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Abstract
Multi-agent reinforcement learning (MARL) is often modeled using the framework of
Markov games (also called stochastic games or dynamic games). Most of the existing litera-
ture onMARL concentrates on zero-sumMarkov games but is not applicable to general-sum
Markov games. It is known that the best response dynamics in general-sum Markov games
are not a contraction. Therefore, different equilibria in general-sum Markov games can
have different values. Moreover, the Q-function is not sufficient to completely character-
ize the equilibrium. Given these challenges, model-based learning is an attractive approach
for MARL in general-sum Markov games. In this paper, we investigate the fundamental
question of sample complexity for model-based MARL algorithms in general-sum Markov
games. We show two results. We first use Hoeffding inequality-based bounds to show that
Õ((1 − γ )−4α−2) samples per state–action pair are sufficient to obtain a α-approximate
Markov perfect equilibrium with high probability, where γ is the discount factor, and the
Õ(·)notationhides logarithmic terms.We thenuseBernstein inequality-basedbounds to show
that Õ((1−γ )−1α−2) samples are sufficient. To obtain these results, we study the robustness
of Markov perfect equilibrium to model approximations. We show that the Markov perfect
equilibrium of an approximate (or perturbed) game is always an approximateMarkov perfect
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equilibrium of the original game and provide explicit bounds on the approximation error. We
illustrate the results via a numerical example.

1 Introduction

Markov games (also called stochastic games or dynamic games) are a commonly used
framework to model strategic interaction between multiple players interacting in a dynamic
environment. Examples include applications in cyber-security [45], industrial organiza-
tion [17, 18], political economics [1], advertisement and pricing [5], and many others [10].
Starting with the seminal work of [46], several variations of Markov games have been con-
sidered in the literature. We refer the reader to [19] for an overview.

1.1 Overview of Markov games

In the basic setup of a dynamic game, the payoffs of players at any time not only depend on
their current joint action profile but also on the current “state of the system”. Furthermore,
the state of the system evolves in a controlled Markov manner conditioned on the current
action profile of the players. It is typically assumed that the state of the system and the action
profile of all players are publicly monitored by all players. Although Markov games may be
viewed as a special case of extensive form games with perfect information, rather than using
the standard solution concept of sub-game perfect equilibrium, attention is often restricted
to a refinement of sub-game perfect equilibrium called Markov perfect equilibrium (MPE)
where all players playMarkov strategies (i.e., choose their actions as a (possibly randomized)
function of the current state) [35, 36]. MPE is an attractive refinement of sub-game perfect
equilibrium, fromboth a computational and conceptual point of view, but has some limitations
because it excludes some history-dependent strategies (such as tit-for-tat and grim trigger)
commonly used in the repeated games setup. See [34, 37] for a discussion.

Games can also be classified based on the sum of per-step payoffs of players as zero-
sum or general-sum games. The nature of results in these two cases is different as are the
tools used to prove them. The differences stem from the fact that the best response mapping
(called the Shapley operator) for two-player zero-sum games is a contraction [46]. Therefore,
zero-sum games have a unique value (i.e., all equilibria in zero-sum games have the same
value). Moreover, the MPE (also called minimax equilibrium for the zero-sum case) can
be computed via recursive operations of the Shapley operator [25, 46]. In contrast, the best
response mapping for general-sum games is not a contraction. Therefore, the existence of
MPE needs to be proved using variations of Kakutani’s fixed point theorem [21, 44, 55, 58].
A consequence of this is that, in general, different MPEs do not have the same value, which
makes it difficult to computeMPEs.Various algorithms have been proposed to computeMPE,
including nonlinear programming [12, 20] and homotopy methods [22, 23]. It was recently
established by [15] that the computational complexity of computingMPE is PPAD-complete.

In spite of these challenges, computing MPE of general-sum games is an important
research direction because several real-world problems are not zero-sum. The applications of
network security [45], industrial organization [17, 18], and political economics [1]mentioned
above are all general-sum games.
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1.2 Multi-Agent Reinforcement Learning

In recent years, there has been significant interest in understanding interaction between strate-
gic agents operating in unknown environments. Suchmulti-player problems are studied under
the heading of multi-agent reinforcement learning (MARL) and often modeled as Markov
games [13, 32, 62]. Although there have been significant recent successes in single agent RL,
these do not directly translate into the multi-agent setting. Part of the difficulty is that when
multiple agents are learning simultaneously, the “environment” as viewed by any single agent
is non-stationary [13]; so it is not possible to use the theoretical guarantees of single agent
RL algorithms, which are derived for a stationary or time-homogeneous environment.

Nonetheless, MARL for two player zero-sum games is well understood due to two prop-
erties. First, if two strategies (π1, π2) and (μ1, μ2) are minimax equilibria, then so are
strategies (π1, μ2) and (μ1, π2). Therefore, to identify equilibrium strategies, it is sufficient
to learn the action-value function (i.e., the Q-function). Second, the action-value function
can be learnt using variants of Q-learning (called minimax Q-learning) because the Shapley
operator is a contraction [32, 33]. We refer the reader to [47] for an overview of MARL for
zero-sum games.

However, the situation is different for general-sum MARL, where fewer convergence
guarantees are available. Part of the difficulty is that the action-value function (or Q-function)
is insufficient to characterize MPE [65, Theorem 1].1 For this reason, algorithms developed
for two-player zero-sum games fail to converge to an MPE in general-sum games [41].
There are some partial results, e.g., minimizing Bellman residual error to identify ε-MPE
[41], using two-time scale stochastic approximation algorithms [43], and using replicator
dynamics-based algorithms [4]. However, in general, developing MARL algorithms with
convergence guarantees remains a challenging research direction.

There is some recent work on learning in general-sum games. [30] show global conver-
gence of a policy gradient algorithm in a special class of Markov games called Markov
potential games, which are a generalization of normal form potential games and assume the
existence of a common potential function for all players. [63] also consider Markov poten-
tial games and present convergence analysis for a sample-based RL method in such games.
While both these results are interesting, they do not apply to Markov games which do not
have a potential function. Another recent result is presented by [51], who present and analyze
algorithms for computing correlated and coarse correlated equilibria for general-sum games.
The solution concepts of correlated equilibrium and its variations are different fromMPE. In
correlated equilibrium, players agree on a joint randomization strategies before the system
starts running; such pre-game agreement is not allowed in MPE.

1.3 Model-BasedMARL, Sample Complexity, and Robustness of Equilibria

One potential approach to alleviate the difficulties in MARL for general-sum games is to
use model-based algorithms, which explicitly learn (or estimate) the system model and then
use a “planning algorithm” to find the solution of the estimated model [54]. There has been
significant recent interest inmodel-basedRL for single agent systems (see [59] and references

1 [65] construct two player general-sum games with the following properties. The game has two states: in
state 1, player 1 has two actions and player 2 has one action; in state 2, player 1 has one action and player 2 has
two actions. The transition probabilities are chosen such that there is a unique Markov perfect equilibrium in
mixed strategies. This means that in state 1, both actions of player 1 maximize the Q-function; in state 2, both
actions of player 2 minimize the Q-function. However, the Q-function in itself is insufficient to determine the
randomizing probabilities for the mixed strategy MPE.
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therein) and some interest in model-based approaches for MARL for zero-sum games [29,
49, 61, 64]. However, as far as we are aware, there are no model-based MARL algorithms
for general-sum Markov games.

An important consideration in model-based RL is to determine how many samples are
needed to identify an α-approximate solution (for a pre-specified accuracy level α). This is
known as sample complexity of learning and is typically analyzed under the assumption that
the learning agent has access to a generative model, i.e., a black box simulator that takes the
current state and action profile as input and generates samples of the next state as output.

Starting with the work of [27, 28], there is an extensive literature on the sample complexity
of Markov decision processes (MDPs) [2, 7, 31, 48]. The simplest approach in this setting is
to use a plug-in estimator,2 i.e., estimating the transition matrix using the generated samples
and using the optimal policy corresponding to the estimated model in the true system. Recent
results of [2] show that the sample complexity of the plug-in estimator matches the lower
bounds on sample complexity [7]modulo logarithmic factors. Recently, [61] build on this line
of work to establish sample complexity bounds for zero-sum games. As far as we are aware,
sample complexity of generative models for general-sum games hasn’t been investigated
before.

The analyses of model-based RL algorithms rely on the robustness of the “planning solu-
tion” to model approximations, i.e., if the estimated model is close to the true model in some
sense, does that imply that the strategy generated from the estimated model is approximately
appropriate in some sense (optimality, equilibrium, etc.)? This question is well understood
for Markov decision processes (see [38] and follow-up work) and zero-sum Markov games
[56, 57]. In this paper, we address the question of robustness for general-sumMarkov games.
In particular, we show that if a dynamic game is approximated by another game such that the
reward functions and transitions of the approximate game are close to those of the original
game (in an appropriate sense), then aMPE of the approximate game is an approximateMPE
of the original game.We quantify the exact relationship between the degree of approximation
of the games and the approximation error in the MPE. We then build up on these results to
establish sample complexity bounds for learning with a generative model for general-sum
Markov games.

The notion of robustness is also useful in its own right. In many applications, the model
of a dynamic game is estimated using modern econometric techniques [3, 8, 40, 42]. In such
situations, robustness characterizes the approximation error in using aMPEof an approximate
game, in terms of the approximation errors in estimating the reward function and transition
dynamics of the game.

1.4 Other Notions of Robustness

Our notion of robustness is different from that of robust control [9] and robustMarkov perfect
equilibrium [26], both of which are Markov decision processes with uncertain dynamics
and are treated as zero-sum games where nature acts as an adversary and picks the worst-
case realization of the transition dynamics. Our notion of robustness is also different from
uniformly ε-equilibrium [50], which captures robustness with respect to time-horizon and
discount factor.

Our notion of robustness is similar in spirit to robust MPEs considered in [37], who
defined a MPE to be robust if for any small perturbation of the payoffs, there exists a nearby
MPE. [37] showed that almost all finite horizon general-sum games have a finite number

2 The plug-in estimator is also known as a certainty equivalent controller in the stochastic control literature.
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of MPEs, all of which are robust. Our results are of a different nature and it is difficult to
compare the two results because [37] considered an atypical model where the states are not
specified exogenously but are rather determined as the payoff relevant component of the
history. Consequently, perturbing the payoffs changes the state space, which is not the case
for our model.

The notion of strong stability considered in [16] is related to the work in [37]. It is shown
in [16] that almost all Markov games have a finite number of MPEs and these equilibria
can be approximated by equilibria of nearby games. The dynamics in [16] are exogenous
and, therefore, their result does not have the same limitations as that of [37]. The result
of [16] is stronger than ours because we only show that equilibria of nearby games are
approximate equilibria of the original game but we do not establish that they are also close to
the equilibria of the original game. However, the results of [16] rely on continuity arguments
and do not explicitly characterize bounds on the size of the neighborhood. In contrast, for
any ε perturbation in payoffs and δ perturbation in dynamics, we explicitly characterize an
α such that the MPE of the perturbed game is an α-MPE of the original game.

Perhaps the result most similar to ours is [60], who consider a more general model and
allow the approximate game to have a different state and action space than the original game.
Their main result is to show that any αopt-MPE of the approximate game is an α-MPE of the
original game and an explicit relationship between αopt and α is established. Our results are
similar in spirit but the specific details are different.

1.5 Organization

The rest of the paper is organized as follows. InSect. 2,wepresent our notion of approximation
of a dynamic game and state our main results. In Sect. 3, we present background results on
approximation of Markov decision processes. In Sect. 4, we provide the proof of our main
results. In Sect. 5, we present numerical examples to validate our theoretical results. We
conclude in Sect. 6.

1.6 Notation

We use R to denote the set of real numbers, P(·) to denote the probability of an event, E[·]
to denote the expectation of a random variable, and P(·) to denote the set of probability
measures on a set.

We use calligraphic letters (e.g.,S,A, etc.) to denote sets, uppercase letters (e.g., S, A, etc.)
to denote random variables and lowercase letters (e.g., s, a, etc.) to denote their realization.
Superscripts index players and subscripts index time. For example, ait denotes the action of
player i at time t . For sequence of variables {st }t≥1, we use the short-hand notation s1:t to
denote the sequence (s1, . . . , st ). We use 1 to denote a vector of ones of an appropriate size
which is determined by context.

Given a function f : S → R, we use span( f ) to denote the span seminorm of f , i.e.,
span( f ):= sups∈S f (s)−infs∈S f (s). Given ametric space (S, d) and a function f : S → R,
we use Lip( f ) to denote the Lipschitz constant of f , i.e.,

Lip( f ):= sup
s,s′∈S

| f (s) − f (s′)|
d(s, s′)

.
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2 SystemModel, Robustness, and Sample Complexity

We restrict the discussion in this paper to models with finite state and action spaces. The
robustness results can be extended to models with continuous state and action spaces under
standard technical assumptions on the existence of equilibria in that setting.

2.1 Dynamic Games

An infinite horizon dynamic game (also called stochastic game or Markov game) is a tuple
〈N ,S, (Ai )i∈N , P, (r i )i∈N , γ 〉 where:
• N is the (finite) set of players.
• S is the (finite) set of possible states of the game. We use St ∈ S to denote the state of

the game at time t .
• (Ai )i∈N is the (finite) set of actions available to player i at each time. We also use

A = ∏
i∈N Ai to denote the set of actions of all players. We use At = (Ai

t )i∈N to
denote the action profile of all players at time t . Given an action profile At = (Ai

t )i∈N
and a player j ∈ N , we use the notation A− j

t = (Ai
t )i∈N\{ j} to denote the action profile

of all players except j .
• P : S × A → P(S) is the controlled transition probability of the state of the game. In

particular, at any time t , given a realization s1:t+1 of S1:t+1 and choice of action profile
a1:t of A1:t , we have

P(st+1 | st , at ):=P(St+1 = st+1 | S1:t = s1:t , A1:t = a1:t ).

• r i : S × A → R denotes the per-step reward of player i .
• γ ∈ (0, 1) is the discount factor.

We assume that all players have perfect monitoring. At time t , all players observe the
current state St and simultaneously choose their respective actions. At the end of time period
t , all players observe all the actions, and the state of the game evolves according to the
transition kernel P.

Following [35, 36, 46], we assume that each player chooses its action according to a time
homogeneous Markov strategy. Let

Π i :={π i : S → P(Ai )}
denote the set of all time-homogeneous Markov strategies for player i .

Given a strategy profile π = (π i )i∈N , where π i ∈ Π i , and an initial state s0, the expected
discounted total reward of player i is given by:

V i
(π i ,π−i )

(s0):=(1 − γ )E(π i ,π−i )

[ ∞∑

t=0

γ t r i (St , At )

∣
∣
∣
∣ S0 = s0

]

, (1)

where the expectation is with respect to the joint measure on all the system variables induced
by the choice of the strategy profile of all players.

Although the above model is formulated for an infinite horizon, it can capture interactions
for a finite horizon by considering time as part of the state space and by assuming that, at the
end of the horizon, the game moves to an absorbing state with zero rewards for all players.
In the special case when the game has a single state, a dynamic game is equivalent to an
infinitely repeated matrix game. In the special case when the game has only one player, a
dynamic game is equivalent to a Markov decision process.
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Remark 1 We follow the standard game theoretic convention of normalizing the expected
total reward by pre-multiplying by (1 − γ ). An immediate implication of this is that for
any strategy π , ‖V i

π‖∞ ≤ ‖r‖∞. In some of the AI literature, the expected reward is not
normalized. In such cases ‖V i

π‖∞ ≤ ‖r‖∞/(1 − γ ).

There are two solution concepts commonly used forMarkov games, which we state below.

Definition 1 (Markov perfect equilibrium) A Markov strategy profile π = (π i )i∈N , where
π i ∈ Π i , is called a Markov perfect equilibrium (MPE) if for every initial state s ∈ S, and
every player i ∈ N ,

V i
(π i ,π−i )

(s) ≥ V i
(π̃ i ,π−i )

(s), ∀π̃ i ∈ Π i . (2)

AMarkov perfect equilibrium can be viewed as a refinement of subgame perfect equilibrium
where all players play Markov strategies [35, 36]. For games with finite state and action
spaces, a Markov perfect equilibrium always exists [19, 21, 44, 58]. For general state and
action spaces, see [55].

Wecan alsodescribeMPEequilibrium in termsof best responses.Given aplayer i ∈ N and
a strategy profile π−i of players other than i , a strategy π i for player is called a best response
of π−i if it satisfies (2). We denote this relationship by π i = BRi (π−i ). Then, Definition 1
is equivalent to stating that a strategy profile π is an MPE if, for each player i ∈ N , π i is a
best response of π−i .

Definition 2 (Approximate Markov perfect equilibrium) Given approximation level α =
(αi )i∈N , where αi are positive constants, a strategy profile π = (π i )i∈N , where π i ∈ Π i , is
called an α-approximate Markov perfect equilibrium (α-MPE) if for every initial state s ∈ S,
and every player i ∈ N ,

V i
(π i ,π−i )

(s) ≥ V i
(π̃ i ,π−i )

(s) − αi , ∀π̃ i ∈ Π i . (3)

When all αi are identical and equal to say α′, we simply call the approximate MPE an
α′-MPE rather than (α′, . . . , α′)-MPE.

2.2 Preliminaries on Integral Probability Metrics

Our results rely on a class of metrics on probability spaces known as integral probability
metrics (IPMs) [39].

Definition 3 Let (X ,G ) be a measurable space and F denote a class of uniformly bounded
measurable functions on (X ,G ). The integral probability metric (IPM) between two proba-
bility distributions μ, ν ∈ P(X ) with respect to the function class F is defined as

dF(μ, ν):= sup
f ∈F

∣
∣
∣
∣

∫

X
f dμ −

∫

X
f dν

∣
∣
∣
∣.
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Two specific forms of IPMs are used in this paper:

1. Total variation distance If F is chosen as FTV:={ f : span( f ) ≤ 1}, then dF is the total
variation distance3.

2. Wasserstein distance If X is a metric space and F is chosen as FW:={ f : Lip( f ) ≤ 1}
(where the Lipschitz constant is computed with respect to the metric on X ), then dF is
the Wasserstein distance.

See [53] for a discussion of other IPMs and their role in approximate planning for single
agent problems. Our approximation results are stated in terms of the Minkowski functional
of a function f (not necessarily in F) with respect to a function class F, which is defined as
follows:

ρF( f ):= inf{ρ ∈ R>0 : ρ−1 f ∈ F}. (4)

A key implication of this definition is that for any function f ,
∣
∣
∣
∣

∫

X
f dμ −

∫

X
f dν

∣
∣
∣
∣ ≤ ρF( f ) · dF(μ, ν). (5)

The Minkowski functional of the two IPMs considered in this paper are as follows:

1. Total variation distance IfF is chosen asFTV,
∣
∣
∫
X f dμ−∫X f dν

∣
∣ ≤ span( f )dF(μ, ν).

Thus, for total variation, ρFTV( f ) = span( f ).
2. Wasserstein distance If F is chosen as FW,

∣
∣
∫
X f dμ − ∫

X f dν
∣
∣ ≤ Lip( f ) · dF(μ, ν).

Thus, for the Wasserstein distance, ρFW ( f ) = Lip( f ).

2.3 Robustness of Markov Games to Model Approximation

Definition 4 Given a function class F and positive constants (ε, δ), a game
Ĝ :=〈N ,S, (Ai )i∈N , P̂, (r̂ i )i∈N , γ 〉 is an (ε, δ)-approximation of the game G
:=〈N ,S, (Ai )i∈N , P, (r i )i∈N , γ 〉 if the following conditions are satisfied:

1. Reward approximation For all i ∈ N , s ∈ S and a ∈ A,

|r i (s, a) − r̂ i (s, a)| ≤ ε. (6)

2. Transition approximation For all s ∈ S and a ∈ A,

dF(P(· | s, a), P̂(· | s, a)) ≤ δ. (7)

Our main result is the following.

3 If μ and ν are absolutely continuous with respect to some measure λ and let p = dμ/dλ and q = dν/dλ,
then total variation is typically defined as 1

2

∫
X |p(x) − q(x)|λ(dx). This is consistent with our definition.

Let f̄ = (sup f + inf f )/2. Then

∣
∣
∣
∣

∫

X
f dμ −

∫

X
f dν

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

X
f (x)p(x)λ(dx) −

∫

X
f (x)q(x)λ(dx)

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

X
[
f (x) − f̄

][
p(x) − q(x)

]
λ(dx)

∣
∣
∣
∣ ≤ ‖ f − f̄ ‖∞

∫

X
∣
∣p(x) − q(x)

∣
∣λ(dx)

≤ 1
2 span( f )

∫

X
∣
∣p(x) − q(x)

∣
∣λ(dx).
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Theorem 1 If game Ĝ is an (ε, δ)-approximation of game G and π̂ is an αopt-MPE of Ĝ ,
where αopt:=(αi

opt)i∈N , then π̂ is also an α-MPE of G , where α:=(αi )i∈N can be bounded
as

αi ≤ 2ε + γ

1 − γ

[
Δi

(π̂ i ,π̂−i )
+ Δi

(π̃ i∗,π̂−i )

]+ αi
opt, ∀i ∈ N , (8)

where π̃ i∗ = BRi (π̂−i ) and

Δi
(π̂ i ,π̂−i )

:= max
s∈S,a∈A

∣
∣
∣
∣

∑

s′∈S

[

P(s′|s, a)V̂ i
(π̂ i ,π̂−i )

(s′) − P̂(s′|s, a)V̂ i
(π̂ i ,π̂−i )

(s′)
]∣
∣
∣
∣

and Δi
(π̃ i∗,π̂−i )

is defined similarly. Furthermore, we have Δi
(π̂ i ,π̂−i )

≤ δρF(V̂ i
(π̂ i ,π̂−i )

). and

Δi
(π̃ i∗,π̂−i )

≤ δρF(V̂ i
(π̃ i∗,π̂−i )

). Therefore, a looser upper bound on αi is given by

αi ≤ 2ε + δγ

1 − γ

[
ρF(V̂ i

(π̂ i ,π̂−i )
) + ρF(V̂ i

(π̃ i∗,π̂−i )
)
]+ αi

opt, ∀i ∈ N . (9)

See Sect. 4 for the proof.

Remark 2 Both upper bounds (8) and (9) are instance-dependent. The bound (8) depends
on the transition probability P of the original game, while the only information about the
original game G needed in (9) are the modeling errors (ε, δ). The approximation bound (9)
also depends on the choice of IPM used to measure the approximation in the dynamics.
Instance-independent bounds on the approximation error are presented below.

2.3.1 Instance-Independent Bounds

It is possible to obtain instance-independent bounds by using worst-case upper bounds on
ρF(V̂ i

π̂
). In particular, the Minkowski functional ρF(V̂ i

π̂
) is span(V̂ i

π̂
) when using the total

variation distance and is Lip(V̂ i
π̂
) when using the Wasserstein distance. Using worst-case

upper bounds on span(V̂ i
π̂
) and Lip(V̂ i

π̂
) gives us the following bounds.

Corollary 1 When F = FTV, then

αi ≤ 2

(

ε + γ δ span(r̂ i )

(1 − γ )

)

+ αi
opt, ∀i ∈ N . (10)

The next bound holds for games where the transition matrix and reward function are
Lipschitz.

Definition 5 Suppose the state space S is a metric space with metric d . Then, a game G is
said to be (Lr , LP)-Lipschitz if for any i ∈ N , s1, s2 ∈ S and a ∈ A,

∣
∣r i (s1, a) − r i (s2, a)

∣
∣ ≤ Lrd(s1, s2),

and

dFW (P(·|s1, a), P(·|s2, a)) ≤ LPd(s1, s2),

where dFW denotes the Wasserstein distance.
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Furthermore, define

Lip(π̂ i ) = sup
s,s′∈S
s 
=s′

dFW (π̂ i (·|s), π̂ i (·|s′))
d(s, s′)

.

Corollary 2 When F = FW and Ĝ is (Lr , LP)-Lipschitz with γ LP < 1 and γ (1 +
Lip(π̂ i ))LP < 1 for all i ∈ N , then

αi ≤ 2ε + γ Lr δ

(1 − γ LP)
+ γ Lr δ

(1 − γ (1 + Lip(π̂ i ))LP)
+ αi

opt, ∀i ∈ N . (11)

Furthermore, when αopt = 0, we have

αi ≤ 2

(

ε + γ Lr δ

(1 − γ LP)

)

∀i ∈ N . (12)

Remark 3 The result of Theorem 1 and Corollaries 1 and 2 implies that MPE is continuous
in model approximation for total variation and Wasserstein distances. To show this, we first
start with the case when F = FTV. Consider a sequence {Ĝn}n≥0 of approximations such
that Ĝn is an (εn, δn) approximation of G , where εn → 0 and δn → 0 as n → ∞. Let π̂n

be an MPE of Ĝn . Then, Theorem 1 shows that π̂n-is an αn-MPE of G , where αn is upper
bounded by 2εn + 2γ δn span(r̂ in)/(1 − γ ). Since span(r̂ in) is bounded, αn → 0 as n → ∞.
Thus, any limit point π̂∞ of {π̂n}n≥0 is an MPE of game G . The same argument applies for
the case when F = FW, provided that each approximate game Ĝn is (Lr , L p) Lipschitz with
γ L p < 1.

Remark 4 Although we have only elaborated on two specific choices of IPMs (total variation
and Wasserstein distances), the result of Theorem 1 is applicable for any IPM. Many other
IPMs have been considered in the literature including Kolmogorov distance, bounded Lips-
chitz metric, and maximum mean discrepancy. See, for example, [39, 53]. The choice of the
metric often depends on the specific properties of the model.

2.4 Model-Based RL for Markov Games

Now, we consider the setting where the components 〈S, (Ai )i∈N , (r i )i∈N , γ 〉 of a game G
are known but the transition probability matrix P is not known. Suppose we have access to a
generative model, i.e., a black-box simulator which provides samples S+ ∼ P(·|s, a) of the
next state S+ for a given state–action pair (s, a) as input. Supposewe call the simulator n times
at each state–action pair and estimate an empiricalmodel P̂n as P̂n(s′|s, a):=count(s′|s, a)/n,
where count(s′|s, a) is the number of times s′ is sampled with the input is (s, a). The game
Ĝn :=〈S, (Ai )i∈N , P̂n, (r i )i∈N , γ 〉maybeviewed as an approximation of gameG .We further
assume that there is a planning oracle, which takes the approximate game Ĝn as input and
generates an αopt-MPE π̂n , where αopt ∈ R>0 is a property of the planning oracle.

Note that we are assuming that there is a system planner which generates samples from the
generative model and computes an αopt-MPE of Ĝn . A more interesting setting is where each
player generates independent samples from the generative model and computes a different
MPE. This setting is challenging due to the multiplicity of MPE and is not discussed in this
paper.

One fundamental question in this setting is the following. Given an α > 0 and p > 0,
how many samples n are needed from the generative model to ensure that π̂n is an α-MPE
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for game G with probability at least 1− p. This is called the sample complexity of learning.
Below, we obtain two bounds on sample complexity using the approximation bounds of
Theorem 1.

Theorem 2 (Hoeffding-Type Bound) For any αopt > 0, α > αopt and p > 0, let

n ≥ nH (γ ):=
⌈(

γ

(1 − γ )2
span(r)

)2 2 log(2|S|(∏i∈N |Ai |)|N |p−1)

(α − 1+γ
1−γ

αopt)2

⌉

. (13)

Then, with probability 1 − p, any αopt-MPE π̂n of game Ĝn is an α-MPE for game G .

Theorem 3 (Bernstein-Type Bound) For any αopt > 0, α ∈ (5αopt, ‖r‖∞
√
1 − γ + 5αopt)

and p > 0, let

n ≥ nB(γ ):=
⌈
cγ ‖r‖2∞ log(8|S|(∏i∈N |Ai |)|N |(1 − γ )−2 p−1)

(1 − γ )(α − 5αopt)2

⌉

,

where c is an absolute constant Then, with probability 1 − p, any αopt-MPE π̂n of game Ĝn
is an α-MPE for game G .

See Sect. 4 for the proofs.

Remark 5 In general, game Ĝn may have multiple MPEs. The results of Theorems 2 and 3
are true for every MPE of game Ĝn .

Remark 6 Wehave assumed thatwe generate n samples for every state–action pair. Therefore,
the total number of samples required in Theorems 2 and 3 is n|S| ∏n

i=1 |Ai |.

2.5 Discussion of the Results

2.5.1 Bounds on the Values of the Markov Perfect Equilibrium

The robustness and sample complexity bounds presented above only show that an αopt-MPE
π̂ of approximate game Ĝ is an α-MPE of the original game G . A natural question is whether
the value of policy π̂ in game G is close to the value of someMPE of G . We do not know an
answer to this question in general, but we provide an answer for the special case of two-player
zero sum games (ZSG).

Definition 6 A two-player Markov game is called zero-sum if

r1(s, a) + r2(s, a) = 0, ∀s ∈ S, a ∈ A.

Two important properties of zero-sum games are the following [19]:

(P1) For any Markov policy π ,

V 1
π (s) + V 2

π (s) = 0, ∀s ∈ S.

(P2) All MPE of ZSG have the same value, i.e., if π∗ and π̃∗ are MPEs of a ZSG, then

V i
π∗(s) = V i

π̃∗(s), i ∈ {1, 2}, s ∈ S.

We use V i∗ to denote the value of the game.
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We now establish an important property of approximate MPEs in ZSGs.

Proposition 1 If π is an α-MPE of a two-player ZSG with value V∗ = (V 1∗ , V 2∗ ), where
α = (α1, α2), then

V i
π (s) ≥ V i∗ (s) − αi , ∀s ∈ S. (14)

Proof Let π∗ = (π1∗ , π2∗ ) be any MPE of G . For any s ∈ S, we have the following:

V 1
π (s)

(a)≥ V 1
(π1,π2∗ )

(s) − α1

(b)= −V 2
(π1,π2∗ )

(s) − α1

(c)≥ −V 2
(π1∗ ,π2∗ )

(s) − α1

(d)= V 1
(π1∗ ,π2∗ )

(s) − α1

(e)= V 1∗ (s) − α1

where (a) follows from the definition of α-MPE, (b) and (d) follow from (P1), and (c)
follows from the fact that π∗ is an MPE, and (e) follows from (P2). This proves (14) for
i = 1. The result for i = 2 follows from a similar argument. ��

Combining Proposition 1 with the robustness results of Theorem 1, we get the following.

Corollary 3 If the game G in Theorem 1 is a two-player ZSG with value V∗ = (V 1∗ , V 2∗ ), then
under the conditions of Theorem 1, we have

V i
π̂
(s) ≥ V i∗ (s) − αi , i ∈ {1, 2}, s ∈ S

where αi is given by (8).

Similarly, combining Proposition 1 with Theorems 2 and 3, we get the following.

Corollary 4 If the game G is a two-player ZSG with value V∗ = (V 1∗ , V 2∗ ), then under the
conditions of Theorems 2 or 3 we have

V i
π̂n

(s) ≥ V i∗ (s) − α, i ∈ {1, 2}, s ∈ S.

Note that Corollary 4 under the conditions of Theorem 3 is identical to Theorem 3.2 of
[61]. Thus, the results of our paper provide an alternative proof of the sample complexity
results for zero-sum games.

2.5.2 Discussion on the Sample Complexity Bounds

The bounds of Theorem 2 and 3 provide an upper bound on sample complexity for learning
MPE. As argued in [61], the lower bound on the sample complexity for MDPs obtained in
[7] (see Remark 10 later) can be directly translated to games to provide a lower bound of

Ω

(

|S|
( n∏

i=1

|Ai |
) log(|S|(∑i∈N |Ai |)p−1)

(1 − γ )α2

)

.

Thus, upper bounds of Theorems 2 and 3 are tight in |S|, but loose in the logarithmic factor
in {|Ai |} (∑i∈N |Ai | vs ∏i∈N |Ai |). The sample complexity bounds for zero-sum games
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obtained in [61] were also loose in the action space. [61] also highlight the difficulty in
tightening the lower bound toΩ(log(

∏
i∈N |Ai |)). Since, zero-sum games are a special case

of general-sum games, the same difficulties hold for the general-sum games as well.
In addition, the bound of Theorem 3 is tight in the discount factor, while the bound of

Theorem 2 is loose by a factor of 1/(1− γ )3. This means that as the discount factor γ → 1,
the bound of Theorem 3 is tighter. Therefore, we must have the following.

Proposition 2 There exists a critical discount factor γ ◦ (perhaps depending on |S| and
{|Ai |}i∈N ) such that for all γ ≥ γ ◦, nH (γ ) ≥ nB(γ ), where nH (γ ) and nB(γ ) are as
defined in Theorems 2 and 3, respectively.

It is not possible to derive a closed form expression on γ ◦, but we can obtain a lower
bound as follows.

Lemma 1 Let αopt = 0 and let γ̄ be such that c = 8γ̄ /(1 − γ̄ )3. Then for all γ ≤ γ̄ , we
have nH (γ ) ≤ nB(γ ).

Proof Consider the following sequence of inequalities (for αopt = 0)

nH (γ )
(a)≤ 8γ 2‖r‖2∞ log(2|S|(∏i∈N |Ai |)|N |p−1)

(1 − γ )4
α2

(b)≤ 8γ

(1 − γ )3
· γ ‖r‖2∞ log(8|S|(∏i∈N |Ai |)|N |(1 − γ )−2 p−1)

(1 − γ )α2

(c)≤ c · γ ‖r‖2∞ log(8|S|(∏i∈N |Ai |)|N |(1 − γ )−2 p−1)

(1 − γ )α2

= nB(γ ),

where (a) uses the fact that span(r) ≤ 2‖r‖∞, (b) follows from the fact that the additional
multiplier in the log term is greater than 1 and (c) follows from the fact that 8γ /(1 − γ )3 is
increasing in γ for γ ∈ (0, 1). ��

We now present a lower bound on c, which implies a lower bound on γ ◦.

Lemma 2 A lower bound on the constant c in Theorem 3 is given by c ≥ 64. Therefore, when
αopt = 0, we get a lower bound γ̄ = 0.5824 on γ ◦ by solving 64 = 8γ /(1 − γ )3. And thus,
for all γ ≤ 0.5824, nH (γ ) ≤ nB(γ ).

Proof The exact calculation of c is slightly nuanced, but a simple upper bound can be obtained
as follows. The bound in Theorem 3 relies on [2, Theorem 1] (stated as Theorem 7 later in
this paper). In the proof of [2, Theorem 1], the number of samples n are chosen such that
(γ /(1 − γ ))

√
8L ′/n ≤ 1/2, where L ′ = log(8|S||A|(1 − γ )−2 p−1) (also see the proof of

Theorem 7). This implies that n ≥ 64γ 2L ′/(1 − γ )2. Comparing this with the bound on n
in Theorem 3 (and, more precisely, the bound in Theorem 7 later), we get that c ≥ 64. The
bound on γ ◦ now follows from Lemma 1. ��

Remark 7 The result of Lemma 2 shows that for all γ ≤ 0.5824, the sample complexity
bound of Theorem 2 is tighter than the sample complexity bound of Theorem 3. Note that
the actual value of the critical discount factor γ ◦ is higher, and depends on the values of |S|,
|Ai | and |N |. See Sect. 5 for an example.
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3 Background onMDPs

The main idea for proving the results of Sect. 2 is to pick a player, say i , fix the strategy
profile of all players other than i , and then look at the best response of player i . The problem
of finding the best response at player i is a single agent Markov decision process. So, we
start by reviewing the pertinent results from Markov decision theory. All the results in this
section are either standard or variations of existing results.

3.1 MDP, Bellman Operators, and Dynamic Programming

A Markov Decision Process (MDP) is a tuple 〈S,A, P, r , γ 〉 where
• S is the (finite) set of states of the environment. The state at time t is denoted by St .
• A is the (finite) set of actions available to the agent. The action at time t is denoted by

At .
• P : S × A → P(S) is the controlled transition probability. For any realization s1:t+1 of

S1:t+1 and choice a1:t of A1:t , we have

P(st+1|st , at ):=P(St+1 = st+1|S1:t = s1:t , A1:t = a1:t ). (15)

• r : S × A → R is the per-step reward function.
• γ ∈ (0, 1) is the discount factor.

It is assumed that the agent observes the state St and chooses the action At according to a
Markov strategy π : S → P(A). The performance of a Markov strategy π starting from
initial state s0 ∈ S is given by:4

Vπ (s0):=(1 − γ )Eπ

[ ∞∑

t=0

γ t r(St , At )

∣
∣
∣
∣ S0 = s0

]

, (16)

where the expectation is with respect to the joint measure on the system variables induced by
the choice of strategy π . A strategy π is called optimal if for any other Markov strategy π̃ ,
we have

Vπ (s) ≥ Vπ̃ (s), ∀s ∈ S. (17)

In addition, given a positive constant α, a strategy π is called α-optimal if

Vπ (s) ≥ Vπ̃ (s) − α, ∀s ∈ S. (18)

Given anMDPM:=〈S,A, P, r , γ 〉 and aMarkov strategyπ , define theBellman operators
Bπ : R|S| → R|S| and B∗ : R|S| → R|S| as follows: for any v ∈ R|S| and s ∈ S

[Bπv](s):=
∑

a∈A
π(a|s)

[
(1 − γ )r(s, a) + γ

∑

s′∈S
P(s′|s, a)v(s′)

]
, (19)

[B∗v](s):=max
a∈A

[
(1 − γ )r(s, a) + γ

∑

s′∈S
P(s′|s, a)v(s′)

]
. (20)

Then, optimal and approximately optimal strategies can be characterized using the Bellman
operators as shown below. These are standard results. See [11], for example.

4 For consistency with the normalized rewards considered in the game formulation (see Remark 1), we use
normalized rewards for MDPs as well. Although most of the literature on MDPs uses unnormalized rewards,
normalized rewards are commonly used in the literature on constrained MDPs [6].
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Proposition 3 A Markov strategy π is optimal if and only if there exists a value function
V ∈ R|S| such that

V = BπV and V = B∗V . (21)

Remark 8 Note that anMDPcanhavemore than one optimal strategy but all optimal strategies
have the same performance and hence the same value function.

An immediate implication of Proposition 3 and the definition of an α-optimal strategy is the
following.

Proposition 4 Given a Markov strategy π , let Vπ be the unique fixed point of Vπ = BπVπ

and let V∗ be the unique fixed point of V∗ = B∗V∗. Then, the strategy π is α-optimal if and
only if

Vπ ≥ V∗ − α1. (22)

Proof This is an immediate implication of Proposition 3 and the definition of α-optimal
strategy. We provide a proof for completeness.

(⇒) Let π∗ be an optimal policy and π be an α-optimal strategy. Then, by definition of
an α-optimal strategy, we have Vπ (s) ≥ Vπ∗(s) − α, for all s ∈ S. Moreover, since π∗
is optimal, we have Vπ∗(s) = V∗(s). Combining the two, we have Vπ (s) ≥ V∗(s) − α,
which is same as (22).
(⇐) Let π be a policy which satisfies (22) and π̃ be any policy. By definition of optimal
policy, we have V∗(s) ≥ Vπ̃ (s) for all s ∈ S. Therefore, from (22), we have that
Vπ (s) ≥ Vπ∗(s) − α ≥ Vπ̃ (s) − α. Since this inequality holds for every π̃ , the policy π

is α-optimal.

��
Remark 9 A sufficient condition to verify (22) in Proposition 4 is that

Vπ ≥ B∗Vπ − α1. (23)

We now present some basic properties of the value function which are used later.

Lemma 3 If V is the optimal value function of MDP M, then

span(V ) ≤ span(r).

Proof This result follows immediately by observing that the per-step reward r(St , At ) ∈
[min(r),max(r)]. Therefore, max(V ) ≤ max(r) and min(V ) ≥ min(r). ��

We now define the notion of a Lipschitz MDP.

Definition 7 Let d be a metric on the state space S. The MDP M is said to be (Lr , LP)-
Lipschitz if for any s1, s2 ∈ S and a ∈ A, the reward function r and transition kernel P of
M satisfy the following

∣
∣r(s1, a) − r(s2, a)

∣
∣ ≤ Lrd(s1, s2),

and

dFW (P(·|s1, a), P(·|s2, a)) ≤ LPd(s1, s2),

where dFW denotes the Wasserstein distance.
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Lemma 4 If an MDP M is (Lr , LP)-Lipschitz, then for any policy π , the corresponding
value function Vπ is Lipschitz with

Lip(Vπ ) ≤ (1 − γ )Lr

1 − γ (1 + Lip(π))LP
,

provided γ (1 + Lip(π))LP < 1, where Lip(π) is the Lipschitz-constant of the strategy π ,
i.e.,

Lip(π) = sup
s,s′∈S
s 
=s′

dFW (π(·|s), π(·|s′)
d(s, s′)

.

Proof The result follows from [24, Theorem 4.1]. ��
The above result can be strengthened when the policy π is the optimal policy.

Lemma 5 If an MDP M is (Lr , LP)-Lipschitz and γ LP < 1, and V∗ is the optimal value
function of M, then

Lip(V∗) ≤ (1 − γ )Lr

1 − γ LP
.

Proof The result follows from [24, Theorem 4.2]. ��

3.2 Robustness of MDPs to Model Approximation

Definition 8 Given a function class F and positive constants (ε, δ), we say that an MDP
M̂:=〈S,A, P̂, r̂ , γ 〉 is an (ε, δ)-approximation of theMDPM:=〈S,A, P, r , γ 〉 if it satisfies
the following properties:

1. Reward approximation For all s ∈ S, and a ∈ A,

|r(s, a) − r̂(s, a)| ≤ ε. (24)

2. Transition approximation For all s ∈ S, and a ∈ A,

dF(P(·|s, a), P̂(·|s, a)) ≤ δ. (25)

The main approximation result for MDPs relevant for our analysis is the following.

Theorem 4 Given a function class F and an MDP M:=〈S,A, P, r , γ 〉, suppose
M̂:=〈S,A, P̂, r̂ , γ 〉 is an (ε, δ)-approximation of M. Let π̂∗ and π̂ be an optimal and an
αopt-optimal strategy of M̂. Let V̂π̂∗ and V̂π̂ be the corresponding value functions. Then π̂

is an α-optimal strategy of M with

α ≤ 2ε + γ

1 − γ

[
Δπ̂∗ + Δπ̂

]+ αopt, (26)

where

Δπ̂ := max
s∈S,a∈A

∣
∣
∣
∣

∑

s′∈S

[

P(s′|s, a)V̂π̂ (s′) − P̂(s′|s, a)V̂π̂ (s′)
]∣
∣
∣
∣

and Δπ̂∗ is defined similarly. Furthermore, we can show that

Δπ̂ ≤ δρF(V̂π̂ )

and a similar bound holds for Δπ̂∗ .



Dynamic Games and Applications

Proof The bound for (26) is established in Appendix A. The upper bound on Δπ̂ and Δπ̂∗
follows from (5) and definition of δ. ��
Theorem 5 Under the setup of Theorem 4, the approximation gap α can also be bounded by

α ≤ (2 + γ )

(1 − γ )
ε + 2γ

(1 − γ )2
Δπ∗ + (1 + γ )

(1 − γ )
αopt (27)

where π∗ is the optimal policy for model M and

Δπ∗ := max
s∈S,a∈A

∣
∣
∣
∣

∑

s′∈S

[

P(s′|s, a)Vπ∗(s
′) − P̂(s′|s, a)Vπ∗(s

′)
]∣
∣
∣
∣.

Proof See Appendix B for details. ��
Note that the results of Theorem 4 are instance-dependent. We present instance-

independent bounds on α by upper bounding ρF(V ).

3.2.1 Instance-Independent Bounds

Corollary 5 If the function class F in Theorem 4 is FTV, then

α ≤ 2
(
ε + γ δ span(r̂)

(1 − γ )

)
+ αopt.

Proof The result follows from the observation that ρdFTV (V̂ ) = span(V̂ ) and then using
Lemma 3 in Theorem 4. ��
Corollary 6 If the function class F in Theorem 4 is FW, and the approximate MDP M̂ is
(Lr , LP)-Lipschitz with γ LP < 1 and γ (1 + Lip(π̂))LP < 1, then

α ≤ 2ε + γ δLr

(1 − γ LP)
+ γ δLr

(1 − γ (1 + Lip(π̂))LP)
+ αopt.

Furthermore, if αopt = 0, the above expression simplifies to

α ≤ 2

(

ε + γ δLr

(1 − γ LP)

)

.

Proof The result follows from the observation that ρFW (V̂ ) = Lip(V̂ ) and then using Lem-
mas 4 and 5 in Theorem 4. ��

3.3 Model-Based RL for MDPs

In this section, we consider a setting similar to Sect. 2.4, but for MDPs. Suppose the com-
ponents 〈S,A, r , γ 〉 of an MDP M are known but the transition probability matrix P is
not known. Similar to the game setting, we assume that we have access to a generative
model, i.e., a black-box simulator which provides samples S+ ∼ P(·|s, a) of the next state
S+ for a given state–action pair (s, a) as input. Suppose we call the simulator n times at
each state–action pair and estimate an empirical model P̂n as P̂n(s′|s, a):=count(s′|s, a)/n,
where count(s′|s, a) is the number of times s′ is sampled with the input is (s, a). The MDP
M̂n :=〈S,A, P̂n, r , γ 〉 may be viewed as an approximation of MDP M. As in the game
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setting, we assume that there is a planning oracle, which takes the approximate model M̂n

as input and generates an αopt-optimal strategy π̂n , where αopt ∈ R>0 is a property of the
planning oracle.

As in Sect. 2.4, we are interested in the following question. Given an α > 0 and p > 0,
how many samples n are needed from the generative model to ensure that π̂n is an α-optimal
for M with at least probability 1 − p. This is called the sample complexity of learning.

We state two bounds on the sample complexity of generativemodels: one based onHoeffd-
ing inequality and the other based on Bernstein inequality. For the first bound, we provide a
complete proof to provide an exact characterization of the constants.

Suppose X ∈ X is a random variable with distribution μ. Suppose {X1, . . . , Xn} is a
sequence of random variables sampled according to μ. Let μ̂n denote the empirical measure
constructed from {X1, . . . , Xn}, i.e.,

μ̂n(x):=1

n

n∑

k=1

1{Xk=x},

where 1{E} denotes the indicator function of the event E . Then, we have the following.

Lemma 6 For a given H > 0, let FH denote the set of functions f : X → R such that
span( f ) ≤ H. Then, for any f ∈ FH and Δ > 0,

P

(∣
∣
∣
∣

∑

x∈X

[
μ(x) f (x) − μn(x) f (x)

]
∣
∣
∣
∣ ≥ Δ

)

≤ exp

(

−2nΔ2

H2

)

.

Proof Let Z := f (X) and Zi := f (Xi ). Then, {Z1, . . . , Zn} is an i.i.d. sequence and
Supp(Zi ) ≤ H . Then, by the Hoeffding inequality [14, Corollary A.1],

P

(∣
∣
∣
∣
1

n

n∑

i=1

Zi − E[Z ]
∣
∣
∣
∣ ≥ Δ

)

≤ 2 exp

(

−2nΔ2

H2

)

.

The result then follows from observing that E[Z ] = ∑
x∈X μ(x) f (x) and (

∑n
i=1 Zi )/n =∑

x∈X μn(x) f (x). ��
Theorem 6 (Hoeffding-Type Bound) For any αopt > 0, α > (1+γ )αopt/(1 − γ ) and p > 0,
let

n ≥
⌈(

γ

(1 − γ )2
span(r)

)2 2 log(2|S| |A|p−1)

(α − 1+γ
1−γ

αopt)2

⌉

. (28)

Then, with probability 1− p, the αopt-optimal strategy π̂n of MDP M̂n is α-optimal forM.

Proof The proof follows from the application of Lemma 6 and Theorem 5.
Let H := span(r), π∗ be an optimal policy of M and Vπ∗ be the optimal value functions

for M. From Lemma 3, we know that Vπ∗ ∈ FH . Therefore, from Lemma 6, we have that
for a given state–action pair (s, a) and Δ > 0,

P

({∣
∣
∣
∣

∑

s′∈S
P(s′|s, a)Vπ∗(s

′) −
∑

s′∈S
P̂n(s′|s, a)Vπ∗(s

′)
∣
∣
∣
∣ ≥ Δ

})

≤ 2 exp

(

−2nΔ2

H2

)

.

Therefore, by the union bound,

P

({

max
(s,a)∈S×A

∣
∣
∣
∣

∑

s′∈S
P(s′|s, a)Vπ∗(s

′) −
∑

s′∈S
P̂n(s′|s, a)Vπ∗(s

′)
∣
∣
∣
∣ ≥ Δ

})
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≤ 2|S| |A| exp
(

−2nΔ2

H2

)

. (29)

Now, choose Δ such that the right hand side of (29) equals p, i.e.,

Δ:=H

√
log(2|S| |A|p−1)

2n
.

Theorem 5 implies that π̂n is an α-optimal policy for MDP M, where

α ≤ 2γ

(1 − γ )2
H

√
log(2|S| |A|p−1)

2n
+ 1 + γ

1 − γ
αopt

The result follows from substituting the value of n from (28) in the above equation. ��
Remark 10 The sample complexity bound in Theorem 6 is not tight. It is shown in [7] that
finding an α-optimal policy with probability 1 − p requires at least

Ω

(

|S| |A| log(|S| |A|p−1)

(1 − γ )α2

)

samples.5 The upper bound in Theorem 6 is loose by a factor of 1/(1 − γ )3. For the case of
MDPs, tighter upper bounds which match the lower bound of [7] (up to logarithmic factors)
have been obtained in [2, 48] by using the Bernstein inequality rather than the Hoeffding
inequality. We present these bounds below.

Theorem 7 For any αopt > 0, α ∈ (5αopt, ‖r‖∞
√

(1 − γ ) + 5αopt) and p > 0, let

n ≥ cγ ‖r‖2∞ log(8|S||A|(1 − γ )−2 p−1)

(1 − γ )(α − 5αopt)2
,

where c is an absolute constant. Then, with probability 1 − p, any αopt-optimal strategy π̂n

of MDP M̂n is α-optimal for M.

Proof The proof follows from [2, Theorem 1] with appropriate scaling to account for
normalization of rewards. However, the expression for n above differs slightly from the
expression in [2, Theorem 1]. In particular, let L = log(8|S||A|(1 − γ )−1 p−1) and
L ′ = log(8|S||A|(1−γ )−2 p−1) (the exponent of (1−γ ) is different in the two expressions).
The expression in [2, Theorem 1] (rescaled for normalized rewards) states that

n ≥ cγ ‖r‖2∞L

(1 − γ )α2 ,

while the expression in the statement of Theorem 7 states that

n ≥ cγ ‖r‖2∞L ′

(1 − γ )α2 .

The reason for this difference is that there is a typo in [2, Lemma 11], which is carried
over in all the results. In particular, in the proof of [2, Lemma 11] it is claimed that for
|Us | = 1/(1−γ )2 and p′ = p/(2|S||A|) (in [2], the symbol δ is used instead of p), we have
log(4|Us |/p′) = L but elementary algebra shows that log(4|Us |/p′) = L ′.

5 Recall that we are working with normalized total expected reward (see Remark 1), while the results [7] are
derived for the unnormalized total reward. In the discussion above, we have normalized the results of [7].
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Also note that in [2], the bound of Theorem 3 was simplified as

n ≥ cγ ‖r‖2∞ log(|S||A|(1 − γ )−2 p−1)

(1 − γ )(α − 5αopt)2
,

i.e., the multiplicative factor of 8 inside the log was removed. Since we want to compare the
Bernstein-type bound with the Hoeffding-type bound in Sect. 2.5.2, we carry the multiplica-
tive factor of 8 in our expression. ��

4 Proof of theMain Results

4.1 RoadMap of the Proof

As mentioned in the beginning of Sect. 3, the main idea of the proofs is to look at the best
response of a player to the pre-specified strategy profile of other players. To formally establish
that the problem of finding the best response is an MDP, we first start by characterizing the
best response in terms of Bellman operators and stating existing results that characterize
MPE and approximate MPE in terms of Bellman operators (Propositions 5 and 6). Then, we
formally define a “best response MDP” and show that MPE and approximate MPE can be
stated in terms of such “best response MDPs” (Corollaries 7 and 8).

To establish the robustness results, we show that the “best response MDP” corresponding
to an (ε, δ)-approximation of a game is an (ε, δ)-approximation of the “best response MDP”
of the original game (Lemma 8). This allows us to generalize the approximation results of
MDPs to games. We then build on this relationship to generalize the sample complexity
results of MDPs to games.

4.2 Bellman Operators and Characterization of Markov Perfect Equilibrium

Given a Markov strategy profile π :=(π i )i∈N , state s ∈ S, and action profile a:=(ai )i∈N ∈
A, we use the notation

π(a|s):=
∏

i∈N
π i (ai |s) and

π−i (a−i |s):=
∏

j∈N\{i}
π j (a j |s). (30)

Given a player i ∈ N and aMarkov strategy profileπ :=(π i , π−i ), we define two Bellman
operators as follows:

1. An operator Bi
(π i ,π−i )

: R|S| → R|S| given as follows: for any v ∈ R|S| and s ∈ S,

[Bi
(π i ,π−i )

v](s):=
∑

a∈A
π(a|s)

[
(1 − γ )r i (s, a) + γ

∑

s′∈S
P(s′|s, a)v(s′)

]
.

2. An operator Bi
∗,π−i : R|S| → R|S| given as follows: for any v ∈ R|S| and s ∈ S,

[Bi
(∗,π−i )

v](s):= max
ai∈Ai

[ ∑

a−i∈A−i

π−i (a−i |s)
[
(1 − γ )r i (s, a) + γ

∑

s′∈S
P(s′|s, a)v(s′)

]]

.
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Now,MPEand approximateMPEcan be characterized using theBellman operators. These
are standard results. See, for example, [19].

Proposition 5 A Markov strategy profile π :=(π i )i∈N is an MPE if and only if there exist
value functions V i ∈ R|S|, i ∈ N , such that

V i = Bi
(π i ,π−i )

V i and V i = Bi
(∗,π−i )

V i , ∀i ∈ N . (31)

An immediate consequence of Proposition 5 and the definition of approximation MPE is
the following.

Proposition 6 Given a Markov strategy profile π :=(π i )i∈N , for any i ∈ N , let V i
π be

the unique fixed point of V i
π = Bi

(π i ,π−i )
V i

π and let V i
(∗,π−i )

be the unique fixed point of

V i
(∗,π−i )

= Bi
(∗,π−i )

V i
(∗,π−i )

. Then, the strategy profile π is an α-MPE, α:=(αi )i∈N , if and
only if

V i
π ≥ V i

(∗,π−i )
− αi1, ∀i ∈ N . (32)

Proof The proof follows from arguments similar to the proof of Proposition 4. ��

4.3 Relationship Between Games andMDPs

Given a game G :=〈N ,S, (Ai )i∈N , P, (r i )i∈N , γ 〉 and a Markov strategy
π :=(π i )i∈N , we can define MDPs {Mi

π−i }i∈N as follows. For player i ∈ N , MDP

Mi
π−i :=〈S,Ai , Pi

π−i , r
i
π−i , γ 〉, where the transition matrix Pi

π−i : S × Ai → P(S) is
given by

Pi
π−i (s

′|s, ai ):=
∑

a−i∈A−i

π−i (a−i |s)P(s′|s, (ai , a−i )), (33)

and the reward function r i
π−i : S × Ai → R is given by

r i
π−i (s, a

i ):=
∑

a−i∈A−i

π−i (a−i |s)r i (s, (ai , a−i )). (34)

In other words, in Mi
π−i , the strategy of player i may be chosen freely while the strategies

of all other players are fixed at those specified in π−i . Note the Bellman operators Bi
(π i ,π−i )

and Bi
(∗,π−i )

corresponding to game G and strategy π are the same as Bellman operators of

MDP Mi
π−i . Therefore, by combining Propositions 3 and 5, we have the following:

Corollary 7 AMarkov strategy profile π :=(π i )i∈N is an MPE if and only if for every i ∈ N ,
the strategy π i is an optimal strategy for MDP Mi

π−i .

Proof This is an immediate consequence of the definition ofMi
π−i . For the sake of complete-

ness, we provide a formal proof. Arbitrarily pick a player i ∈ N and consider any Markov
policy π̃ i for player i . The Bellman operator Bi

(π̃ i ,π−i )
of game G is the same as the Bellman

operator for evaluating policy π̃ i in MDPMi
π−i . Thus, the value function Vπ̃ i ,π−i (which is

the fixed point of Bi
(π̃ i ,π−i )

) is equal to the value of policy π̃ i in MDPMi
π−i . Now, we prove

the two directions separately.
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(⇒) Suppose π is an MPE of game G . By the definition of MPE, for any player i ∈ N
and any policy π̃ i , we have V(π i ,π−i )(s) ≥ V(π̃ i ,π−i )(s), for all s ∈ S. This means that in
MDP Mi

π−i , the performance of policy π i is at least as good as the performance of any

other policy π̃ i . Hence, policy π i is optimal for MDP Mi
π−i .

(⇐) Suppose for all player i ∈ N , the policy π i is optimal for MDPMi
π−i . This means

that for any other policy π̃ i for player i , the performance of policy π i in MDPMi
π−i is at

least as good as the performance of policy π̃ i . Thus, we have V(π i ,π−i )(s) ≥ V(π̃ i ,π−i )(s),
for all s ∈ S. Since this is true for every player i ∈ N , the policy π is an MPE.

��
Similarly, by combining Propositions 4 and 6, we have the following:

Corollary 8 Given approximate levels α:=(αi )i∈N , αi ∈ R≥0, a Markov strategy profile
π :=(π i )i∈N , is an α-MPE if and only if for every i ∈ N , the strategy π i is an αi -optimal
strategy for MDP Mi

π−i .

Proof The proof argument is almost the same as the proof of Corollary 7. As argued in the
proof of Corollary 7, the value function Vπ̃ i ,π−i (which is the fixed point of Bi

(π̃ i ,π−i )
) is

equal to the value of policy π̃ i in MDPMi
π−i . Now, we prove the two directions separately.

(⇒) Suppose π is an α-MPE of game G . By the definition of MPE, for any player i ∈ N
and any policy π̃ i , we have V(π i ,π−i )(s) ≥ V(π̃ i ,π−i )(s) − αi , for all s ∈ S. This means
that in MDP Mi

π−i , the performance of policy π i is at least as good as the performance

of any other policy π̃ i minus αi . Hence, policy π i is αi -optimal for MDP Mi
π−i .

(⇐) Suppose for all player i ∈ N , the policyπ i isαi -optimal forMDPMi
π−i . Thismeans

that for any other policy π̃ i for player i , the performance of policy π i in MDP Mi
π−i is

at least as good as the performance of policy π̃ i minus αi . Thus, we have V(π i ,π−i )(s) ≥
V(π̃ i ,π−i )(s) − αi , for all s ∈ S. Since this is true for every player i ∈ N , the policy π is
an α-MPE.

��

4.4 Relationship BetweenMDPs Corresponding to a Strategy Profile

We first provide a preliminary result.

Lemma 7 For any function f : S → R, transitions P, P̄ : S × (Ai )i∈N → Δ(S), player i ∈
N , strategy π−i for players other than i , (s, ai ) ∈ S × Ai and transitions Pπ−i , P̄π−i :
S i × Ai → Δ(S i ) defined as in (33), we have

∣
∣
∣
∣

∑

s′∈S
f (s′)Pi

π−i (s
′|s, ai ) −

∑

s′∈S
f (s′)P̄iπ−i (s′|s, ai )

∣
∣
∣
∣

≤ max
a−i∈A−i

∣
∣
∣
∣

∑

s′∈S
f (s′)P(s′|s, (ai , a−i )) −

∑

s′∈S
f (s′)P̄(s′|s, (ai , a−i ))

∣
∣
∣
∣.

Therefore,

max
s∈S,ai∈Ai

∣
∣
∣
∣

∑

s′∈S
f (s′)Pi

π−i (s
′|s, ai ) −

∑

s′∈S
f (s′)P̄iπ−i (s′|s, ai )

∣
∣
∣
∣
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≤ max
s∈S,(ai ,a−i )∈A

∣
∣
∣
∣

∑

s′∈S
f (s′)P(s′|s, (ai , a−i )) −

∑

s′∈S
f (s′)P̄(s′|s, (ai , a−i ))

∣
∣
∣
∣.

Proof For the first part, from definition of P̄
i
π−i , we have

∣
∣
∣
∣

∑

s′∈S
f (s′)Pi

π−i (s
′|s, ai ) −

∑

s′∈S
f (s′)P̄iπ−i (s′|s, ai )

∣
∣
∣
∣

=
∣
∣
∣
∣

∑

s′∈S

∑

a−i∈A−i

f (s′)π−i (a−i |s)P(s′|s, (ai , a−i ))

−
∑

s′∈S

∑

a−i∈A−i

f (s′)π−i (a−i |s)P̄(s′|s, (ai , a−i ))

∣
∣
∣
∣

≤
∣
∣
∣
∣

∑

a−i∈A−i

π−i (a−i |s)

×
[∑

s′∈S
f (s′)(P(s′|s, (ai , a−i )) − P̄(s′|s, (ai , a−i )))

]∣
∣
∣
∣

≤
∑

a−i∈A−i

π−i (a−i |s)

×
∣
∣
∣
∣

∑

s′∈S
f (s′)(P(s′|s, (ai , a−i )) − P̄(s′|s, (ai , a−i )))

∣
∣
∣
∣

≤
∑

a−i∈A−i

π−i (a−i |s)

× max
ã−i∈A−i

∣
∣
∣
∣

∑

s′∈S
f (s′)(P(s′|s, (ai , ã−i )) − P̄(s′|s, (ai , ã−i )))

∣
∣
∣
∣

= max
ã−i∈A−i

∣
∣
∣
∣

∑

s′∈S
f (s′)(P(s′|s, (ai , ã−i )) − P̄(s′|s, (ai , ã−i )))

∣
∣
∣
∣.

The second part following by taking a maximum over (s, ai ). ��
Suppose we are given a game G and its (ε, δ) approximation Ĝ . Moreover, suppose

π̂ :=(π̂ i )i∈N is an MPE of Ĝ .
Let {M̂i

π̂−i } be the MDPs corresponding to game Ĝ and strategy π̂ . Similarly, let {Mi
π̂−i }

be theMDPs corresponding to gameG and strategy π̂ . An immediate implication of Lemma 7
is the following.

Lemma 8 For any player i ∈ N , MDP M̂i
π̂−i is an (ε, δ) approximation of MDP Mi

π̂−i .

Proof Consider

|r i
π̂−i (s, a

i ) − r̂ i
π̂−i (s, a

i )|
(a)≤

∑

a−i∈A−i

π̂−i (a−i |s)|r i (s, (ai , a−i )) − r̂ i (s, (ai , a−i ))|

(b)≤
∑

a−i∈A−i

π̂−i (a−i |s)ε
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(c)= ε, (35)

where (a) follows from (34), (b) follows from (6) and (c) follows as ε is independent of a−i .
Furthermore,

max
s∈S,ai∈Ai

dF(Pi
π̂−i (·|s, ai ), P̂iπ̂−i (·|s, ai ))

(d)= sup
f ∈F

max
s∈S,ai∈Ai

∣
∣
∣
∣

∑

s′∈S
f (s′)Pi

π̂−i (s
′|s, ai ) −

∑

s′∈S
f (s′)̂Piπ̂−i (s′|s, ai )

∣
∣
∣
∣

(e)≤ sup
f ∈F

max
s∈S

(ai ,a−i )∈A

∣
∣
∣
∣

∑

s′∈S
f (s′)(P(s′|s, (ai , a−i )) − P̂(s′|s, (ai , a−i )))

∣
∣
∣
∣

( f )= max
s∈S

(ai ,a−i )∈A
dF(P(·|s, (ai , a−i )), P̂(·|s, (ai , a−i )))

(g)= δ (36)

where (d) and ( f ) follows from Definition 3, (e) follows from Lemma 7, and (g) follows
from Definition 4.

Equations (35) and (36) imply that MDP M̂i
π̂−i is an (ε, δ)-approximation of Mi

π̂−i (see
Definition 8). ��

4.5 Proof of Theorem 1

Arbitrarily fix a player i ∈ N . Then, we have the following.

1. FromCorollary 8, since π̂ is anαopt-MPEof Ĝ , we have that the strategy π̂ i isαopt-optimal
for MDP M̂i

π̂−i .

2. From Lemma 8, we know that MDP M̂i
π̂−i is an (ε, δ) approximation of MDP Mi

π̂−i .

Then, by Theorem 4, we get that strategy π̂ i is an αi -optimal strategy for MDP Mi
π̂−i ,

where αi is given by Theorem 1. Lemma 7 shows that

max
s∈S,ai∈Ai

∣
∣
∣
∣

∑

s′∈S
V̂ i

(π̂ i ,π̂−i )
(s′)Pi

π̂−i (s
′|s, ai ) −

∑

s′∈S
V̂ i

(π̂ i ,π̂−i )
(s′)̂Piπ̂−i (s′|s, ai )

∣
∣
∣
∣

is upper bounded by Δi
(π̂ i ,π̂−i )

given in Theorem 1. By a similar argument, we can show
that

max
s∈S,ai∈Ai

∣
∣
∣
∣

∑

s′∈S
V̂ i

(π̃ i∗,π̂−i )
(s′)Pi

π̂−i (s
′|s, ai ) −

∑

s′∈S
V̂ i

(π̃ i∗,π̂−i )
(s′)̂Piπ̂−i (s′|s, ai )

∣
∣
∣
∣

is upper bounded by Δi
(π̃ i∗,π̂−i )

given in Theorem 1.

3. Since the above results hold for all i ∈ N , Corollary 8 implies that strategy profile π̂ is
an α-MPE of G , where α:=(αi )i∈N and αi is given by Theorem 1.

4. The specific formulas for α in Corollaries 1 and 2 follow from Corollaries 5 and 6.
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4.6 Proofs of Theorem 2 and Theorem 3

The proof argument for Theorems 2 and 3 are similar, so we prove them together. Theorems 6
and 7 show that for any p > 0, αopt > 0 and α >

1+γ
1−γ

αopt which satisfies appropriate
conditions, there exists a function N (p), such that for n ≥ N (p) any αopt-optimal policy π̂n

of MDP M̂n is an α-optimal for MDP M.
Now consider the approximate game Ĝn and let π be an αopt-MPE of game Ĝ . For any

player i ∈ N , let E ip denote the event that policy π i is not α-optimal for Mi
π−i . The above

restatement of Theorems 6 and 7 imply that for n ≥ N (p/|N |), P(E ip/|N |) ≤ p/|N |.
Therefore, by the union bound,

P

(⋃

i∈N
E ip/|N |

)

≤
∑

i∈N
P(E ip/|N |) ≤ p.

Thus, for n ≥ N (p/|N |), the policy π i is α-optimal for MDP Mi
π−i , for all i ∈ N . Thus,

by Corollary 8, π is an α-MPE of game G .
The results of Theorems 2 and 3 then follow by substituting the expressions for N (p/|N |)

from Theorems 6 and 7, respectively.

5 Numerical Examples

In this section, we present two numerical examples to demonstrate the main results of
Theorems 1 and 2.

5.1 Robustness of Markov Perfect Equilibrium

Consider a setting where N = {1, 2}, S = {1, 2, 3}, A1 = A2 = {1, 2}, and γ = 0.9. We
consider two games: original game G and approximate game Ĝ which differ in their reward
functions and transition matrices. We describe the transition matrices as {P(a)}a∈A, where
P(a) = [P(s′ | s, a)]s,s′∈S and describe the reward functions as {r(s)}s∈S where r(s) is the
bi-matrix [(r1(s, (a1, a2)), r2(s, (a1, a2)))](a1,a2)∈A.

For the original game G , we have

r(1) =
[
(1.0, 0.4) (0.7, 1.0)
(0.3, 1.0) (0.8, 0.7)

]

, r(2) =
[
(0.6, 0.7) (0.7, 0.6)
(0.3, 0.8) (0.2, 0.2)

]

,

r(3) =
[
(0.2, 0.6) (0.1, 0.7)
(0.6, 0.7) (0.5, 0.3)

]

,

and

P((1, 1)) =
⎡

⎣
0.40 0.40 0.20
0.10 0.50 0.40
0.40 0.10 0.50

⎤

⎦ , P((1, 2)) =
⎡

⎣
0.30 0.40 0.30
0.20 0.20 0.60
0.30 0.35 0.35

⎤

⎦ ,

P((2, 1)) =
⎡

⎣
0.25 0.25 0.50
0.30 0.30 0.40
0.20 0.20 0.60

⎤

⎦ , P((2, 2)) =
⎡

⎣
0.10 0.20 0.70
0.20 0.10 0.70
0.40 0.20 0.40

⎤

⎦ .
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For the approximate game Ĝ , we have

r̂(1) =
[
(0.99, 0.40) (0.69, 1.00)
(0.30, 0.99) (0.81, 0.71)

]

, r̂(2) =
[
(0.59, 0.70) (0.69, 0.61)
(0.30, 0.80) (0.19, 0.21)

]

,

r̂(3) =
[
(0.19, 0.59) (0.09, 0.70)
(0.59, 0.69) (0.50, 0.30)

]

,

and

P̂((1, 1)) =
⎡

⎣
0.45 0.35 0.20
0.15 0.45 0.40
0.45 0.10 0.45

⎤

⎦ , P̂((1, 2)) =
⎡

⎣
0.25 0.45 0.30
0.25 0.15 0.60
0.35 0.30 0.35

⎤

⎦ ,

P̂((2, 1)) =
⎡

⎣
0.25 0.30 0.45
0.35 0.30 0.35
0.25 0.20 0.55

⎤

⎦ , P̂((2, 2)) =
⎡

⎣
0.15 0.15 0.70
0.25 0.10 0.65
0.40 0.25 0.35

⎤

⎦ .

A MPE of Ĝ and the corresponding value functions (computed by solving a nonlinear
program as described in [20]) are as follows:

π̂1 =
⎡

⎣
0.33 0.67
1.00 0.00
0.00 1.00

⎤

⎦ , π̂2 =
⎡

⎣
0.13 0.87
1.00 0.00
1.00 0.00

⎤

⎦ , (37)

V̂ 1
π̂

=
⎡

⎣
0.6327
0.6170
0.6187

⎤

⎦ , V̂ 2
π̂

=
⎡

⎣
0.7258
0.7148
0.7148

⎤

⎦ . (38)

In (37), the strategy is described as π̂ i = [π̂ i (ai |s)]s∈S,ai∈Ai . For strategy π̂ in (37),
we compute the value functions V i

π̂
for game G as described in Proposition 5 and the value

functions V i
(∗,π̂−i )

as described in Proposition 6 (see Sect. 4). These are given by

V 1
π̂

=
⎡

⎣
0.6341
0.6192
0.6209

⎤

⎦ , V 2
π̂

=
⎡

⎣
0.7252
0.7142
0.7154

⎤

⎦ , (39)

V 1
(∗,π̂2)

=
⎡

⎣
0.6394
0.6222
0.6241

⎤

⎦ , V 2
(π̂1,∗)

=
⎡

⎣
0.7280
0.7158
0.7171

⎤

⎦ . (40)

Note that

α1∗ = ‖V 1
(∗,π̂2)

− V 1
π̂
‖∞ = 0.005300, (41a)

α2∗ = ‖V 2
(π̂1,∗)

− V 2
π̂
‖∞ = 0.002785. (41b)

Thus, π̂ is a (0.005300, 0.002785)-MPE of G .
Now, we compare α∗ with the bounds that we obtain using Theorem 1. Note that since

αopt = 0, π̃ i defined in Theorem 1 is equal to π̂ i . Therefore, the first upper bound on α is
given by 2ε + 2γΔi

π̂
/(1 − γ ). Note that

max
a∈A max

s∈S |r(s, a) − r̂(s, a)| = 0.01.
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Thus, ε = 0.01. Moreover,

Δ1
π̂

= max
s∈S,a∈A

∣
∣
∣
∣

∑

s′∈S

[

P(s′|s, a)V̂ 1
π̂
(s′) − P̂(s′|s, a)V̂ 1

π̂
(s′)
]∣
∣
∣
∣ = 0.000784

Δ2
π̂

= max
s∈S,a∈A

∣
∣
∣
∣

∑

s′∈S

[

P(s′|s, a)V̂ 2
π̂
(s′) − P̂(s′|s, a)V̂ 2

π̂
(s′)
]∣
∣
∣
∣ = 0.000550

Then, by Theorem 1, we have that

α ≤ 2

(

ε + γΔπ̂

1 − γ

)

= 2 × 0.01 + 2 × 0.9

0.1

[
0.000784
0.000550

]

=
[
0.034112
0.029900

]

.

Now, we consider the upper bound on Δi
π̂
in terms of ρF (V̂ i

π̂
).

1. We first consider the case when F = FTV. Note that

max
a∈A max

s∈S dFTV(P(·|s, a), P̂(·|s, a)) = 0.05,

Thus, when F = FTV, Ĝ is a (0.01, 0.05)-approximation of game G . Also note that
span(V̂ 1

π̂
) = 0.015684 and span(V̂ 2

π̂
) = 0.010990. Then, from Theorem 1, we have that

α ≤ 2

(

ε + γ δ span(V̂ i
π̂
)

1 − γ

)

= 2 × 0.01 + 2 × 0.9 × 0.05

0.1

[
0.015684
0.010990

]

=
[
0.034116
0.029903

]

.

2. Now we equip the state space S with a metric d where d(s, s′) = |s − s′| and consider
the case F = FW. Note that

max
a∈A max

s∈S dFW (P(·|s, a), P̂(·|s, a)) = 0.10.

Thus when F = FW, Ĝ is a (0.01, 0.10)-approximation of game G . Also note that
Lip(V̂ 1

π̂
) = 0.015684 and Lip(V̂ 2

π̂
) = 0.010990. Then, from Theorem 1, we have that

α ≤ 2

(

ε + γ δ Lip(V̂ i
π̂
)

1 − γ

)

= 2 × 0.01 + 2 × 0.9 × 0.10

0.1

[
0.015684
0.010990

]

=
[
0.048231
0.039782

]

.

The above example shows that with the given (ε, δ), the bound of Theorem 1 is loose by only
a small multiplicative factor of approximately 6 to 15.

5.2 Sample Complexity of Generative Models

We now consider the setting for model-based MARL. Consider the game G described in
Sect. 5.1 but suppose that the transition matrix P is not known but we have access to a
generative model which can generate samples from P. We assume that we are interested in
identifying an α-MPE, where α = 0.1 with probability 1 − p = 0.99. We assume that we
can exactly compute the MPE of the approximated game, i.e., αopt = 0.

FromTheorem2,we have an upper bound on the number n of samples for each state–action
pair as

n ≥
⌈(

γ

(1 − γ )2
span(r)

)2 2 log(2|S|(∏i∈N |Ai |)|N |p−1)

α2

⌉
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Fig. 1 Scatter plot of (α1n , α2n) such that the policy π̂n of game Ĝn is a (α1n , α2n)-MPEof gameG forM = 1, 000
independently generated experiments for n = 833 348. The histogram of the marginal probability distribution
for α1n and α2n is shown on the top and the right

=
⌈(

0.9

(1 − 0.9)2
× 0.9

)2 2 log(2 × 3 × 4 × 2/0.01)

0.12

⌉

= 11,122,695.

Note that γ = 0.9 ≥ 0.5824, which is the lower bound on the critical discount factor
γ ◦ calculated in Lemma 2. So, we don’t know upfront whether the Hoeffding-type bound
is tighter than the Bernstein-type bound. We compute the number of samples n for each
state–action pair based on Theorem 3, which is given by

n ≥
⌈
cγ ‖r‖2∞ log(8|S|(∏i∈N |Ai |)|N |(1 − γ )−2 p−1)

(1 − γ )α2

⌉

≥
⌈
64 × 0.9 × 1.02 log(8 × 3 × 4 × 2/((1 − 0.9)2 × 0.01))

(1 − 0.9) × 0.12

⌉

= 833,348.

which is significantly smaller than the sample complexity bound of n ≥ 11,122,695 calcu-
lated using Theorem 2 above.

We now verify the Bernstein bound via simulation. We run M = 1,000 experiments. For
each experiment, we generate n = 833,348 samples for each state–action pair and estimate an
empiricalmodel P̂n(s′|s, a) = count(s′|s, a)/n.We compute theMPE π̂n for the approximate
game Ĝ = 〈S, {A}i∈N , P̂, r , γ 〉. Then, using Proposition 6, we compute αn = (α1

n, α
2
n) such

that π̂ is a α-MPE of game G . The scatter plot of αn = (α1
n, α

2
n) along with the empirical

distribution of α1
n and α2

n is shown in Fig. 1. The values for α1
n are typically larger than the

values for α2
n because of the parameters of the specific game G chosen in the example. This

trend is also apparent in the analytical α calculated previously based on worst-case errors.
Note that for most cases, both α1

n and α2
n are smaller than 10−4, which is much less than our

target α of 0.1. This highlights the looseness of the upper bound in Theorem 3.
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6 Conclusion

In this paper, we quantify how robust MPE are to model approximations given the degree of
approximation in the approximate game. We provide bounds on the degree of approximation
based on the approximation error in the reward and transition functions and properties of
the value function of the MPE. We also present coarser, instance-independent upper bounds,
which do not depend of the value function but only depend on the properties of the reward and
transition function of the approximate game. Using these approximation bounds, we provide
sample complexity bounds for computing an approximate MPE using a generative model.

An interesting feature of the results is that the approximation bounds depend on the choice
of the metric on probability spaces. We work with a class of metrics known as IPMs and
specialize our results for two specific choices of IPMs: total variation distance andWasserstein
distance. However, the results are applicable to any IPM. For games with high-dimensional
state spaces, metrics such as maximum mean discrepancy [52] might be more appropriate.

The generativemodel setting considered in this paper circumvents the exploration problem
of learning. Therefore, the sample complexity results presented in this paper should be viewed
as a lower bound on the number of samples required by an algorithm to learn an α-MPE.
The proposed algorithm is not practical as it requires storing the transition matrix, which has
a size of |S|∏i∈N |Ai |, which is exponential in the number of agents. The algorithm also
assumes that there is a system planner which computes the approximate MPE. Developing a
scalable and distributing algorithm for learning MPE remains a challenging open problem.

We conclude by noting that the results presented in this paper were restricted to Markov
games with perfect information. An interesting future direction is to develop similar approx-
imation bounds for Markov games with imperfect information as well as specific classes of
dynamic games such as mean-field games and their variants.

Data Availability Data sharing is not applicable to this article as no datasets were generated or analyzed during
the current study.
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Appendix

A Proof of Theorem 4

Let V∗ denote the optimal value function for MDP M and Vπ denote the value function for
policy π in MDP M. Let π̂∗ be the optimal policy for M̂ and π̂ be an αopt-optimal policy
for M̂. From triangle inequality, we have

‖V∗ − Vπ̂‖∞ ≤ ‖V∗ − V̂π̂∗‖∞ + ‖V̂π̂∗ − V̂π̂‖∞ + ‖Vπ̂ − V̂π̂‖∞. (42)

Now we bound the three terms separately. For the first term, we have

‖V∗ − V̂π̂∗‖∞
(a)≤ max

s∈S

∣
∣
∣
∣max
a∈A

[

(1 − γ )r(s, a) + γ
∑

s′∈S
P(s′|s, a)V∗(s′)

− (1 − γ )r̂(s, a) − γ
∑

s′∈S
P̂(s′|s, a)V̂π̂∗(s

′)
]∣
∣
∣
∣
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(b)≤ (1 − γ ) max
(s,a)∈S×A

∣
∣r(s, a) − r̂(s, a)

∣
∣

+ γ max
(s,a)∈S×A

∣
∣
∣
∣

∑

s′∈S
P(s′|s, a)V∗(s′) − P(s′|s, a)V̂π̂∗(s

′)
∣
∣
∣
∣

+ γ max
(s,a)∈S×A

∣
∣
∣
∣

∑

s′∈S
P(s′|s, a)V̂π̂∗(s

′) − P̂(s′|s, a)V̂π̂∗(s
′)
∣
∣
∣
∣

(c)≤ (1 − γ )ε + γ ‖V∗ − V̂π̂∗‖∞ + γΔπ̂∗ ,

where (a) relies on the fact that max f (x) ≤ max | f (x) − g(x)| + max g(x), (b) follows
from triangle inequality, and (c) follows from the definition of ε and Δπ̂ . Therefore,

‖V∗ − V̂π̂∗‖∞ ≤ ε + γΔπ̂∗
1 − γ

. (43)

For the second term of (42), we have

‖V̂π̂∗ − V̂π̂‖∞ ≤ αopt, (44)

since π̂ is an αopt-optimal policy of M̂.
For the third term of (42), we have

‖Vπ̂ − V̂π̂‖∞ = max
s∈S

∣
∣
∣
∣

∑

a∈A
π̂(a|s)

[

(1 − γ )r(s, a) + γ
∑

s′∈S
P(s′|s, a)Vπ̂ (s′)

− (1 − γ )r̂(s, a) − γ
∑

s′∈S
P̂(s′|s, a)V̂π̂ (s′)

]∣
∣
∣
∣

(d)≤ (1 − γ )max
s∈S

∣
∣
∣
∣

∑

a∈A
π̂(a|s)[r(s, a) − r̂(s, a)

]
∣
∣
∣
∣

+ γ max
s∈S

∣
∣
∣
∣

∑

a∈A
π̂(a|s)

[∑

s′∈S

[
P(s′|s, a)Vπ̂ (s′) − P(s′|s, a)V̂π̂ (s′)

]
]∣
∣
∣
∣

+ γ max
s∈S

∣
∣
∣
∣

∑

a∈A
π̂(a|s)

[∑

s′∈S

[
P(s′|s, a)V̂π̂ (s′) − P̂(s′|s, a)V̂π̂ (s′)

]
]∣
∣
∣
∣

(e)≤ (1 − γ )ε + γ ‖Vπ̂ − V̂π̂‖∞ + γΔπ̂

where (d) follows from triangle inequality and (e) follows from the definition of ε and Δπ̂ .
Therefore,

‖Vπ̂ − V̂π̂‖∞ ≤ ε + γΔπ̂

1 − γ
. (45)

The result of Theorem 4 then follows by substituting (43)–(45) in (42). ��

B Proof of Theorem 5

We follow the same notation as in Appendix A. In addition, let B∗ and Bπ denote the
Bellman operators for the true model and let B̂∗ and B̂π denote the Bellman operators for the
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approximate model. As in Appendix A, the approximation error can be bounded as

‖V∗ − Vπ̂‖∞ ≤ ‖V∗ − V̂π̂∗‖∞ + ‖V̂π̂∗ − V̂π̂‖∞ + ‖Vπ̂ − V̂π̂‖∞. (46)

Recall that Vπ̂ = Bπ̂Vπ̂ and V̂π̂ = B̂π̂ V̂π̂ . Moreover, V̂∗ = V̂π̂∗ . Therefore, from triangle
inequality, we have

‖V∗ − Vπ̂‖∞ ≤ ‖V∗ − V̂∗‖∞ + ‖V̂π̂∗ − V̂π̂‖∞ + ‖Bπ̂Vπ̂ − Bπ̂V∗‖∞
+ ‖Bπ̂V∗ − B̂π̂V∗‖∞ + ‖B̂π̂V∗ − B̂π̂ V̂∗‖∞ + ‖B̂π̂ V̂∗ − B̂π̂ V̂π̂‖∞

(a)≤ ‖V∗ − V̂∗‖∞ + ‖V̂π̂∗ − V̂π̂‖∞ + γ ‖Vπ̂ − V∗‖∞
+ ‖Bπ̂V∗ − B̂π̂V∗‖∞ + γ ‖V∗ − V̂∗‖∞ + γ ‖V̂∗ − V̂π̂‖∞ (47)

where (a) from the contraction property of the Bellman operators. Rearranging terms and
using (44), we get that

‖V∗ − Vπ̂‖∞ ≤ 1

1 − γ

[
(1 + γ )‖V∗ − V̂∗‖∞ + (1 + γ )αopt + ‖Bπ̂V∗ − B̂π̂V∗‖∞

]
(48)

Now the first term in (48) can be simplified similar to (43), where in step (b) of (43), we need
to add and subtract

∑
s′∈S P̂(s′|s, a)Vπ∗(s

′). Using this, we would obtain

‖V∗ − V̂∗‖∞ ≤ ε + γΔπ∗
1 − γ

. (49)

The last term in (48) can be simplified as follows:

‖Bπ̂V∗ − B̂π̂V∗‖∞ ≤ max
s∈S

∑

a∈A
π̂(a|s)

[

|r(s, a) − r̂(s, a)|

+ γ

∣
∣
∣
∣

∑

s′∈S
P(s′|s, a)V∗(s′) −

∑

s′∈S
P̂(s′|s, a)V∗(s′)

∣
∣
∣
∣

]

≤ ε + γΔπ∗ (50)

The result of Theorem 5 follows by substituting (49) and (50) in (48). ��
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