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are needed for:

Time-of-use pricing
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. . .



What is the minimum information

leakage rate if consumers obfuscate

consumption using a rechargeable battery?

What are privacy-optimal

battery charging strategies?
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Applicances
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Evesdropper/

Adversory

Battery

( State Sѱ)

Yѱ Ĕ Xѱ

Demand: Xѱ Consumption: Yѱ

Energy conservation Sѱ̞к = Sѱ + Yѱ Ĕ Xѱ, Sѱ ∈ � (Size of battery)
Randomized charging

strategy
qѱ(yѱ|xѱ, sѱ, yѱ−к): Probability that the consumption Yѱ = yѱ
given history of demand, battery charge, and consumption,

Objective Choose battery charging strategy � = {qѱ}ѱ≥к to

min lim
ї→∞

−
T ∶

�(Xї; Yї) (mutual information rate)
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Full state Sѱ = −
Xѱ = ∑ ⟹ Yѱ = ∑
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Consider performance of memoryless policies
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Why is the problem non-trivial?
ǩ = Ǫ = � = {∑, −}, Pћ = [∑.5, ∑.5] (Binary model) Consv: Sѱ + Yѱ Ĕ Xѱ ∈ �

Empty state Sѱ = ∑
Xѱ = ∑ ⟹ Yѱ ∈ {∑, −}
Xѱ = − ⟹ Yѱ = −

Full state Sѱ = −
Xѱ = ∑ ⟹ Yѱ = ∑
Xѱ = − ⟹ Yѱ ∈ {∑, −}

Consider performance of memoryless policies

Deterministic Memoryless Policy
P(Y|X = ∑, S = ∑) = [− ∑]; P(Y|X = −, S = −) = [∑ −]: Leakage = − (ī Yѱ = Xѱ).

P(Y|X = ∑, S = ∑) = [∑ −]; P(Y|X = −, S = −) = [− ∑]: Leakage ≈ − (ī Yѱ = − Ĕ Sѱ).

Randomized Memoryless Policy
P(Y|X = ∑, S = ∑) = [∑.5 ∑.5]; P(Y|X = −, S = −) = [∑.5 ∑.5]: Leakage = ∑.5.
Is this the best memoryless policy?

Is this the optimal policy?

How do we evaluate the performance of an arbitrary policy? Need ℙ(Xї, Yї)?
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Literature overview

Evaluate privacy of specific battery management policies
[Kalogridis et al., 2010] Monte-Carlo evaluation of best-efort policy

[Varodayan Khisti, 2011] Computing performance of battery conditioned

stochastic charging policies using BCJR algorithm.

[Tan Gündüz Poor, 2012] Generalized results of [Varodayan Khisti] to include

models with energy harvesting.

[Giulio Gündüz Poor, 2015] Bounds on performance of best-efort and hide-

and-store policies for ininite battery size.
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Literature overview

Evaluate privacy of specific battery management policies
[Kalogridis et al., 2010] Monte-Carlo evaluation of best-efort policy

[Varodayan Khisti, 2011] Computing performance of battery conditioned

stochastic charging policies using BCJR algorithm.

[Tan Gündüz Poor, 2012] Generalized results of [Varodayan Khisti] to include

models with energy harvesting.

[Giulio Gündüz Poor, 2015] Bounds on performance of best-efort and hide-

and-store policies for ininite battery size.

Dynamic programming decomposition to identify optimal policies
[Yao Venkitasubramanian, 2013] Dynamic program and computable inner and

upper bounds on privacy.

Many results restrict to the binary battery model
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Let � denote the class of conditional distributions on Ǫ given (ǩ, �).
Suppose there exists a J ∈ ℝ and vĬ Ǣћ̟і � ℝ that satisies the following:

J∗ + v(π) = inf
ў∈�{∶(a; π) + ∑

ѵ̟Ѱ̟Ѷ

π(x, s)a(y|x, s)v(φ(π, y, a))}
Then,

J∗ is the minimum leakage rate

Let f∗(π) denote the arg min of the RHS and a∗ = f∗(π).
Then, J∗ is achieved by the charging policy

q∗(y|xѱ, sѱ, πѱ) = a∗(y|xѱ, sѱ) (note a∗ depends on πѱ)
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Deine belief state πѱ(x, s) = ℙ(Xѱ = x, Sѱ = s|Yѱ−к)
Charging strategies of the form qѱ(yѱ|xѱ, sѱ, πѱ) are optimal.

Dynamic programming decomposition

Let � denote the class of conditional distributions on Ǫ given (ǩ, �).
Suppose there exists a J ∈ ℝ and vĬ Ǣћ̟і � ℝ that satisies the following:

J∗ + v(π) = inf
ў∈�{∶(a; π) + ∑

ѵ̟Ѱ̟Ѷ

π(x, s)a(y|x, s)v(φ(π, y, a))}
Then,

J∗ is the minimum leakage rate

Let f∗(π) denote the arg min of the RHS and a∗ = f∗(π).
Then, J∗ is achieved by the charging policy

q∗(y|xѱ, sѱ, πѱ) = a∗(y|xѱ, sѱ) (note a∗ depends on πѱ)

Similar to DP for POMDP.

Per-step cost is concave rather than linear.

However, v(π) is still concave.
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Main results: i.i.d. demand

Solution of the dynamic program

J∗ Ĭ= min
θ∈�S

∶(S Ĕ X; X)
where X ∼ Pћ and S ∼ θ. Let θ∗ denote the arg min of the RHS.

Then, J∗ is the minimum leakage rate
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Main results: i.i.d. demand

Solution of the dynamic program

J∗ Ĭ= min
θ∈�S

∶(S Ĕ X; X)
where X ∼ Pћ and S ∼ θ. Let θ∗ denote the arg min of the RHS.

Then, J∗ is the minimum leakage rate

Optimal strategies

Deine b∗(y|w) =
ƌƏƏ
ƍƏƏƎ

Pћ(y)θ∗(y + w)
∑

ѵ−Ѱ=Ѵ:ٿѵ̟Ѱپ

Pћ(x)θ∗(s), if y ∈ ǩ and y +w ∈ �

∑, otherwise

.

Then, J∗ is achieved by time-invariant action

q∗ѱ(y|xѱ, sѱ, πѱ) = b∗(y|sѱ Ĕ xѱ) (note b∗ does not depend on πѱ)
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Salient features of the solution

∶(S Ĕ X; X) is concave in Ǣ�

J∗ and θ∗ may be computed using Blahut-Arimoto algorithm.

Optimal policy is stationary and memoryless

q∗ѱ(y|xѱ, sѱ) = b∗(y|sѱ Ĕ xѱ) (note b∗ does not depend on πѱ)
If Sѱ ∼ θ∗, then Sѱ̞к ∼ θ∗ and Sѱ̞к ⊥ Yѱ.

Support of consumptions

Even if Ǫ Ř ǩ, under the optimal policy the support of Pќ is ǩ.

Structure of the solution

If Pћ is symmetric (and unimodal), so is θ∗.
For binary model, θ∗ = [∑.5 ∑.5] is optimal!
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Proof outline for Markovian demand

Conceptual
difficulty

Let ǣф denote all admissible policies. For any policy � ∈ ǣф,

∶�(Sк, Xї; Yї) = ї

∑
ѱ=к

∶�(Sк, Xѱ; Yѱ|Yѱ−к)
The cost is additive, but per-step cost depends on ℙ(Sк, Xѱ, Yѱ|Yѱ−к).
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∑
ѱ=к
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Lemma Let ǣх ŗ ǣф denote randomized charging policies of the form

q(yѱ|xѱ, sѱ, yѱ−к) = q(yѱ|xѱ, sѱ, yѱ−к). Then,
1. For any policy �ў ∈ ǣф, there exists a policy �џ ∈ ǣх such that

∶�،(Sк, Xї; Yї) ≥ ,Sк)؍�∶ Xї; Yї)
Thus, we may restrict attention to charging policies in ��.
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Let ǣф denote all admissible policies. For any policy � ∈ ǣф,
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∑
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∶�(Sк, Xѱ; Yѱ|Yѱ−к)
The cost is additive, but per-step cost depends on ℙ(Sк, Xѱ, Yѱ|Yѱ−к).

Lemma Let ǣх ŗ ǣф denote randomized charging policies of the form

q(yѱ|xѱ, sѱ, yѱ−к) = q(yѱ|xѱ, sѱ, yѱ−к). Then,
1. For any policy �ў ∈ ǣф, there exists a policy �џ ∈ ǣх such that

∶�،(Sк, Xї; Yї) ≥ ,Sк)؍�∶ Xї; Yї)
Thus, we may restrict attention to charging policies in ��.

2. For any policy �џ ∈ ǣх,

,Sк)؍�∶ Xї; Yї) = ї

∑
ѱ=к

,Sѱ)؍�∶ Xѱ; Yѱ|Yѱ−к)
Thus, for policies in��, the cost is additive and the per-step cost

depends on ℙ(��, ƽ�, ƾ�|ƾ�−�).
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Proof outline for Markovian demand (cont.)

Equivalent controlled Markov process

[Inspired by Tatikonda Mitter 2009, Capacity of channels with feedback]

State Space : Ǣћ̟і

Action Space: {a ∈ Ǣќ|ћ̟і such that energy conservation is satisied.}
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Proof outline for Markovian demand (cont.)

Equivalent controlled Markov process

[Inspired by Tatikonda Mitter 2009, Capacity of channels with feedback]

State Space : Ǣћ̟і

Action Space: {a ∈ Ǣќ|ћ̟і such that energy conservation is satisied.}
State : πѱ(x, s) = ℙ(Xѱ = x, Sѱ = s | Yѱ−к = yѱ−к)
Dynamics : πѱ̞к = φ(πѱ, yѱ, aѱ) where φ is a non-linear ilter.

Per-step cost: ∶�(Xѱ, Sѱ; Yѱ|yѱ−к) = ∶(aѱ; πѱ), where
∶(aѱ, πѱ) =∑

ٿѵ̟Ѱ̟Ѷپ

πѱ(x, s)aѱ(y|x, s) log aѱ(y|x, s)
ē

پ wѵ̟ wѰٿ

πѱ(x̃, ã)aѱ(y|x̃, s̃)
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Equivalent controlled Markov process

[Inspired by Tatikonda Mitter 2009, Capacity of channels with feedback]

State Space : Ǣћ̟і
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ٿѵ̟Ѱ̟Ѷپ

πѱ(x, s)aѱ(y|x, s) log aѱ(y|x, s)
ē

پ wѵ̟ wѰٿ

πѱ(x̃, ã)aѱ(y|x̃, s̃)

The above structure implies the dynamic programming decomposition
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Proof outline for Markovian demand (cont.)

Equivalent controlled Markov process

[Inspired by Tatikonda Mitter 2009, Capacity of channels with feedback]

State Space : Ǣћ̟і

Action Space: {a ∈ Ǣќ|ћ̟і such that energy conservation is satisied.}
State : πѱ(x, s) = ℙ(Xѱ = x, Sѱ = s | Yѱ−к = yѱ−к)
Dynamics : πѱ̞к = φ(πѱ, yѱ, aѱ) where φ is a non-linear ilter.

Per-step cost: ∶�(Xѱ, Sѱ; Yѱ|yѱ−к) = ∶(aѱ; πѱ), where
∶(aѱ, πѱ) =∑

ٿѵ̟Ѱ̟Ѷپ

πѱ(x, s)aѱ(y|x, s) log aѱ(y|x, s)
ē

پ wѵ̟ wѰٿ

πѱ(x̃, ã)aѱ(y|x̃, s̃)

The above structure implies the dynamic programming decomposition

J∗ + v(π) = inf
ў∈�{∶(a; π) + ∑

ѵ̟Ѱ̟Ѷ

π(x, s)a(y|x, s)v(φ(π, y, a))}
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Proof outline for i.i.d. demand

Simplifying state space

LetWѱ = Sѱ ĔWѱ and ξѱ(w) = ℙ(Wѱ = w|Yѱ−к = yѱ−к). Then,
1. ξѱ(w) = ē

Ѱ−ѵ=Ѵ:ٿѵ̟Ѱپ

πѱ(x, s).
2. πѱ(x, s) = Pћ(x)θ(s), where θ = Pћ ∗ ξ.

Thus, ξ� is equivalent to ��
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Simplifying state space

LetWѱ = Sѱ ĔWѱ and ξѱ(w) = ℙ(Wѱ = w|Yѱ−к = yѱ−к). Then,
1. ξѱ(w) = ē

Ѱ−ѵ=Ѵ:ٿѵ̟Ѱپ

πѱ(x, s).
2. πѱ(x, s) = Pћ(x)θ(s), where θ = Pћ ∗ ξ.

Thus, ξ� is equivalent to ��

Simplifying action space

Let � = {b ∈ Ǣќ|њ s.t. energy consv. is satisied}. For a ∈ � and π ∈ Ǣћ̟і

Deine b(y|w) =
ē

پ wѵ̟ wѰٿ: wѰ− wѵ=Ѵ

a(y|x̃, s̃)π(x̃, s̃)
ē

پ wѵ̟ wѰٿ: wѰ− wѵ=Ѵ

π(x̃, s̃) , ã(y|x, s) = b(y|s Ĕ x).

1.Then, Invariant transitions: φ(π, y, a) = φ(π, y, ã).
2. Lower cost: ∶(a; π) ≥ ∶(ã; π) = ∶(b; ξ).

Thus, we may restrict attention to �.
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LetWѱ = Sѱ ĔWѱ and ξѱ(w) = ℙ(Wѱ = w|Yѱ−к = yѱ−к). Then,
1. ξѱ(w) = ē

Ѱ−ѵ=Ѵ:ٿѵ̟Ѱپ

πѱ(x, s).
2. πѱ(x, s) = Pћ(x)θ(s), where θ = Pћ ∗ ξ.

Thus, ξ� is equivalent to ��

Simplifying action space

Let � = {b ∈ Ǣќ|њ s.t. energy consv. is satisied}. For a ∈ � and π ∈ Ǣћ̟і

Deine b(y|w) =
ē

پ wѵ̟ wѰٿ: wѰ− wѵ=Ѵ

a(y|x̃, s̃)π(x̃, s̃)
ē

پ wѵ̟ wѰٿ: wѰ− wѵ=Ѵ

π(x̃, s̃) , ã(y|x, s) = b(y|s Ĕ x).

1.Then, Invariant transitions: φ(π, y, a) = φ(π, y, ã).
2. Lower cost: ∶(a; π) ≥ ∶(ã; π) = ∶(b; ξ).

Thus, we may restrict attention to �.

Simpliied DP:

J∗ + v(ξ) = inf
џ∈ℬ{∶(b; ξ) +∑Ѵ̟Ѷ

ξ(w)b(y|w)v(φ̃(ξ, y, b))}
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Proof outline for i.i.d. demand

Simplifying state space

LetWѱ = Sѱ ĔWѱ and ξѱ(w) = ℙ(Wѱ = w|Yѱ−к = yѱ−к). Then,
1. ξѱ(w) = ē

Ѱ−ѵ=Ѵ:ٿѵ̟Ѱپ

πѱ(x, s).
2. πѱ(x, s) = Pћ(x)θ(s), where θ = Pћ ∗ ξ.

Thus, ξ� is equivalent to ��

Simplifying action space

Let � = {b ∈ Ǣќ|њ s.t. energy consv. is satisied}. For a ∈ � and π ∈ Ǣћ̟і

Deine b(y|w) =
ē

پ wѵ̟ wѰٿ: wѰ− wѵ=Ѵ

a(y|x̃, s̃)π(x̃, s̃)
ē

پ wѵ̟ wѰٿ: wѰ− wѵ=Ѵ

π(x̃, s̃) , ã(y|x, s) = b(y|s Ĕ x).

1.Then, Invariant transitions: φ(π, y, a) = φ(π, y, ã).
2. Lower cost: ∶(a; π) ≥ ∶(ã; π) = ∶(b; ξ).

Thus, we may restrict attention to �.

Simpliied DP:

J∗ + v(ξ) = inf
џ∈ℬ{∶(b; ξ) +∑Ѵ̟Ѷ

ξ(w)b(y|w)v(φ̃(ξ, y, b))}

We show that J∗ = minθ∈�S
∶(S Ĕ X; X) and

b∗ given in the Theorem satisfy the above DP.
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Home

Applicances

Power

Grid

Smart Meter

Controller

Evesdropper/

Adversory

Battery

( State Sѱ)

Yѱ Ĕ Xѱ

Demand: Xѱ Consumption: Yѱ

Energy conservation Sѱ̞к = Sѱ + Yѱ Ĕ Xѱ, Sѱ ∈ � (Size of battery)
Randomized charging

strategy
qѱ(yѱ|xѱ, sѱ, yѱ−к): Probability that the consumption Yѱ = yѱ
given history of demand, battery charge, and consumption,

Objective Choose battery charging strategy � = {qѱ}ѱ≥к to

min lim
ї→∞

−
T ∶

�(Xї; Yї) (mutual information rate)
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Main results: Markovian demand

Structure of optimal strategies

Deine belief state πѱ(x, s) = ℙ(Xѱ = x, Sѱ = s|Yѱ−к)
Charging strategies of the form qѱ(yѱ|xѱ, sѱ, πѱ) are optimal.

Dynamic programming decomposition

Let � denote the class of conditional distributions on Ǫ given (ǩ, �).
Suppose there exists a J ∈ ℝ and vĬ Ǣћ̟і � ℝ that satisies the following:

J∗ + v(π) = inf
ў∈�{∶(a; π) + ∑

ѵ̟Ѱ̟Ѷ

π(x, s)a(y|x, s)v(φ(π, y, a))}
Then,

J∗ is the minimum leakage rate

Let f∗(π) denote the arg min of the RHS and a∗ = f∗(π).
Then, J∗ is achieved by the charging policy

q∗(y|xѱ, sѱ, πѱ) = a∗(y|xѱ, sѱ) (note a∗ depends on πѱ)

Similar to DP for POMDP.

Per-step cost is concave rather than linear.

However, v(π) is still concave.
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Main results: i.i.d. demand

Solution of the dynamic program

J∗ Ĭ= min
θ∈�S

∶(S Ĕ X; X)
where X ∼ Pћ and S ∼ θ. Let θ∗ denote the arg min of the RHS.

Then, J∗ is the minimum leakage rate

Optimal strategies

Deine b∗(y|w) =
ƌƏƏ
ƍƏƏƎ

Pћ(y)θ∗(y + w)
∑

ѵ−Ѱ=Ѵ:ٿѵ̟Ѱپ

Pћ(x)θ∗(s), if y ∈ ǩ and y +w ∈ �

∑, otherwise

.

Then, J∗ is achieved by time-invariant action

q∗ѱ(y|xѱ, sѱ, πѱ) = b∗(y|sѱ Ĕ xѱ) (note b∗ does not depend on πѱ)
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Example

Pћ ∼ Bin(n, ∑.5)
Corresponds to the situation when there are n devices where each device

is ON or OFF with equal probability.

For n = 6, and ǩ = Ǫ = � = {∑, . . . , 6}, we get
J∗= ∑.−638
θ∗= {∑.∑586, ∑.−332, ∑.−972, ∑.222∑, ∑.−972, ∑.−332, ∑.∑586}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

−∑й

−∑−к

Le
ak
ag
e
ra
te

Battery size

n = 6
n = −∑
n = 2∑
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Conclusion

Dynamic programming characterization of optimal privacy in smart meters

Identify structure of optimal strategies

For i.i.d. demand, identify optimal charging strategies and a single letter

characterization of optimal leakage rate.
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characterization of optimal leakage rate.

Remark on modeling assumptions

The results generalize to higher order Markov demands

The results generalize to continuous state spaces

The results are applicable if the demand is modeled as a deterministic

process + noise, where the noise is Markov or i.i.d.
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Future directions

Optimal leakage rate in the presence of local energy harvesting devices?


