)|s, a), P̂(⋅ |φ(s), a).
Thus, V(s) − Vπ(s) ≤ 2ε + γρ𝔉(V̂)δ𝔉1 − γ .



Approx. planning and learning–(Mahajan)
16

𝒮 𝒮̂
φ

(P̂, r̂) is determined from (P, r) using φ
What is the loss in performance if we

choose a policy using the abstract model
and use it in the original model?

d𝔉 is total variation

V(s) − Vπ(s) ≤ 2ε1 − γ + γδ𝔉 span(r)(1 − γ)2
Improve bounds of Abel et al. (2016)

d𝔉 is Wasserstein distance

V(s) − Vπ(s) ≤ 2ε1 − γ + 2γδ𝔉‖V̂‖Lip(1 − γ)2
Recover bounds of Gelada et al. (2019).

Example 2: Feature abstraction in MDPs

Feature abstraction as AIS

(Identity, P̂, r̂) is an (ε, δ)-AIS with ε = sups,a |r(s, a)− r̂(φ(s), a)| and δ𝔉 = sups,a d𝔉(P(φ−1(⋅)|s, a), P̂(⋅ |φ(s), a).
Thus, V(s) − Vπ(s) ≤ 2ε + γρ𝔉(V̂)δ𝔉1 − γ .
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Belief space Quantized beliefs

What is the loss in performance if we
choose a policy using the approximate

beliefs and use it in the original model?
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Example 3: Belief approximation in POMDPs

Belief approximation in POMDPs

ε-sufficient statistics defined in Francois-Lavet et al. (2019) as dTV(b̂t(⋅ |ϕt(ht)), bt(⋅ |ht)) ≤ ε
We can show that an ε-sufficient statistic is an (ε‖r‖∞, 3ε)-AIS (wrt to the bounded Lipscitz metric).



Thus, the notion of AIS unifies many
of the approximation results in the

literature, both for MDPs and POMDPs.
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Outline

Information state

Approximate
information state

AIS based RL
There are two approximation errors in the definition of AIS.
Use these approximation errors as a surrogate loss
Performs better than SOTA RL algorithms for POMDPs.
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AIS Generator

AIS generator: an LSTM for σt∶ ℋt → 𝒵 and
a NN for functions r̂ and P̂.

Use λ(R̃t − Rt)2 + (1 − λ)d𝔉(μt, νt)2 as a surrogate loss fn.
When IPM is Wasserstein distance or maximum mean dis-
crepancy, ∇d𝔉(μt, νt)2 can be computed efficiently.

Reinforcement learning setup

AIS
Encoder

AIS
Decoder

Zt
AIS GeneratorAtAt−1

Yt−1
R̃tνt
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Convergence Guarantees

Use multi timescale stochastic approximation to
simultaneously learn AIS generator, action-value
function, and policy.
Under appropriate technical assumptions, con-
verges to the stationary point corresponding to
the choice of function approximators.



Numerical Experiments
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MiniGrid Environments

Features

Partially observable 2D grids. Agent has a view of a 7 × 7 field in front of
it. Observations are obstructed by walls.
Multiple entities (agents, walls, lava, boxes, doors, and keys)
Multiple actions (Move Forward, Turn Left, Turn Right, Open Door/Box,
Pick up Item, Drop Item, Done).

Simple Crossing Lava Crossing Key Corrdior
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Baselines

AIS + MMD AIS based algorithm where maximum mean discrepancy (MMD) is used as an
IPM.

AIS + KL
AIS based algorithm where Wasserstein distance is used as an IPM. In our
experiments, we use KL divergence, which is an upper bound for Wasserstein
distance and is easier to compute.

PPO + LSTM Baseline proposed in the paper introducing the minigrid environments.
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Simple Crossing S9N3

Simple Crossing S11N5

Simple Crossing
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Key Corridor S3R2

Key Corridor S3R3

Key Corridor
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Obstructed Maze 1Dl

Obstructed Maze 1Dlh

Obstructed Maze
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Agent

Environment
State St ∈ 𝒮

Obs.Yt ∈ 𝒴ActionAt ∈ 𝒜

Key simplifying idea
Define belief state Bt ∈ Δ(𝒮) as Bt(s) = ℙ(St = s | Y1:t, A1:t−1).

Belief state updates in a state-like mannerBt+1 = function(Bt, Yt+1, At).
Belief state is sufficient to evaluate rewards𝔼[Rt | Y1:t, A1:t] = r̂(Bt, At).

Thus, {Bt}t≥1 is a perfectly observed controlled Markov process.

Therefore, we get the following results:

Structure of
optimal policy

There is no loss of optimality in choosing the action At as a function of
the belief state Bt

Dynamic Program
The optimal control policy is given by the solution of the following DP:Vt(bt) = maxat∈𝒜{r̂(St, At) + 𝔼[Vt+1(Bt+1) | Bt = bt, At = at]}

Review: Planning in partially observable environments
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Formal definition of information state

Information State

Given a Banach space 𝒵, a collection {σt∶ ℋt → 𝒵}t≥1 is called an information
state generator if there exist a reward function r̂ and a transition kernel P̂
such that they are:
(P1) Sufficient for performance evaluation:𝔼[Rt | Ht = ht, At = at] = r̂(σt(ht), at).
(P2) Sufficient for predicting itself:ℙ(Zt+1 = zt+1 | Ht = ht, At = at) = P̂(zt+1|σt(ht), at).

Info State based
dynanmic program

Let {Zt}t≥1 be any information state proces. Define

V(z) = maxa∈𝒜{r̂(z, a) + γ∫𝒵 V(z+)P̂(dz+|z, a)}
Let π∗(z) denote the arg max of the RHS. Then, the policy π = (π1, π2, . . . )
given by πt = π∗ ∘ σt is optimal.
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Let V̂ be the fixed point of the following equations:

V̂(z, a) = maxa∈𝒜{r̂(z, a) + γ∫𝒵 V̂(z+)P̂(dz+|z, a)}
Let V denote the optimal value and action-value functions.

Then, we have the following:

Value function
approximation

The value function V̂ is approximately optimal, i.e.,

|Vt(ht) − V̂(σt(ht))| ≤ α = ε + γρ𝔉(V̂)δ1 − γ .

Policy
approximation

Let π̂∗∶ 𝒵 → Δ(𝒜) be an optimal policy for V̂.
Then, the policy π = (π1, π2, . . . ) given by πt = π̂∗ ∘ σt is approx. optimal:Vt(ht) − Vπt (ht) ≤ 2α.

AIS based approximation bounds
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Concluding thoughts

A conceptually clean framework for approximate
DP and online RL in partially observed systems

Other results in the paper

Generalizations to observation compression, action quantization, and lifelong learning.
Generalizations to multi-agent systems.

Ongoing work

Thinking about other RL settings such as offline RL, model based RL, inverse RL.
A building block for multi-agent RL.
. . .
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