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Strong Consistency and Rate of Convergence of
Switched Least Squares System Identification for

Autonomous Markov Jump Linear Systems
Borna Sayedana, Mohammad Afshari, Peter E. Caines, Aditya Mahajan

Abstract—In this paper, we investigate the problem of sys-
tem identification for autonomous Markov jump linear systems
(MJS) with complete state observations. We propose switched
least squares method for identification of MJS, show that this
method is strongly consistent, and derive data-dependent and
data-independent rates of convergence. In particular, our data-
independent rate of convergence shows that, almost surely, the
system identification error is O

(√
log(T )/T

)
where T is the

time horizon. These results show that switched least squares
method for MJS has the same rate of convergence as least
squares method for autonomous linear systems. We derive our
results by imposing a general stability assumption on the model
called stability in the average sense. We show that stability in
the average sense is a weaker form of stability compared to the
stability assumptions commonly imposed in the literature. We
present numerical examples to illustrate the performance of the
proposed method.

I. INTRODUCTION

Markov jump linear systems (MJS) are a good approxi-
mation of non-linear time-varying systems arising in various
applications including networked control systems [2] and
cyber-physical systems [3], [4]. There is a rich literature on
the stability analysis (e.g., [5]–[7]) and optimal control (e.g.,
[8]) of MJS. However, most of the literature assumes that the
system model is known. The question of system identification,
i.e., identifying the dynamics from data, has not received much
attention in this setup.

The problem of identifying the system model from data is
a key component for control synthesis for both offline control
methods and online control methods including adaptive control
and reinforcement learning [9], [10]. There are four main
approaches for system identification of linear systems: (i) max-
imum likelihood estimation which maximizes the likelihood
function of the unknown parameter given the observation
(e.g. see [11]); (ii) minimum prediction error methods which
minimize the estimation error (residual process) according to
some loss function (e.g. see [12], [13]); (iii) subspace methods,
which find a minimum state space realization given the input,
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output data (e.g. see [14], [15]); (iv) least squares method
which estimates the unknown parameter by considering the
model as a regression problem (e.g. see [16], [17]).

These methods differ in terms of structural assumptions on
the model (e.g. system order), hypotheses on the stochastic
process, and convergence properties and guarantees.

Structural assumptions require the system to be stable in
some sense (e.g., mean square stable, exponentially stable,
etc.), and stochastic hypotheses restrict the noise processes
to be of a certain type, (e.g., Gaussian, sub-Gaussian, or
Martingale difference sequences).

Convergence properties characterize the asymptotic behav-
ior of system identification methods. The basic requirements
for any system identification method is its consistency, asymp-
totic normality and rates of convergence, that is to establish
that estimates converge asymptotically to the true unknown
parameter and characterize the rate of convergence. System
identification methods can be weakly consistent (i.e., estimates
converge in probability) or strongly consistent (i.e., estimates
convergence almost surely). For linear systems, there is a
vast literature that establishes the consistency and rates of
convergence for a variety of methods (e.g. see [10], [17] for a
unified overview). Another characterization of the convergence
is finite-time guarantees which provide lower-bounds on the
number of samples required so that estimates have a specified
degree of accuracy with a specified high probability [18]–
[26]. As the number of samples grow to infinity, these results
establish weak consistency of the proposed methods.

System identification of MJS and switched linear systems
(SLS) has received less attention in the literature. There is
some work on designing asymptotically stable controllers for
unknown SLS [27]–[29] but these papers do not establish
rates of convergence for system identification. There are some
recent papers which provide finite time guarantees and rate
of convergence for SLS [30], [31] and MJS [32]. System
identification of a globally asymptotically stable SLS with
controlled switching signal is investigated in [30], while the
system identification of an unknown order SLS using subspace
methods is investigated in [31]. Both these methods are
developed for SLS and are not directly applicable to MJS.
The model analyzed in [32] is an MJS system. Under the
assumption that the system is mean square stable, the switch-
ing distribution is ergodic and the noise is i.i.d. subgaussian,
it is established that the convergence rate is O(

√
log T/T )

with high probability. Then a certainty equivalence control
algorithm is proposed and its regret is analyzed. Note that
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if we let the number of samples go to infinity, these results
imply weak consistency of the proposed methods for MJS
systems. As far as we are aware, there is no existing result
which establishes strong consistency of a method for system
identification of MJS.

A. Contributions

• We propose a switched least squares method for system
identification of an unknown (autonomous) MJS and
provide data-dependent and data-independent rates of
convergence for this method.

• We prove strong consistency of the switched least squares
method and establish a O(

√
log(T )/T ) rate of conver-

gence, which matches with the rate of convergence of
non-switched linear systems established in [16]. In con-
trast to the existing high-probability convergence guaran-
tees in the literature, our results show that the estimates
converge to the true parameters almost surely. Therefore,
our results provide guarantees which are different in
nature compared to parallel works.

• The main challenge in establishing strong consistency
for MJS systems is the interplay between the empirical
covariance process and stability of the MJS system. We
shed light on this connection and show that stability
in the average sense is a sufficient condition for strong
consistency.

• Our results are derived under weaker assumptions com-
pared to the existing literature (Note that the preliminary
version of this paper [1] had assumed a stronger stability
condition). Most existing results assume that the MJS
system is mean square stable. We prove that mean square
stability implies stability in the average sense. Further-
more, we show that a commonly used sufficient condition
for almost sure stability of noise-free MJS system also
implies stability in the average sense.

B. Organization

The rest of the paper is organized as follows. In Sec II,
we present the system model, assumptions, and the main
results. In Sec. III, we prove the main results. In Sec. IV, we
explain the connection of stability in the average sense with
mean square stability and almost sure stability. We present an
illustrative example in Sec. V. We conclude in Sec. VI.

C. Notation

Given a matrix A, A(i, j) denotes its (i, j)-th element,
λmax(A) and λmin(A) denote the largest and smallest magni-
tudes of right eigenvalues, σmax(A) =

√
λmax(A

⊺A) denotes
the spectral norm. For a square matrix Q, Tr(Q) denotes the
trace. When Q is symmetric, Q ⪰ 0 and Q ≻ 0 denotes that
Q is positive semi-definite and positive definite, respectively.
For two square matrices, Q1 and Q2 of the same dimension,
Q1 ⪰ Q2 means Q1 −Q2 ⪰ 0. Given two matrices A and B,
A⊗B denotes the Kronocher product of the two matrices.

Given a sequence of positive numbers {at}t≥0, aT = O(T )
means that lim supT→∞ aT /T < ∞, and aT = o(T ) means

that lim supT→∞ aT /T = 0. Given a sequence of vectors
{xt}t∈T , vec(xt)t∈T denotes the vector formed by vertically
stacking {xt}t∈T . Given a sequence of random variables
{xt}t≥0, x0:t is a short hand for (x0, · · · , xt) and σ(x0:t)
denotes the sigma field generated by random variables x0:t.
Given a probability space {Ω,F ,P}, Ω denotes the sample
space, ω ∈ Ω denotes elementary events, P(·) denotes the
probability measure and E[·] denotes the expectation operator.
R and N denote the sets of real and natural numbers. For a

set T , |T | denotes its cardinality. For a vector x, ∥x∥ denotes
the Euclidean norm. For a matrix A, ∥A∥ denotes the spectral
norm and ∥A∥∞ denotes the element with the largest absolute
value. diag(·) is the block diagonal matrix. Convergence in
almost sure sense is abbreviated as a.s.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a discrete-time (autonomous) MJS. The state of
the system has two components: a discrete component st ∈
S := {1, . . . , k} and a continuous component xt ∈ Rn.
There is a finite set A = {A1, . . . , Ak} of system matrices,
where Ai ∈ Rn×n. The continuous component xt of the
state starts at a fixed value x0 and the initial discrete state
s0 starts according to a prior distribution π0. The continuous
state evolves according to:

xt+1 = Astxt + wt, t ≥ 0, (1)

where {wt}t≥0, wt ∈ Rn, is a noise process. The discrete
component evolves in a Markovian manner according to a
time-homogeneous irreducible and aperiodic transition matrix
P , i.e. P(st+1 = j|st = i) = Pij .

Let πt = (πt(1), . . . , πt(k)) denote the probability dis-
tribution of the discrete state at time t and π∞ denote the
stationary distribution. We assume π∞(i) ̸= 0 for all i. Let
Ft−1 = σ(x0:t, s0:t) denote the sigma-algebra generated by
the history of the complete state.

It is assumed that the noise process satisfies the following:

Assumption 1. The noise process {wt}t≥0 is a martingale
difference sequence with respect to {Ft}t≥0, i.e., E[|wt|] < ∞
and E[wt | Ft−1] = 0. Furthermore, there exists a constant
α > 2 such that supt≥0E[∥wt∥α | Ft−1] < ∞ a.s. and there
exists a symmetric and positive definite matrix C ∈ Rn×n such
that lim infT→∞

1
T

∑T−1
t=0 wtw

⊺
t = C a.s.

Assumption 1 is a standard assumption in the asymptotic
analysis of system identification of linear systems [16], [17],
[33]–[35] and allows the noise process to be non-stationary
and have heavy tails (as long as moment condition is satis-
fied). We use the following notion of stability for the MJS
system (1).

Definition 1. The MJS system (1) is called stable in the
average sense if almost surely:

T∑
t=1

∥xt∥2 = O(T ) i.e. lim sup
T→∞

1

T

T∑
t=1

∥xt∥2 < ∞.

Assumption 2. The MJS system (1) is stable in the average
sense.
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The notion of stability in the average sense has been used
in a few papers in the literature of linear systems [36], [37];
however, in the MJS literature, the commonly used notions of
stability are mean square stability and almost sure stability
of noise-free system. We compare stability in the average
sense with both of these notions in Sec. IV. Specifically, we
show that mean square stability implies stability in the average
sense. Moreover, we show a common sufficient condition for
almost sure stability of noise-free system implies stability
in the average sense for MJS system (1). Therefore, the
assumption of stability in the average sense is weaker than
the commonly imposed stability assumptions imposed in the
literature.

A. System identification and switched least squares estimates

We are interested in the setting where the system dynamics
A and the switching transition matrix P are unknown. Let
θ⊺ = [A1, . . . , Ak] ∈ Rn×nk denote the unknown parameters
of the system dynamics matrices. We consider an agent that
observes the complete state (xt, st) of the system at each
time and generates an estimate θ̂T of θ as a function of the
observation history (x0:T , s0:T ). A commonly used estimate
in such settings is the least squares estimate:

θ̂
⊺
T = argmin

θ⊺=[A1,...,Ak]

T−1∑
t=0

∥xt+1 −Astxt∥2. (2)

The components [Â1,T , . . . , Âk,T ] = θ̂⊺T of the least squares
estimate can be computed in a switched manner. Let Ti,T =
{t ≤ T | st = i} denote the time indices until time T when
the discrete state of the system equals i. Note that for each
t ∈ Ti,T , Ast = Ai. Therefore, we have

Âi,T := argmin
Ai∈Rn×n

∑
t∈Ti,T

∥xt+1 −Aixt∥2, ∀i ∈ {1, · · · , k}.

(3)
Let Xi,T denote

∑
t∈Ti,T

xtx
⊺
t , which we call the unnormal-

ized empirical covariance of the continuous component of the
state at time T when the discrete component equals i. Then,
Âi,T can be computed recursively as follows:

Âi,T+1 = Âi,T

+

[
X−1

i,TxT (xT+1 − Âi,TxT )
⊺

1 + x⊺
TX

−1
i,TxT

]
1{sT+1 = i} (4)

where Xi,T may be updated as Xi,T+1 = Xi,T +[
xT+1x

⊺
T+1

]
1{sT+1 = i}. Due to the switched nature of the

least squares estimate, we refer to above estimation procedure
as switched least squares system identification.

B. The main results

A fundamental property of any sequential parameter esti-
mation method is strong consistency, which we define below.

Definition 2. An estimator θ̂T of parameter θ is called
strongly consistent if limT→∞ θ̂T = θ, a.s.

Our main result is to establish that the switched least squares
estimator is strongly consistent. We do so by providing two

different characterization of the rate of convergence. We first
provide a data-dependent rate of convergence which depends
on the spectral properties of the unnormalized empirical co-
variance. We then present a data-independent characterization
of rate of convergence which only depends on T . All the
proofs are presented in Sec. III.

Theorem 1. Under Assumptions 1 and 2, the switched least
squares estimates {Âi,T }ki=1 are strongly consistent, i.e., for
each i ∈ S , we have: limT→∞

∥∥Âi,T − Ai

∥∥
∞ = 0, a.s.

Furthermore, the rate of convergence is upper bounded by:

∥∥Âi,T −Ai

∥∥
∞ ≤ O

(√
log

[
λmax(Xi,T )

]
λmin(Xi,T )

)
, a.s.

Remark 1. Theorem 1 is not a direct consequence of the
decoupling procedure in the switched least squares method.
The k least squares problems have a common covariate process
{xt}t≥1. Therefore, the convergence of the switched least
squares method and the stability of the MJS are interconnected
problems. Our proof techniques carefully use the stability
properties of the system to establish the consistency of the
system identification method.

We simplify the result of Theorem 1 and characterize the
data dependent result of Theorem 1 in terms of horizon T and
the cardinality of the set Ti,T .

Corollary 1. Under Assumptions 1 and 2, for each i ∈ S, we
have: ∥∥Âi,T −Ai

∥∥
∞ ≤ O

(√
log(T )/|Ti,T |

)
, a.s.

Remark 2. The assumption that π∞(i) ̸= 0 implies that for
sufficiently large T , |Ti,T | ≠ 0 almost surely, therefore the
expressions in above bounds are well defined.

The result of Corollary 1 still depends on data. When
system identification results are used for adaptive control or
reinforcement learning, it is useful to have a data-independent
characterization of the rate of convergence. We present this
characterization in the next theorem.

Theorem 2. Under Assumptions 1 and 2, the rate of conver-
gence of the switched least squares estimator Âi,T , i ∈ S is
upper bounded by:∥∥Âi,T −Ai

∥∥
∞ ≤ O

(√
log(T )/π∞(i)T

)
, a.s.

where the constants in the O(·) notation do not depend
on Markov chain {st}t≥0 and horizon T . Therefore, the
estimation process {θ̂T }T≥1 is strongly consistent, i.e.,
limT→∞

∥∥θ̂T − θ
∥∥
∞ = 0 a.s. Furthermore, the rate of

convergence is upper bounded by:∥∥θ̂T − θ
∥∥
∞ ≤ O

(√
log(T )/π∗T

)
, a.s.

where π∗ = minj∈S π∞(j).

Theorem 2 shows that Assumptions 1 and 2 guarantee that
the switched least squares estimator for MJS has the same
rate of convergence of O(

√
log(T )/T ) as non-switched case

established in [16]. Moreover, the upper bound in Theorem 2
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shows that the estimation error of Âi,T is proportional to
1/
√
π∞(i); therefore, the rate of convergence of θ̂T is pro-

portional to 1/
√
π∗, where π∗ is the smallest probability in

the stationary distribution π∞.

Remark 3. SLS is a special case of MJS in which the discrete
state evolves in an i.i.d. manner. The results presented in
this section are valid for the SLS after substituting stationary
distribution π∞ with the i.i.d. PMF of switching probabilities
defined over discrete state.

III. PROOFS OF THE MAIN RESULTS

A. Preliminary results

We first state the Strong Law of Large Numbers (SLLN)
for Martingale Difference Sequences (MDS).

Theorem 3. (see [38, Theorem 3.3.1]) Suppose {Xτ}τ≥1is a
martingale difference sequence with respect to the filtration
{Fτ}τ≥1 . Let aτ be Fτ−1 measurable for each τ ≥ 1
and we have 0 < aτ → ∞ as τ → ∞, a.s. If for some
p ∈ (0, 2], we have:

∑∞
τ=1E[|Xτ |p|Fτ−1]/a

p
τ < ∞, then:

limT→∞
∑T

τ=1 Xτ/aT = 0 a.s.

Lemma 1. The assumptions on the process {st}t≥0 imply that
limT→∞ |Ti,T |/T = π∞(i), a.s.

Proof. {st}t≥0 is an aperiodic and irreducible Markov chain,
hence, by the Ergodic Theorem (Theorem 4.1, [39]), {st}t≥0

is ergodic and therefore limT→∞ |Ti,T |/T = π∞(i) a.s.

Lemma 2. Assumption 1 and 2 imply:
∞∑
τ=1

∥xτ∥2/τ2 < ∞ a.s.

Proof. The result is a direct consequence of Abel’s lemma.
Let ST :=

∑T
τ=1 ∥xτ∥2, then we have:

T∑
τ=1

∥xτ∥2

τ2
=

T∑
τ=1

Sτ − Sτ−1

τ2

=
ST

T 2
− S0

1
+

T∑
τ=2

Sτ−1

( 1

(τ − 1)2
− 1

τ2

)
(a)
=

ST

T 2
− S0

1
+

T∑
τ=2

O(τ − 1)
( 2τ − 1

τ2(τ − 1)2

)
=

ST

T 2
− S0

1
+

T∑
τ=2

O
(

1

τ2

)
< ∞

where (a) follows from Assumption 2.

Lemma 3. We have the following:∥∥∥ T∑
τ=1

Asτxτw
⊺
τ + wτx

⊺
τA

⊺
sτ

∥∥∥ = o(T ) a.s.

Proof. We prove the limit element-wise. The (l, p)-th element
of the matrix Asτxτw

⊺
τ is

[∑n
j=1 Asτ (l, j)xτ (j)

]
wτ (p). We

calculate the term:

E
[( n∑

j=1

Asτ (l, j)xτ (j)wτ (p)
)2∣∣∣Fτ−1

]
. (5)

Let A∗ = maxi∈S ∥Ai∥∞, then

E
[( n∑

j=1

Asτ (l, j)xτ (j)
)2

w2
τ (p)

∣∣∣Fτ−1

]
(a)

≤ A2
∗ sup

τ
E[w2

τ (p)
∣∣Fτ−1]

( n∑
j=1

xτ (j)
)2

(b)

≤ nA2
∗ sup

τ
E
[
w2

τ (p)
∣∣Fτ−1

]
∥xτ∥2,

where (a) uses the fact that sτ and xτ are Fτ−1 measurable
and that |Asτ (l, j)| ≤ A∗ and (b) is by Cauchy-Schwarz’s
inequality. Therefore:

T∑
τ=1

E
[([∑n

j=1 Asτ (l, j)xτ (j)
]
wτ (p)

)2∣∣∣Fτ−1

]
τ2

≤ nA2
∗ sup

τ

{
E[w2

τ (p)|Fτ−1]
} T∑

τ=1

∥xτ∥2

τ2

(c)

≤ ∞.

Since α > 2 in Assumption 1, and finiteness of higher order
moments imply finiteness of lower order moments, we get
E
[
w2

τ (p)
∣∣Fτ−1

]
is uniformly bounded. This fact along with

Lemma 2 imply (c). The result then follows by applying
Theorem 3 by setting at = t and p = 2.

We characterize the asymptotic behavior of the matrix Xi,T .

Proposition 1. Under Assumptions 1 and 2, the following hold
a.s. for each i ∈ S:
(P1) λmax(Xi,T ) = O(T ), a.s.
(P2) lim infT→∞ λmin(Xi,T )/|Ti,T | > 0, a.s.

Remark 4. Property (P1) shows that when the system is
stable in the average sense, λmax(Xi,T ) cannot grow faster
than linearly with time. Therefore, the stability of the system
controls the rate at which Xi,T can grow. Property (P2) shows
that when the noise has a minimum covariance, λmin(Xi,T )
cannot grow slower than linearly with time.

Proof of (P1). The maximum eigenvalue of a matrix can be
upper bounded as follows:

λmax

( ∑
t∈Ti,T

xtx
⊺
t

) (a)

≤ tr
( ∑

t∈Ti,T

xtx
⊺
t

)
=

∑
t∈Ti,T

∥xt∥2

≤
T∑

t=1

∥xt∥2 = O(T )

where (a) follows from the fact that trace of a matrix is sum of
its eigenvalues and all eigenvalues of xtx

⊺
t are non-negative.

Proof of (P2). For τ ≥ 1, we have:

xτx
⊺
τ =(Asτ−1xτ−1 + wτ−1)(Asτ−1xτ−1 + wτ−1)

⊺

=Asτ−1xτ−1x
⊺
τ−1A

⊺
sτ−1

+Asτ−1
xτ−1w

⊺
τ−1 + wτ−1x

⊺
τ−1A

⊺
sτ−1

+ wτ−1w
⊺
τ−1.

Since Asτ−1
xτ−1x

⊺
τ−1A

⊺
sτ−1

is positive semi-definite, we
have:

xτx
⊺
τ ⪰ Asτ−1

xτ−1w
⊺
τ−1 + wτ−1x

⊺
τ−1A

⊺
sτ−1

+ wτ−1w
⊺
τ−1.
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By summing over τ ∈ Ti,T , we get:∑
τ∈Ti,T

xτx
⊺
τ ⪰

∑
τ∈Ti,T

wτ−1w
⊺
τ−1 + x0x

⊺
01{s0 = i}

+
∑

τ∈Ti,T

[
Asτ−1

xτ−1w
⊺
τ−1 + wτ−1x

⊺
τ−1A

⊺
sτ−1

]
(a)

⪰
∑

τ∈Ti,T

wτ−1w
⊺
τ−1 + o(T ) a.s.

where (a) follows from Lemma 3 and x0x
⊺
01{s0 = i} ⪰

0. Furthermore, since limT→∞ |Ti,T |/T = π∞(i) a.s. by
Lemma 1 and π∞(i) ̸= 0 by assumptions on {sτ}τ≥0, we
have:

lim inf
|Ti,T |→∞

∑
τ∈Ti,T

xτx
⊺
τ

|Ti,T |

⪰ lim inf
|Ti,T |→∞

∑
τ∈Ti,T

wτ−1w
⊺
τ−1

|Ti,T |
(b)
= C ≻ 0 a.s.

where (b) holds by Assumption 1 and independence of
{wτ}τ≥0 and {sτ}τ≥0 processes. Therefore

lim inf
|Ti,T |→∞

λmin

(∑
τ∈Ti,T

xτx
⊺
τ

|Ti,T |

)
≻ 0.

B. Background on least square estimator

Given a filtration {Gt}t≥0, consider the following regression
model:

yt = β
⊺
zt + wt, t ≥ 0, (6)

where β ∈ Rn is an unknown parameter, zt ∈ Rn is Gt−1-
measurable covariate process, yt is the observation process,
and wt ∈ R is a noise process satisfying Assumption 1 with
Ft replaced by Gt. Then the least squares estimate β̂T of β is
given by:

β̂T = argmin
β⊺

T∑
τ=0

∥yτ − β
⊺
zτ∥2. (7)

The following result by [33] characterizes the rate of conver-
gence of β̂T to β in terms of unnormalized covariance matrix
of covariates ZT :=

∑T
τ=0 zτz

⊺
τ .

Theorem 4 (see [33, Theorem 1]). Suppose the following
conditions are satisfied: (S1) λmin(ZT ) → ∞, a.s. and
(S2) log(λmax(ZT )) = o(λmin(ZT )), a.s. Then the least
squares estimate in (7) is strongly consistent with the rate
of convergence:

∥β̂T − β∥∞ = O
(√

log
[
λmax(ZT )

]
λmin(ZT )

)
a.s.

Theorem 4 is valid for all the Gt−1-measurable covariate
processes {zt}t≥0. For the switched least squares system
identification if we take Gt to be equal to Ft and verify
conditions (S1) and (S2) in Theorem 4, then we can use
Theorem 4 to establish its strong consistency and rate of
convergence. As mentioned earlier in Remark 1, the empirical
covariances are coupled across different components due to
the system dynamics.

C. Proof of Theorem 1

To prove this theorem, we check the sufficient conditions
in Theorem 4. First requirement that Xi,T is measurable w.r.t.
FT−1, follows by the definition of Xi,T . Conditions (S1) and
(S2) are verified in the following.
(S1) By Proposition 1-(P2), we see that λmin(Xi,T ) → ∞

a.s.; therefore, (S1) in Theorem 4 is satisfied.
(S2) Proposition 1-(P1) and (P2) imply that there exist posi-

tive constants C1, C2, such that :

lim sup
T→∞

log(λmax(Xi,T ))

λmin(Xi,T )

≤ lim sup
T→∞

log(C1) + log(T )

C2|Ti,T |
= 0 a.s.

where the last equality follows by Lemma 1 (i.e.
|Ti,T | = O(T ), a.s.). Therefore, the second condition
of Theorem 4 is satisfied.

Therefore, by Theorem 4, for each i ∈ S, we have:

∥∥Âi,T −Ai

∥∥
∞ ≤ O

(√
log

[
λmax(Xi,T )

]
λmin(Xi,T )

)
, a.s. (8)

which proves the claim in Theorem 1.

D. Proof of Corollary 1

Corollary 1 is the direct consequence of Theorem 1 and
Proposition 1. Proposition 1-(P1) implies that λmax(Xi,T ) =
O(log(T )). By substituting λmax(Xi,T ) with O(log(T )) in
the right hand side of Eq. (8), we get that for each i ∈ S,
the estimation error ∥Âi,T − Ai

∥∥
∞ is upper-bounded by

O
(√

log(T )/|Ti,T |
)
, a.s.

E. Proof of Theorem 2

We first establish the strong consistency of the parameter
θ̂T . By Theorem 1 and the fact that k < ∞, we get:

∥∥θ̂T − θ
∥∥
∞ ≤ max

i∈S
O
(√

log
[
λmax(Xi,T )

]
λmin(Xi,T )

)
, a.s.

Therefore, the result follows by applying Theorem 1 to the
argmax of above equation. For the second part notice that by
Lemma 1, we know limT→∞ |Ti,T |/T = π∞(i), a.s. Now, by
Corollary 1, we get:

∥∥Âi,T −Ai

∥∥
∞ ≤ O

(√
log(T )

|Ti,T |

)
= O

(√
log T

π∞(i)T

)
a.s.

which is the claim of Theorem 2.

IV. DISCUSSION ON STABILITY IN THE AVERAGE SENSE

The main results of this paper are derived under Assump-
tion 2 i.e., the MJS system (1) is stable in the average sense.
In this section, we discuss the connection between this notion
of stability and more common forms of stability, i.e., mean
square stability and almost sure stability.
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A. Stability on the average sense and mean square stability

A common assumption on the stability of MJS systems (e.g.,
[31] and [40]) is mean square stability defined as following:

Definition 3. The MJS system (1) is called mean square stable
(MSS) if there exists a deterministic vector x∞ ∈ Rn and
a deterministic positive definite matrix Q∞ ∈ Rn×n such
that for any deterministic initial state x0 and s0 , we have:
limτ→∞

∥∥E[xτ ]−x∞
∥∥ → 0, and limτ→∞

∥∥E[xτx
⊺
τ ]−Q∞

∥∥ →
0.

Proposition 2 (see [7, Theorem 3.9]). The system is MSS, if
and only if λmax

(
(P ⊺ ⊗ In2) diag(Ai ⊗Ai)

)
< 1.

We now show that stability in the average sense is a weaker
notion of stability than MSS.

Proposition 3. If the MJS system (1) is mean square stable,
then the system is stable in the average sense.

The proof if presented in Appendix A.

Remark 5. Proposition 3 shows that MSS implies Assump-
tion 2. Therefore, the results of Theorem 1 and 2 also hold
when Assumption 2 is replaced by the assumption that the
system is MSS.

B. Stability on the average sense and almost sure stability

Consider the noise free version of the MJS system (1) with
the following dynamics:

xt+1 = Astxt, t ≥ 0. (9)

Definition 4. The system (9) is called almost surely stable if,
for any deterministic initial state x0 and s0 we have:

lim
t→∞

∥xt∥ = 0, a.s.

A common sufficient condition to check the almost sure stabil-
ity of MJS system (9) is given below.

Proposition 4 (see [7, Theorem 3.47]). If the stationary distri-
bution π∞ = (π∞(1), . . . , π∞(k)) satisfies (C1) π∞(i) ̸= 0
for all i and (C2)

∏k
i=1 σmax(Ai)

π∞(i) < 1, then the sys-
tem (9) is almost surely stable.

We now show that (C1) and (C2) are also sufficient condi-
tions for stability in the average sense.

Proposition 5. If the MJS system (1) satisfies (C1) and (C2),
then the system is stable in the average sense.

Proof is presented in Appendix B.

Remark 6. Proposition 5 shows that (C1) and (C2) imply
Assumption 2. Therefore, the results of Theorem 1 and 2 also
hold when Assumption 2 is replaced by the assumption that
the system satisfies (C1) and (C2).

C. Discussion on Non-Comparable Stability Assumption

The following examples illustrate that neither MSS nor
conditions (C1) and (C2) in Proposition 5 is stronger than
the other.

Example 1. Let θ⊺ = {A1, 0}, and p = (p1, p2) is an i.i.d.
probability transition, with λmax(p1A1) > 1 and x0 ̸= 0.
Then E[xτ+1] = E[Aστ

xτ + wt] = p1A1E[xτ ] = · · · =
(p1A1)

τE(x0) , which implies limτ→∞E(xτ ) = ∞. There-
fore, this system is not mean square stable. However, this
system satisfies conditions (C1) and (C2) in Prop. 5 and
therefore is stable in the average sense.

Example 2. Consider non-switched system with matrix A,
with λmax(A) < 1 and σmax(A) > 1. This system is mean
square stable, but it doesn’t satisfy the conditions (C1) and
(C2) in Proposition 5.

V. NUMERICAL SIMULATION

In this section, we illustrate the result of Theorem 1 via
an example. Consider a MJS with n = 2, k = 2, A1 =
[ 1.5 0

0 0.2 ], and A2 = [ 0.01 0.1
0.1 0.1 ], probability transition matrix

P = [ 0.5 0.5
0.75 0.25 ] and i.i.d. {wt}t≥0 with wt ∼ N (0, I). Note

that the example satisfies Assumptions 1 and conditions (C1)
and (C2) of Proposition 5 (and, therefore, Assumption 2),
but it is not mean square stable. We run the switched least
squares for a horizon of T = 106 and repeat the experi-
ment for 100 independent runs. We plot the estimation error
ei,T = ∥Âi,t−A1∥∞ versus time in Fig. 1. The plot shows that
the estimation error is converging almost surely even though
the system is not mean square stable. In Fig. 2, logarithm of
the estimation error versus logarithm of the horizon is plotted.
The linearity of the graph along with approximate slope of
−0.5 shows that ei,T = Õ(1/

√
T ).

Fig. 1. Performance of switched least squares method for the example of
Sec. V. The solid line shows the mean across 100 runs and the shaded region
shows the 25% to 75% quantile bound.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we investigated system identification of
(autonomous) Markov jump linear systems. We proposed
the switched least squares method, showed it is strongly
consistent and derived the almost sure rate of convergence
of O(

√
log(T )/T ). This analysis provides a solid first step

toward establishing almost sure regret bounds for adaptive
control of MJS.

We derived our results assuming that system is stable in the
average sense and we showed that this is a weaker assumption
compared to mean square stability.
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Fig. 2. Logarithm of the estimation error versus logarithm of the horizon is
plotted.

The current results are established for autonomous systems
with Markov switching when the complete state of the system
is observed. Interesting future research directions include re-
laxing these modeling assumptions and considering controlled
systems under partial state observability and unobserved jump
times.
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APPENDIX A
PROOF OF PROPOSITION 3

Proof. Since the system is MSS, there exists a positive def-
inite matrix Q∞ ∈ Rn×n such that limτ→∞E[xτx

⊺
τ ] =

Q∞, which implies limτ→∞ Tr(E[xτx
⊺
τ ]) = Tr(Q∞). Since

Tr(E[xx⊺]) = E[Tr(xx⊺)] = E[x⊺x], MSS implies that se-
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quence of real numbers {E(∥xτ∥2)}τ≥0 converges to Tr(Q∞)
and therefore:

lim
T→∞

1

T

T∑
τ=1

E(∥xτ∥2) = Tr(Q∞) < ∞ (10)

Define events

En =
{
ω ∈ Ω : lim sup

T→∞

1

T

T∑
τ=1

∥xτ∥2 ≤ n
}
, ∀n ∈ N

and

E =

∞⋃
n=0

En =
{
ω ∈ Ω : lim sup

T→∞

1

T

T∑
τ=1

∥xτ∥2 < ∞
}
.

Now, by the continuity of probability measure from below, we
have:

P(E) = P(

∞⋃
n=0

En) = lim
n→∞

P(En). (11)

Note that

P(En) = P
(
lim sup
T→∞

1

T

T∑
τ=1

∥xτ∥2 ≤ n
)

(a)

≥ lim sup
T→∞

P
( 1
T

T∑
τ=1

∥xτ∥2 ≤ n
)

(b)

≥ 1− lim sup
T→∞

(∑T
τ=1E∥xτ∥2

)
Tn

(c)

≥ 1− Tr(Q∞)

n
,

where (a) follows from reverse Fatou’s lemma, (b) follows
from the Markov inequality and (c) follows from Eq. (10).
Substituting the above in equation (10), we get

P(E) ≥ lim
n→∞

(
1− Tr(Q∞)

n

)
= 1.

Therefore P(E) = 1, and the system is stable in the average
sense. APPENDIX B

PROOF OF PROPOSITION 5

A. Asymptotic Behavior of Continuous Component

To simplify the notation, we assume that x0 = 0 which
does not entail any loss of generality. Let Φ(t − 1, τ + 1) =
Ast−1

· · ·Asτ+1
denote the state transition matrix where we

follow the convention that Φ(t, τ) = I , for t < τ . Then we
can write the dynamics in Eq. (1) of the continuous component
of the state in convolutional form as:

xt =

t−1∑
τ=0

Φ(t− 1, τ + 1)wτ . (12)

where ∥Φ(t− 1, τ + 1)∥ = ∥Ast−1 . . . Asτ+1∥, and

∥Ast−1
. . . Asτ+1

∥ ≤ σst−1
· · ·σsτ+1

=: Γt−1,τ+1 (13)

where σst = σmax(Ast). In the following lemma, it is
established that the conditions (C1) and (C2) in Prop. 5 imply
that the sum of norms of the state-transition matrices are
uniformly bounded.

Lemma 4 (see [1, Lemma 1]). Under the conditions (C1) and
(C2) in Prop. 5, there exists a constant Γ̄ < ∞ such that for
all T > 1,

∑T−1
τ=0 ∥Φ(T − 1, τ + 1)∥ ≤ Γ̄, a.s.

The following Lemma shows the implication of Assump-
tion 1 on the growth rate of energy of the noise process.

Lemma 5 ( [16, Eq. (3.1)]). Under Assumption 1∑T
τ=0 ∥wτ∥2 = O(T ), a.s.

Using the convolution formula in Eq. (12), we can bound
the norm of the state ∥xt∥2 as following:

∥xt∥2 =
(∥∥ t−1∑

τ=0

Φ(t− 1, τ + 1)w(τ)
∥∥)2

(a)

≤
( t−1∑

τ=0

∥Φ(t− 1, τ + 1)w(τ)∥
)2

(b)

≤
( t−1∑

τ=0

∥Φ(t− 1, τ + 1)∥∥w(τ)∥
)2

(c)

≤
( t−1∑

τ=0

Γt,τ+1∥w(τ)∥
)2

(14)

where (a) follows from triangle inequality and (b) follow from
sub-multiplicative property of the matrix norm, and (c) follows
from Eq. (13). Now for a fixed i, i ∈ S, we have:

T∑
t=0

∥xt∥2 ≤
T∑

t=0

( t−1∑
j=0

Γj+1,t−1∥w(j)∥
)2

(d)

≤
T∑

t=0

( t−1∑
j=0

Γj+1,t−1

)( t−1∑
j=0

Γj+1,t−1∥w(j)∥2
)

(e)

≤ Γ̄

T∑
t=0

( t−1∑
j=0

Γj+1,t−1∥w(j)∥2
)

(f)

≤ Γ̄

T−1∑
j=0

( T∑
t=0

Γj+1,t−1

)
∥w(j)∥2

(g)

≤ Γ̄2
T−1∑
j=0

∥w(j)∥2 = O(T ) a.s.

where (d) follows from Cauchy-Schwarz’s inequality, (e)
follows from Lemma 4, (f) follows from changing the order
of summation, and (g) follows from boundedness of sub-sums
of

∑T−1
τ=0 Γτ+1,T−1, and Lemma 4.


