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Abstract

Restless bandits are a class of sequential resource allocation problems concerned
with allocating one or more resources among several alternative processes where
the evolution of the process depends on the resource allocated to them. Such
models capture the fundamental trade-offs between exploration and exploitation.
In 1988, Whittle developed an index heuristic for restless bandit problems
which has emerged as a popular solution approach due to its simplicity and
strong empirical performance. The Whittle index heuristic is applicable if the
model satisfies a technical condition known as indexability. In this paper, we
present two general sufficient conditions for indexability and identify simpler to
verify refinements of these conditions. We then revisit a previously proposed
algorithm called adaptive greedy algorithm which is known to compute the
Whittle index for a subclass of restless bandits. We show that a generalization
of the adaptive greedy algorithm computes the Whittle index for all indexable
restless bandits. We present an efficient implementation of this algorithm which
can compute the Whittle index of a restless bandit with K states in O(K3)
computations. Finally, we present a detailed numerical study which affirms the
strong performance of the Whittle index heuristic.
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1. Introduction

Restless bandits are a class of sequential resource allocation problems concerned with
allocating one or more resources among several alternative processes where the evolution
of the process depends on the resource allocated to them. Such models arise in various
applications such as machine maintenance [17], congestion control [6], healthcare [10],
finance [14], channel scheduling [20], smart grid [1], and others.

Restless bandits are a generalization of classical multi-armed bandits [12], where the
processes remain frozen when resources are not allocated to them. Gittins [13] showed
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that when a single resource is to be allocated among multiple processes, the optimal
policy has a simple structure: compute an index for each process and allocate the
resource to the process with the largest (or the lowest) index. In contrast, the general
restless bandit problem is pspace-hard [26]. Whittle [31] showed that index-based
policies are optimal for the Lagrangian relaxation of the restless bandit problem and
argued that the corresponding index, now called Whittle index, is a reasonable heuristic
for restless bandit problems. Subsequently, it has been shown that the Whittle index
heuristic is optimal under some conditions [21,30] and performs well in practice [4,15,18].

The Whittle index heuristic is applicable if a technical condition known as indexability
is satisfied. Sufficient conditions for indexability have been investigated under specific
modeling assumptions: two state restless bandits [6, 20]; monotone bandits [4, 6, 14];
models with right-skip free transitions [17, 18]; models with monotone or convex
cost/reward [4–7, 18, 32]; models satisfying partial conservation laws [22, 24]; and
models arising in specific applications [5, 7, 15,17,18].

Nino-Mora [24, 25] proposed a generalization of Whittle index called marginal
productivity index (MPI) for resource allocation problems where processes can be
allocated fractional resources. In [24], he also proposed an algorithm called the adaptive
greedy algorithm, to compute the MPI when the model satisfies a technical condition
called partial conservation laws (PCL). For restless bandits which satisfy the PCL
condition, the Whittle index can be computed using the adaptive greedy algorithm.
However, for general restless bandits, there are no known efficient algorithms to exactly
compute the Whittle index. It is possible to approximately compute the Whittle index
by conducting a binary search over penalty for active action (or a subsidy for passive
action) [2, 28] but such a binary search is computationally expensive because each step
of the binary search requires solving a dynamic program.

In this paper, we revisit the restless bandit problem and present three contributions.
Our first contribution is to provide general sufficient conditions for indexability which
are based on an alternative characterization of the passive set. We also present easy to
verify refinements of these sufficient conditions.

Our second contribution is to use a novel geometric interpretation of Whittle
index to show that a refinement of the adaptive greedy algorithm proposed by Nino-
Mora [24] computes the Whittle index for all indexable restless bandits. We provide
a computationally efficient implementation, which computes the Whittle indices of a
restless bandit with K states in O(K3) computations.

Our third contributions is to present three special cases: (i) Restless bandits with
optimal threshold-based policy which were previously studied in [3, 4, 6, 14, 16, 29],
(ii) Stochastic monotone bandits which may be considered as a generalization of monotone
bandits [4, 6, 14], and (iii) Restless bandits with controlled restarts similar to [3, 29],
which is a generalizations of the restart models [17,18]. We show that these models are
always indexable and the Whittle index can be computed in closed form.

Finally, we present a detailed numerical study comparing the performance of the
Whittle index policy with that of the optimal and myopic policies. Our study shows
that in general, the performance of Whittle index policy is comparable to the optimal
policy and considerably better than the myopic policy.

Notation Uppercase letters (X, Y , etc.) denote random variables, lowercase letters
(x, y, etc.) denote their realization, and script letters (X , Y, etc.) denote their state
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spaces. Subscripts denote time: so, Xt denotes a system variable at time t and X1:t is
a short-hand for the system variables (X1, . . . , Xt). P(·) denotes the probability of an
event, E[·] denotes the expectation of a random variable. Z and R denote the sets of
integers and real numbers. Given a matrix P , Pij denotes its (i, j)-th element.

2. Restless bandits: problem formulation and solution concept

2.1. Restless Bandit Process

A discrete-time restless bandit process (RB) is a controlled Markov process (X , {0, 1},
{P (a)}a∈{0,1}, c, x0) where X denotes the state space which is a finite or countable
set; {0, 1} denotes the action space where the action 0 is called the passive action and
the action 1 is the active action; P (a), a ∈ {0, 1}, denotes the transition matrix when
action a is chosen; c : X × {0, 1} → R denotes the cost function; and x0 denotes the
initial state. We use Xt and At to denote the action of the process at time t. The
process evolves in a controlled Markov manner, i.e., for any realization x0:t+1 of X0:t+1

and a0:t+1 of A0:t+1, we have P(Xt+1 = xt+1|X0:t = x0:t, A0:t = a0:t) = P(Xt+1 =
xt+1|Xt = xt, At = at), which we denote by Pxtxt+1(at).

2.2. Restless Multi-armed Bandit Problem

A restless multi-armed bandit is a collection of n independent RBs (X i, {0, 1},
{P i(a)}a∈{0,1}, c

i, xi
0), i ∈ N := {1, . . . , n}. A decision maker observes the state of all

RBs, may choose to activate only m < n of them, and incurs a cost equal to the sum of
the cost incurred by each RB.

Let X :=
∏

i∈N X i and A(m) :=
{
a = (a1, . . . , an) ∈ An :

∑
i∈N ai = m

}
denote

the joint state space and the feasible action space, respectively. Let Xt := (X1
t , . . . X

n
t )

and At = (A1
t , . . . , A

n
t ) denote the joint state and actions at time t. As the RBs

evolve independently, for any realization x0:t of X0:t and a0:t of A0:t, we have
P (Xt+1 = xt+1|X0:t = x0:t,A0:t = a0:t) =

∏n
i=1 P

(
Xi

t+1 = xi
t+1|Xi

t = xi
t, A

i
t = ait

)
.When

the system is in state xt = (x1
t , . . . , x

n
t ) and the decision-maker chooses action at =

(a1t , . . . , a
n
t ), the system incurs a cost c̄(xt,at) :=

∑
i∈N ci(xi

t, a
i
t). The decision-maker

chooses his actions using a time-homogeneous Markov policy g : X → A(m), i.e.,
chooses At = g(Xt). The performance of any Markov policy g is given by

J (g)(x0) := (1− β)E
[ ∞∑
t=0

βtc̄(Xt, g(Xt))

∣∣∣∣X0 = x0

]
,

where β ∈ (0, 1) is the discount factor and x0 is the initial state of the system.

We are interested in the following optimization problem.

Problem 1. Given the discount factor β ∈ (0, 1), the total number n of arms, the
number m of active arms, RBs (X i, {0, 1}, {P i(a)}a∈{0,1}, c

i, xi
0), i ∈ N , and initial

state x0 ∈ X , choose a Markov policy g : X → A(m) that minimizes J (g)(x0).

Problem 1 is a multi-stage stochastic control problem and one can obtain an optimal
solution using dynamic programming. However, the dynamic programming solution is
intractable for large n since the cardinality of the state space is

∏
i∈N |X i|, which grows

exponentially with n. In the next section, we describe a heuristic known as Whittle
index to efficiently obtain a suboptimal solution of the problem.
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2.3. Indexability and the Whittle index

Consider a RB (X , {0, 1}, {P (a)}a∈{0,1}, c, x0). For any λ ∈ R, we consider a Markov
decision process {X , {0, 1}, {P (a)}a∈{0,1}, cλ, x0}, where

cλ(x, a) := c(x, a) + λa, ∀x ∈ X ,∀a ∈ {0, 1}. (1)

The parameter λ may be viewed as a penalty for taking active action. The performance
of any time-homogeneous policy g : X → {0, 1} is

J
(g)
λ (x0) := (1− β)E

[ ∞∑
t=0

βtcλ(Xt, g(Xt))

∣∣∣∣X0 = x0

]
. (2)

Consider the following optimization problem.

Problem 2. Given the RB (X , {0, 1}, {P (a)}a∈{0,1}, cλ, x0) and the discount factor β ∈
(0, 1), choose a Markov policy g : X → {0, 1} to minimize J

(g)
λ (x0).

Problem 2 is also a Markov decision process and one can obtain an optimal solution
using dynamic programming. Let Vλ : X → R be the unique fixed point of the following:

Vλ(x) = min
{
Hλ(x, 0), Hλ(x, 1)

}
, ∀x ∈ X , (3)

where
Hλ(x, a) = (1− β)cλ(x, a) + β

∑
y∈X

Pxy(a)Vλ(y), a ∈ {0, 1}. (4)

Let gλ(x) denote the minimizer of the right hand side of (3) where we set gλ(x) = 1
if Hλ(x, 0) = Hλ(x, 1). Then, from Markov decision theory [27], we know that the
time-homogeneous policy gλ is optimal for Problem 2.

Define the passive set Πλ to be the set of states where passive action is optimal, i.e.,

Πλ := {x ∈ X : gλ(x) = 0} . (5)

Definition 1. (Indexability.) An RB is indexable if Πλ is increasing in λ, i.e., for any
λ′, λ′′ ∈ R, λ′ ≤ λ′′ implies that Πλ′ ⊆ Πλ′′ .

Definition 2. (Whittle index.) The Whittle index of state x of an indexable RB
is the smallest value of λ for which x is part of the passive set Πλ, i.e., w(x) =
inf {λ ∈ R : x ∈ Πλ} .

Alternatively, the Whittle index w(x) is a value of the penalty λ for which the optimal
policy is indifferent between taking active and passive action when the RB is in state x.

2.4. Whittle Index Heuristic

A restless multi-armed bandit problem is said to be indexable if all RBs are indexable.
For indexable problems, the Whittle index heuristic is as follows: Compute the Whittle
indices of all arms offline. Then, at each time, obtain the Whittle indices of the current
state of all arms and play arms with the m largest Whittle indices.

As mentioned earlier, Whittle index policy is a popular approach for restless bandits
because: (i) its complexity is linear in the number of alternatives and (ii) it often
performs close to optimal in practice [4, 15,18]. However, there are only a few general
conditions to check indexability for general models.
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2.5. Alternative characterizations of passive set

We now present alternative characterizations of passive set, which is important for
the sufficient conditions of indexability that we provide later.

Let Σ denote the family of all stopping times with respect to the natural filtration
of {Xt}t≥0. For any state x ∈ X , penalty λ ∈ R, and stopping time τ ∈ Σ, define

M(x, τ) := E
[
βτ |X0 = x, {At = 0}τ−1

t=0

]
,

L(x, τ) := E
[ τ−1∑

t=0

βtc(Xt, 0) + βτ c(Xτ , 1)
∣∣∣ X0 = x, {At = 0}τ−1

t=0

]
,

Wλ(x) := (1− β)λ+ β
∑
y∈X

Pxy(1)Vλ(x). (6)

Let hτ,λ denote the (history dependent) policy that takes passive action up to time
τ − 1, active action at time τ , and then follows the optimal policy gλ (for Problem 2).
We now present different characterizations of the passive set.

Proposition 1. The following characterizations of the passive set are equivalent.

• Π
(a)
λ = {x ∈ X : gλ(x) = 0}

• Π
(b)
λ = {x ∈ X : Hλ(x, 0) < Hλ(x, 1)}

• Π
(c)
λ = {x ∈ X : ∃σ ∈ Σ, σ ̸= 0, such that J

(hσ,λ)
λ (x) < J

(h0)
λ (x)}

• Π
(d)
λ = {x ∈ X : ∃σ ∈ Σ, σ ̸= 0, such that (1− β) (L(x, σ)− c(x, 1)) < Wλ(x)−

E[βσWλ(Xσ)|X0 = x]}

See Appendix A for proof.

3. Sufficient Conditions for Indexability

In this section, we identify sufficient conditions for a RB to be indexable.

3.1. Preliminary results

Consider a RB (X , {0, 1}, {P (a)}a∈{0,1}, c, x0). For any Markov policy g : X → {0, 1}
and λ ∈ R, we can write

J
(g)
λ (x) = D(g)(x) + λN (g)(x), (7)

where

D(g)(x) := (1− β)E
[ ∞∑

t=0

βtc(Xt, g(Xt))

∣∣∣∣X0 = x

]
and

N (g)(x) := (1− β)E
[ ∞∑

t=0

βtg(Xt)

∣∣∣∣X0 = x

]
are the expected discounted total cost and the expected number of activations under
policy g starting at initial state x. D(g)(·) and N (g)(·) can be computed using policy
evaluation formulas. In particular, define P (g) : X ×X → R and c(g) : X → R as follows:



6 Nima Akbarzadeh and Aditya Mahajan

λ

J
(·)
λ (x)

λ12
c λ23

c

D(h2)(x)

D(h2)(x)

D(h3)(x)

J
(h1)
λ (x)

J
(h2)
λ (x)

J
(h3)
λ (x)

Figure 1: An illustration of the plot of J
(·)
λ (x) versus λ for g ∈ G := {h1, h2, h3}. Let

λij
c denote the λ-value of the intersection of J

(hi)
λ (x) and J

(hj)
λ (x). Note that in this

plot, for all λ ∈ (−∞, λ12
c ] the policy h1 is optimal; for all λ ∈ [λ12

c , λ23
c ] the policy h2 is

optimal; and for all λ ∈ [λ23
c ,∞) the policy h3 is optimal. The lower concave envelope

of J
(hi)
λ (x) (shown as a thick line) is the value function Vλ(x), which is piecewise linear,

concave, increasing and continuous.

P
(g)
xy = Pxy(g(x)) and c

(g)
λ (x) = cλ(x, g(x)) = c(g)(x, g(x)) + λg(x) for any x ∈ X . We

also view g as an element in {0, 1}|X |. Then, using the policy evaluation formula for
infinite horizon MDPs [27], we obtain

D(g)(x) = (1−β)
[
(I−βP (g))−1c(g)

]
(x) and N (g)(x) = (1−β)

[
(I−βP (g))−1g

]
(x). (8)

We now provide a geometric interpretation of the value function Vλ(x) as a function

of λ. For any g ∈ G, the plot of J
(g)
λ (x) = D(g)(x) + λN (g)(x) as a function of λ is

a straight line with y-intercept D(g)(x) and slope N (g)(x). By definition, Vλ(x) =

infg∈G J
(g)
λ (x). Thus, Vλ(x) is the lower concave envelope of the family of straight lines

{J (g)
λ (x)}g∈G . See Fig. 1 for an illustration. Thus, we have the following:

Lemma 1. For any x ∈ X , Vλ(x) is continuous, increasing, piece-wise linear and
concave in λ. Furthermore, when X is finite, Vλ(x) is piecewise linear.

Proof. For any Markov policy g, N (g)(x) is non-negative. Therefore, J
(g)
λ (x) =

D(g)(x) + λN (g)(x) is increasing and continuous in λ. Since Vλ(x) is an infimization of
a family of linear functions, it is concave (see Fig. 1). In addition, as monotonicity and
continuity are preserved under infimization, the value function is also increasing and
continuous in λ. Finally, when X is finite, there are only finite number of pieces. Thus,
Vλ(x) is the minimum of a finitely many linear functions and hence, piece-wise linear.
□

Lemma 2. For any λ′, λ′′ ∈ R,

(λ′′ − λ′)N (gλ′′ )(x) ≤ Vλ′′(x)− Vλ′(x) ≤ (λ′′ − λ′)N (gλ′ )(x), ∀x ∈ X .

Consequently, N (gλ)(x) is non-increasing in λ.

Proof. Recall that Vλ(x) = J
(gλ)
λ (x) ≤ J

(gλ′ )
λ (x) for any λ′ ̸= λ. Thus,

Vλ′′(x)− Vλ′(x) = J
(gλ′′ )
λ′′ (x)− J

(gλ′ )
λ′ (x) ≤ J

(gλ′ )
λ′′ (x)− J

(gλ′ )
λ′ (x)
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(a)
= (λ′′ − λ′)N (gλ′ )(x), (9)

where (a) follows from (7). Similarly, we have

Vλ′′(x)− Vλ′(x) = J
(gλ′′ )
λ′′ (x)− J

(gλ′ )
λ′ (x) ≥ J

(gλ′′ )
λ′′ (x)− J

(gλ′′ )
λ′ (x)

(a)
= (λ′′ − λ′)N (gλ′′ )(x), (10)

where (a) follows from (7). The result follows from combining the above inequalities. □

3.2. Sufficient conditions for indexability

Theorem 1. Define H = {(g, h) : g, h : X → {0, 1} such that for all x ∈ X , N (g)(x) ≥
N (h)(x)}. Each of the following is a sufficient condition for Whittle indexability:

a. For any g, h ∈ H, we have that for every x, z ∈ X ,∑
y∈X

{[
βPzy(1)− Pxy(1)

]+
N (g)(y)−

[
Pxy(1)− βPzy(1)

]+
N (h)(y)

}
≤ (1− β)2

β
.

(11)

b. For any g, h ∈ H, we have that for every x ∈ X ,∑
y∈X

{[
Pxy(0)− Pxy(1)

]+
N (g)(y)−

[
Pxy(1)− Pxy(0)

]+
N (h)(y)

}
≤ 1− β

β
. (12)

See Appendix B for the proof. The sufficient conditions of Theorem 1 can be difficult
to verify. Simpler sufficient conditions are stated below.

Proposition 2. Each of the following is a sufficient condition for (11).

a. maxx,z∈X
∑

y∈X
[
βPzy(1)− Pxy(1)

]+ ≤ (1− β)2/β.

b. Pxy(1) = Pzy(1), for any x, y, z ∈ X .

In addition, each of the following is a sufficient condition for (12).

c. maxx∈X
∑

y∈X [Pxy(0)− Pxy(1)]
+ ≤ (1− β)/β.

d. β ≤ 0.5.

See Appendix C for proof.

Some remarks

1. The sufficient conditions of Theorem 1 and Proposition 2 a, c, d may be viewed
as bounds on the discount factor β for which a RB is indexable. Numerical
experiments to explore such a property are presented in [24]. A qualitatively
similar result was established in [22, Corollary 5] which showed that a restless
bandit process is GCL (Generalized Conservation Laws) indexable for sufficiently
small discount factors. GCL indexability is a sub-class of PCL indexability, which
is a sub-class of Whittle indexability. Thus, Proposition 2 provides a quantitative
characterization of the qualitative observation made in [8] and generalizes it to a
broader class of models.
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2. We refer to models that satisfy the sufficient condition of Proposition 2.b as
restless bandits with controlled restarts. Such models arise in various scheduling
problems (e.g., machine maintenance, surveillance, etc.) where taking the active
action resets the state according to known probability distribution. Specific
instances of such models are considered in [3, 29]. The special case when the
active action resets to a specific (pristine) state are considered in [17,18].

3. A different class of restart models have been considered in [6, 7, 19] where the
passive action resets the state of the arm. Note that such models do not satisfy
Proposition 2b and additional modeling assumptions are required to establish
indexability. See [6, 7, 19] for details.

4. An algorithm to compute Whittle index

Given an indexable RB, a naive method to compute Whittle index at state x is
to do a binary search over the penalty λ and find the critical penalty w(x) such that
for λ ∈ (−∞, w(x)), gλ(x) = 0 and for λ ∈ [w(x),∞), gλ(x) = 1. Although such
an approach has been used in the literature [2, 28], it is not efficient as it requires a
separate binary search for each state. For a sub-class of restless bandits which satisfy an
additional technical condition called partial conservation law (PCL), Nino-Mora [23,24]
presented an algorithm called adaptive greedy algorithm to compute the Whittle index.
In this section, we present an algorithm that may be viewed as a refinement of the
adaptive greedy algorithm and show that it computes the Whittle index for all indexable
RBs. The result of this section are restricted to the case of finite X .

Let K denote the number of states (i.e., K = |X |) and KD(≤ K) denote the number
of distinct Whittle indices. Let Λ∗ = {λ1, . . . , λKD

} where λ1 < λ2 < · · · < λKD
denote

the sorted list of distinct Whittle indices. Also, let λ0 = −∞. For any d ∈ {0, . . . ,KD},
let Pd := {x ∈ X : w(x) ≤ λd} denote the set of states with Whittle index less than or
equal to λd. Note that P0 = ∅ and PKD

= X . Let Γd+1 = Pd+1\Pd denote the set of
states with Whittle index λd+1.

For any subset S ⊆ X , define the policy ḡ(S) : X → {0, 1} as

ḡ(S)(x) =

{
0, if x ∈ S
1, if x ∈ X\S.

(13)

Thus, the policy ḡ(S) takes passive action in set S and active action in set X\S.
Now for any d ∈ {0, . . . ,KD − 1}, and all states y ∈ X\Pd, define hd = ḡ(Pd),

hd,y = ḡ(Pd∪{y}) and for all x ∈ Λd,y,

Λd,y = {x ∈ X : N (hd)(x) ̸= N (hd,y)(x)}, µd,y(x) =
D(hd,y)(x)−D(hd)(x)

N (hd)(x)−N (hd,y)(x)
. (14)

Lemma 3. For an indexable RB with d ∈ {0, . . . ,KD − 1}, we have the following:

1. For all y ∈ Γd+1, we have w(y) = λd+1.

2. For all y ∈ X\Pd and λ ∈ (λd, λd+1], we have J
(hd,y)
λ (x) ≥ J

(hd)
λ (x) for all x ∈ X

with equality if and only if y ∈ Γd+1 and λ = λd+1.

Proof. See Appendix D. □
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Theorem 2. For an indexable RB, the following properties hold:

1. For any y ∈ Γd+1, the set Λd,y is non-empty.

2. For any x ∈ Λd,y, µd,y(x) ≥ λd+1 with equality if and only if y ∈ Γd+1.

Proof. The proof of each part is as follows:

1. We prove the result by contradiction. Suppose that there exists a y ∈ Γd+1,
such that Λd,y = ∅ which means N (hd)(x) = N (hd,y)(x) for all x ∈ X . By

Lemma 3, we have that J
(hd)
λd+1

(x) = J
(hd,y)
λd+1

(x). Therefore, from (7) we infer

D(hd)(x) = D(hd,y)(x) for all x ∈ X . Since both D(g)(x) and N (g)(x) do not

depend on λ, (7) implies that for any λ and x ∈ X , we have J
(hd)
λ (x) = J

(hd,y)
λ (x).

This implies that the policies hd and hd,y will be optimal for the same set of λ. Now,
since policy hd is optimal for all λ ∈ (λd, λd+1] (by definition), so is hd,y. Hence
y ∈ Pd. But we started by assuming that y ̸∈ Pd, so we have a contradiction.

2. By Lemma 3, part 2, for all y ∈ X\Pd, λ ∈ (λd, λd+1] and for all x ∈ Λd,y, we

have J
(hd,y)
λ (x) ≥ J

(hd)
λ (x). Then, by (7) we infer

D(hd,y)(x) + λN (hd,y)(x) ≥ D(hd)(x) + λN (hd)(x).

Finally, we have µd,y(x) ≥ λ and thus, µd,y(x) ≥ λd+1 for all x ∈ Λd,y. This proves
the first part of the statement. To prove the second part, note that policy hd

is an optimal policy for λ ∈ (λd, λd+1] and for any y ∈ Pd+1, the policy hd,y is
an optimal policy for λ ∈ (λd+1, λd+2]. From Lemma 1, we know that Vλ(x) is
continuous in λ for all x ∈ X . Thus, for all x ∈ X ,

lim
λ↑λd+1

J
(hd)
λ (x) = lim

λ↑λd+1

Vλ(x) = lim
λ↓λd+1

Vλ(x) = lim
λ↓λd+1

J
(hd,y)
λ (x).

Thus, for all x ∈ X , J
(hd)
λd+1

(x) = J
(hd,y)
λd+1

(x) and, therefore,

D(hd)(x) + λd+1N
(hd)(x) = D(hd,y)(x) + λd+1N

(hd,y)(x).

As a result, λd+1 = µd,y(x) for all x ∈ Λd,y.

□

Theorem 2 suggests a method for identifying the Whittle index of any indexable RB
by iteratively identifying the set Pd and the Whittle index λd. By definition, P0 = ∅
and λ0 = −∞. Now suppose P0 ⊂ P1 ⊂ . . . ⊂ Pd and λ0 < λ1 < . . . < λd have been
identified. We will describe how to determine Pd+1 and λd+1.

1. For hd = ḡ(Pd), compute N (hd) by solving (8).

2. For all y ∈ X\Pd, compute N (hd,y) where hd,y = ḡ(P∪{y}) by solving (8) and
compute Λd,y. Let µ

∗
d,y = minx∈Λd,y

µd,y(x) where µd,y(x) is given by Theorem 2.
Then, λd+1 = miny∈X\Pd

µ∗
d,y, Γd+1 = argminy∈X\Pd

µ∗
d,y, and we get Pd+1 =

Pd ∪ Γd+1 (recall that argmin denotes the set of all minimizers) and w(x) = λd+1,
∀x ∈ Γd+1.

Iteratively proceeding this way, we can compute the Whittle index for all states. The
detailed algorithm is presented in Algorithm 1.
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Algorithm 1: Computing Whittle index of all states of an indexable RB

input :RB (X , {0, 1}, P (a)a∈{0,1}, c, x0), discount factor β.

Initialize d = 0 and P0 = ∅.
while Pd ̸= X do

Compute Λd,y and µd,y(x) using (14), ∀y ∈ X \ Pd.
Compute µ∗

d,y = minx∈Λd,y
µd,y(x), ∀y ∈ X \ Pd.

Compute λd+1 = miny∈X\Pd
µ∗
d,y.

Compute Γd+1 = argminy∈X\Pd
µ∗
d,y.

Set w(z) = λd+1, ∀z ∈ Γd+1.
Set Pd+1 = Pd ∪ Γd+1.
Set d = d+ 1.

4.1. An efficient implementation using Sherman-Morrison formula

We now present an efficient implementation of Algorithm 1 using the Sherman-
Morrison inverse formula. Suppose A ∈ Rn×n is an invertible square matrix, u, v ∈ Rn

are column vectors, such that A + uvT is invertible. Then, the Sherman-Morrison
inverse formula is (

A+ uvT
)−1

= A−1 − A−1uvTA−1

1 + vTA−1u
. (15)

Furthermore, given b ∈ Rn, if x is the solution of Ax = b and y is the solution Ay = u,
then the solution of (A+ uvT)x̃ = b is given by (see [11, Corollary 2])

x̃ = x− vTx

1 + vTy
y. (16)

Let Φ(g) = (I−βP (g))−1. Note that for any Markov policy g, (I−βP (g)) is invertible
because βP (g) is a sub-stochastic matrix and has a spectral radius less than 1. Therefore,
the conditions of using the Sherman-Morrison formula are satisfied. Hence, using (16),
Eq. (8) may be written (in matrix form) as

D(g) = (1− β)Φ(g)c(g) and N (g) = (1− β)Φ(g)g. (17)

Now, for any d ∈ {0, . . . ,KD − 1} and a state y ∈ X\Pd, consider policies hd = ḡ(Pd)

and hd,y = ḡ(Pd,y). Let ey denote the unit vector with 1 in the y-th location and ρy be
a vector given by [ρy]x = Pyx(1)− Pyx(0), for all x ∈ X . Then, P (hd,y) = P (hd) − eyρ

T
y .

Therefore,
I − βP (hd,y) =

(
I − βP (hd)

)
+ βeyρ

T
y .

Let Φ
(hd)
·y denote the y-th column of Φ(hd), i.e., Φ

(hd)
·y = Φ(hd)ey. Then, by Sherman-

Morrison inverse formula (15) and (16), we have

Φ(hd,y) = Φ(hd) −
βΦ(hd)eyρ

T
yΦ

(hd)

1 + βρTyΦ
(hd)
·y

(18)

D(hd,y) = D(hd) −
βρTyD

(hd)

1 + βρTyΦ
(hd)
·y

Φ
(hd)
·y , N (hd,y) = N (hd) −

βρTyN
(hd)

1 + βρTyΦ
(hd)
·y

Φ
(hd)
·y . (19)
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Algorithm 2: Computing Whittle index of all states of an indexable RB

input :RB (X , {0, 1}, P (a)a∈{0,1}, c, x0), discount factor β.

Initialize d = 0, P0 = ∅, h0 = 1K .

Compute Φ(h0) = (I − βP (h0))−1 and [D(h0) Nh0 ] = (1− β)Φ(h0)[c(h0) h0]
while Pd ̸= X do

forall y ∈ X \ Pd do
Compute D(hd,y) and N (hd,y) using (19).
Compute Λd,y and µd,y(x) for all x ∈ Λd,y using (14).
Compute µ∗

d,y = minx∈Λd,y
µd,y(x).

Compute λd+1 = miny∈X\Pd
µ∗
d,y.

Compute Γd+1 = argminy∈X\Pd
µ∗
d,y.

Set w(z) = λd+1, ∀z ∈ Γd+1.
Set Pd+1 = Pd ∪ Γd+1.

Initialize Φ(hd+1) = Φ(hd), D(hd+1) = D(hd) and N (hd+1) = N (hd).
forall z ∈ Γd+1 do

Compute Φ(hd+1,z), D(hd+1,z) and N (hd+1,z) by using (18) and (19).

Update Φ(hd+1) = Φ(hd+1,z), D(hd+1) = D(hd+1,z) and N (hd+1) = N (hd+1,z).

Set d = d+ 1.

Thus, if Φ(hd) has been computed, then Φ(hd,y) can be computed in O(K2) computations.
In addition, if Φ(hd), D(hd) and N (hd) have been computed, then D(hd,y) and N (hd,y)

can be computed in O(K) computations.
So, we can use (18) and (19) to implement Alg. 1 in a more efficient manner. However,

there is one additional step that needs to be handled, which we explain next.
As hd+1 = ḡ(Pd∪Γd+1), we get

I − βP (hd+1) =
(
I − βP (hd)

)
+ β

∑
y∈Γd+1

eyρ
T
y . (20)

Thus, I − βP (hd+1) is a rank-|Γd+1| update of I − βP (hd). When |Γd+1| > 1, we
can either sequentially apply equations (18) and (19) for all y ∈ Γd+1 or use the
Woodbury formula to compute Φ(hd+1) and compute D(hd+1) and N (hd+1) using (17).
The Woodbury formula is a generalization of the Sherman-Morrison formula. Suppose
A ∈ Rn×n is an invertible matrix and U, V ∈ Rn×m are such that A+UV T is invertible.
Then the Woodbury formula is

(A+ UV T)−1 = A−1 −A−1U(I + V TU)−1V TA−1.

The complexity of sequentially applying the Sherman-Morrison formula isO(|Γd+1|K2)
to compute Φ(hd+1) and O(|Γd+1|K) to compute D(hd+1) and N (hd+1). The complexity
of using the Woodbury formula is O(|Γd+1|2.807 +K2) to compute Φ(hd+1) and O(K2)
to compute D(hd+1) and N (hd+1).

We show the complete algorithm to efficiently compute the Whittle index in
Algorithm 2, where we use sequential application of Sherman-Morrison formula to
compute Φ(hd+1), D(hd+1) and N (hd+1).
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Some remarks

1. The idea of computing the index by iteratively sorting the states according to
their index is commonly used in the algorithms to compute Gittins index; for
example, the largest-remaining-index algorithm, the state-elimination algorithm,
the triangularization algorithm, and the fast-pivoting algorithm use variations of
this idea. See [9] for details.

2. The computational complexity of Algorithm 2 is O(K3), which can be charac-
terized as follows. The algorithm starts with computing Φ(h0) which requires
O(K2.807) computations (using Strassen’s algorithm) and D(h0) and N (h0) each
of which requires O(K2) computations. Then, in the inner for loop, computing
each of D(hd,y), N (hd,y) and µ∗

d,y requires O(K) computations and the inner loop

is executed |X\Pd| times. Afterwards, updating Φ(hd+1), D(hd+1) and N (hd+1)

requires O(|Γd+1|K2), O(|Γd+1|K) and O(|Γd+1|K) computations, repectively.
Therefore, the computational complexity of the algorithm is

O(K2.807) +O(K2) +

KD∑
d=1

(
O(|X\Pd|K) +O(|Γd+1|K2) +O(2|Γd+1|K)

)
≤ O(K2.807) +

KD∑
d=1

O(K2) +O
([KD∑

d=1

|Γd+1|
]
K2

)
≤ O(K2.807) +O(K3) +O(K3) ≤ O(K3),

where the first inequality uses the fact that |X \Pd| ≤ K and the second inequality

uses the fact that
∑KD

d=1 |Γd+1| = K.

3. Note that Algorithm 2 computes the Whittle index exactly. In contrast, using
binary search [2] computes the Whittle index approximately. Let Cmax and Cmin

denote the upper and lower bound on the per-step cost. Then, we know that for
any state x, w(x) ∈ [Cmin, Cmax]. Now, suppose we want to compute the Whittle
index to an accuracy of δ. Then the interval [Cmin, Cmax] needs to be divided
into log2((Cmax − Cmin)/δ) steps. For each step of the binary search, we need to
solve the dynamic program (3). There are two main algorithms to solve dynamic
programs [27]: policy iteration, which gives an exact solution and value iteration,
which gives an approximate solution.

Each iteration of policy iteration has two steps: (i) policy evaluation, which
is done by solving a linear system and has complexity O(K3) and (ii) policy
improvement, which requires O(K2) computations. Thus, the overall complexity
of policy iteration is O(NPIK

3), where NPI is the number of iterations after which
policy iteration converges.

Each iteration of value iteration requires O(K2) computations. Let NVI denote
the number of iterations for value iteration (typically, the iteration stops when
a stopping criterion is met). Then, the complexity of approximately solving the
dynamic program is O(NVIK

2).

Note that the binary search needs to be repeated for each state. Thus, using
binary search to compute Whittle index to an accuracy of δ has a complexity
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Algorithm 3: The Adaptive Greedy Algorithm of [24]

input :RB (X , {0, 1}, P (a)a∈{0,1}, c, x0), discount factor β.

Initialize k = 0 and P0 = ∅
while k ̸= K do

forall y ∈ X \ Pk do
Compute µ̄d,y using (21)

Pick xk+1 ∈ argminy∈X\P̄k
µ̄k,y

Set w(sk+1) = miny∈X\P̄k
µ̄k,y and P̄k+1 = P̄ ∪ {xk}

k = k + 1

O(log2((Cmax − Cmin)/δ)NPIK
4) if the dynamic program at each step is solved

exactly and has a complexity of O(log2((Cmax − Cmin)/δ)NVIK
3) if the dynamic

program at each step is solved approximately.

4.2. Discussion on PCL-indexability

As mentioned earlier, an algorithm very similar to Alg. 1 was proposed in [24]
for computing the Whittle index for RBs that satisfy a technical condition known
as PCL-indexability. The analysis in [24] is done under the assumption that the
system starts from a designated start state distribution π0. For any policy g, define
N(g) =

∑
x∈X N (g)(x)π0(x) and define D(g) =

∑
x∈X D(g)(x)π0(x). Let x1, . . . , xK be

a permutations of state space such that the corresponding Whittle indices are non-
decreasing: λ1 ≤ · · · ≤ λK . For any k ∈ {1, . . . ,K}, let P̄k denote the set {x1, . . . , xk}.

Now for any k ∈ {1, . . . ,K}, and all states y ∈ X \ P̄k, define h̄k = ḡ(P̄k), h̄k,y =

ḡ(P̄k∪{y}), and define

µ̄k,y =
D(h̄k,y) − D(h̄k)

N(h̄k) − N(h̄k,y)
. (21)

In [24] an algorithm, called the adaptive greedy algorithm, is presented to iteratively
identify the sets P̄k and compute the corresponding Whittle indices. This algorithm is
shown in Alg. 3.

A RB to be PCL-indexable [24] if it satisfies the following conditions:

1. For any S ⊆ X and y ∈ X\S, we have N(ḡ(S)) − N(ḡ(S∪{y})) > 0.

2. The sequence of index values produced by the adaptive greedy algorithm is
monotonically non-decreasing.

Finally, the following result is established:

Theorem 3. (Theorem 1 of [24].) A PCL-indexable RB is indexable and the adaptive
greed algorithm gives its Whittle indices.

The main differences between our result and [24] are as follows:

1. An implication of the first condition in the definition of PCL indexability is that
the denominator in (21) is never zero. In contrast, we do not impose such a
restriction and work with the non-empty subset of states for which the denominator
in (14) is non-zero.
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2. In Alg. 3, the sets {P̄k}Kk=1 are constructed by adding states one-by-one, even

when µ̄k,y has multiple argmins. In contrast, in Alg. 1, the sets {Pd}KD

d=1 are
constructed by adding all states which have the same Whittle index at once.

3. In Alg. 3, one has to check that the indices are generated in a nondecreasing
order (which is the second condition of PCL-indexability). In contrast, Alg. 1,
the indices are always generated in an increasing order and, therefore, condition 2
of PCL-indexability is always satisfied.

4. Finally, Theorem 3 only guarantees that Alg. 3 computes the Whittle index for
RBs which satisfy PCL-indexability. Moreover, the second condition in PCL-
indexability can only be checked after running Alg. 3. In contrast, Theorem 2
guarantees that Alg. 1 computes the Whittle index for all indexable RBs.

We conclude this discussion by revisiting an example from [24] which is an indexable
RB but not PCL-indexable. For this example, X = {1, 2, 3}, the transition matrices

are P (0) =
[
0.3629 0.5028 0.1343
0.0823 0.7534 0.1643
0.2460 0.0294 0.7246

]
and P (1) =

[
0.1719 0.1749 0.6532
0.0547 0.9317 0.0136
0.1547 0.6271 0.2182

]
, the per-step cost is

c(x, 0) = 0 for all x ∈ X and c(1, 1) = −0.44138, c(2, 1) = −0.8033, c(3, 1) = −0.14257 ,
and β = 0.9. and the corresponding Whittle indices are [0.18, 0.8, 0.57].

This model is not PCL-indexable since if g = [1, 1, 0] and h = [0, 1, 0], then
N (g) = [5.66, 8.24, 4.23] and N (h) = [6.65, 8.59, 4.88]. Therefore, for any initial state
distribution π0, N

(g) < N(h).
However, as the problem is indexable, we can still apply Alg. 1 to compute Whittle

indices without any limitations. The steps are as follows:

1. Initialize d = 0 and have P0 = ∅. Thus ḡ(P0) = [1, 1, 1] and we compute

N (ḡ(P0)) = [10, 10, 10] and D(ḡ(P0)) = [−6.43,−7.43,−6.51].

2. There are three possibilities for y ∈ X \ P0 = {1, 2, 3}:

• For y = 1, h0,1 = [0, 1, 1]. We compute N (h0,1) = [7.88, 9.29, 9.13] and
D(h0,1) = [−6.05,−7.30,−6.35]. Therefore, Λ0,1 = {x ∈ X : N (ḡ(P0)(x) ̸=
N (h0,1)(x)} = {1, 2, 3}. Now for each x ∈ Λ0,1, we compute µ0,1(1) =
µ0,1(2) = µ0,1(3) = 0.18. Therefore, µ∗

0,1 = 0.18.

• For y = 2, h0,2 = [1, 0, 1]. We compute N (h0,2) = [4.58, 2.93, 4.10] and

D(h0,2) = [−1.27,−0.7,−0.89]. Therefore, Λ0,2 = {x ∈ X : N (ḡ(P0)

(x) ̸=
N (h0,2)(x)} = {1, 2, 3}. Now for each x ∈ Λ0,2, we compute µ0,2(1) =
µ0,2(2) = µ0,2(3) = 0.95. Therefore, µ∗

0,2 = 0.95.

• For y = 3, h0,3 = [1, 1, 0]. We compute N (h0,3) = [5.66, 8.24, 4.23] and

D(h0,3) = [−3.64,−6.30,−2.79]. Therefore, Λ0,3 = {x ∈ X : N (ḡ(P0)

(x) ̸=
N (h0,3)(x)} = {1, 2, 3}. Now for each x ∈ Λ0,3, we compute µ0,3(1) =
µ0,3(2) = µ0,3(3) = 0.64. Therefore, µ∗

0,3 = 0.64.

Now λ1 = min{µ∗
0,1, µ

∗
0,2, µ

∗
0,3} = 0.18. Therefore, P1 = {1}, w(1) = 0.18,

ḡ(P1) = [0, 1, 1]. We have already computed N (ḡ(P1)) = [7.88, 9.29, 9.13] and

D(ḡ(P1)) = [−6.05,−7.30,−6.35].

3. There are two possibilities for y ∈ X \ P1 = {2, 3}:
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• For y = 2, h1,2 = [0, 0, 1]. We compute N (h1,2) = [1.48, 1.52, 2.57] and

D(h1,2) = [−0.21,−0.22,−0.37]. Therefore, Λ1,2 = {x ∈ X : N (ḡ(P1)

(x) ̸=
N (h1,2)(x)} = {1, 2, 3}. Now for each x ∈ Λ1,2, we compute µ1,2(1) =
µ1,2(2) = µ1,2(3) = 0.91. Therefore, µ∗

1,2 = 0.91.

• For y = 3, h1,3 = [0, 1, 0]. We compute N (h1,3) = [6.65, 8.59, 4.88] and

D(h1,3) = [−1.22,−0.66,−0.83]. Therefore, Λ1,3 = {x ∈ X : N (ḡ(P1)

(x) ̸=
N (h1,3)(x)} = {1, 2, 3}. Now for each x ∈ Λ1,3, we compute µ1,3(1) =
µ1,3(2) = µ1,3(3) = 0.57. Therefore, µ∗

1,3 = 0.57.

Now λ2 = min{µ∗
1,2, µ

∗
1,3} = 0.57. Therefore, P2 = {1, 3}, w(3) = 0.57, ḡ(P2) =

[0, 1, 0]. We have already computed N (ḡ(P2)) = [6.65, 8.59, 4.88] and D(ḡ(P2)) =
[−1.22,−0.66,−0.83].

4. There is only one possibility for y ∈ X \ P2 = {2}:

• For y = 3, h3,2 = [0, 0, 0], N (h3,2) = [0, 0, 0] andD(h3,2) = [−0.21,−0.22,−0.37].

Therefore, Λ3,2 = {x ∈ X : N (ḡ(P2)

(x) ̸= N (h3,2)(x)} = {1, 2, 3}. Now for
each x ∈ Λ3,2, we compute µ3,2(1) = µ3,2(2) = µ3,2(3) = 0.8. Therefore,
µ∗
3,2 = 0.8.

Now µ∗
3,2 = 0.57. Therefore, P3 = {1, 2, 3} and w(2) = 0.8.

Finally, the Whittle indices are [0.18, 0.8, 0.57].

5. Some special cases

In this section, we refine the results developed in this paper to some special cases.

5.1. Restless bandits with optimal threshold-based policy

Consider a RB (X , {0, 1}, {P (a)}a∈{0,1}, c, x0) where the state space X is a totally
ordered set, i.e., X = {1, . . . ,K}. Let X0 = {0, . . . ,K} and let X≥ℓ denotes the set of
states greater than or equal to state ℓ and X≤ℓ denotes the set of states less than or
equal to state ℓ. We suppose that the model satisfies the following assumption:

(P) There exists a non-decreasing family of thresholds {ℓλ}λ∈R, ℓλ ∈ X0, such that
the threshold policy g(ℓλ) is optimal for Problem 2 with activation cost λ.

Several models where (P) holds have been considered in the literature [3, 4, 6, 14, 16, 29].
A key implication of property (P) is the following:

Lemma 4. Suppose a RB defined on a totally ordered state space satisfies property (P).
Then, the restless bandit is indexable and the Whittle index w(ℓ) is non-decreasing
in ℓ ∈ X .

Proof. Note that property (P) implies that the passive set Πλ = {x ∈ X : gλ(x) =
0} = X≤ℓλ , which is increasing in λ. Hence the RB is indexable. Moreover, for any
state ℓ, the Whittle index w(ℓ) is the smallest value of λ such that ℓλ = ℓ. Therefore,
by Property (P), w(ℓ) is non-decreasing in ℓ. □
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Algorithm 4: Whittle index for RB with optimal threshold-based policy

input :RB (X , {0, 1}, P (a)a∈{0,1}, c, x0), discount factor β.

Initialize d = 0, ℓ = 0, h0 = 1K .

Compute Φ(h0) = (I − βP (h0))−1, [D(h0) Nh0 ] = (1− β)Φ(h0)[c(h0) h0]
while ℓ ≤ K do

forall y ∈ {ℓ+ 1, . . . ,K} do
Compute D(hd,y) and N (hd,y) using (19).
Compute Λd,y and µd,y(x) for all x ∈ Λd,y using (14).
Compute µ∗

d,y = minx∈Λd,y
µd,y(x).

if y = ℓ+ 1 then
Set λd+1 = µ∗

d,y and Γd+1 = {y}
Set w(y) = λd+1

else
if λd+1 = µ∗

d,y then

Update Γd+1 = Γd+1 ∪ {y}
Set w(y) = λd+1

else
Set ℓ = y
break

Initialize Φ(hd+1) = Φ(hd), D(hd+1) = D(hd) and N (hd+1) = N (hd).
forall z ∈ Γd+1 do

Compute Φ(hd+1,z), D(hd+1,z) and N (hd+1,z) by using (18) and (19).

Update Φ(hd+1) = Φ(hd+1,z), D(hd+1) = D(hd+1,z) and N (hd+1) = N (hd+1,z).

Set d = d+ 1.

As in Section 4, we assume that there are KD(≤ K) distinct Whittle indices given
by Λ∗ = {λ1, . . . , λKD

} where λ1 < λ2 < . . . λKD
. We also let λ0 = −∞ and for any

d ∈ {0, . . . ,KD}, let Pd = {x ∈ X : w(x) ≤ λd}. As stated in the proof of Lemma 4
property (P) implies that Pd = X≤ℓλd

. Therefore, Γd+1 = {ℓλd
+ 1, . . . , ℓλd+1

}. Thus,
Theorem 2 simplifies as follows:

Corollary 1. Suppose a RB defined on a totally ordered state space satisfies prop-
erty (P). Then, the following properties hold:

1. For any y ∈ Γd+1, the set Λd,y is non-empty.

2. For any x ∈ Λd,y, µd,y(x) ≥ λd+1 with equality if and only if y ∈ Γd+1.

Thus, based on Corollary 1, for models that satisfy property (P), we can simplify
Algorithm 2 as shown in Algorithm 4. Instead of computing µ∗

d,y for all y ∈ X \ Pd,
we can compute it sequentially and break the loop when µ∗

d,y ̸= λd+1. Note that this
simplification does not change the asymptotic complexity of the algorithm, which is
still O(K3).

Remark 1. Note that if the model satisfies additional assumptions such that it is
known upfront that no two states have the same Whittle index, then we don’t need the
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inner for loop (over y) in Algorithm 4, and can simply compute the Whittle index of
state ℓ as

w(ℓ) = min
D(ḡ

(X≤ℓ+1)
)(x)−D(g

(X≤ℓ))(x)

N (ḡ
(X≤ℓ))(x)−N (g

(X≤ℓ+1)
)(x)

,

where the minimum is over all x such that the denominator is no zero.

In the next section, we present a new model called stochastic monotone bandits,
which may be considered as a generalization of monotone bandits [4,6, 14], and show
that these models satisfy property (P).

5.2. Stochastic monotone bandits

We first start with the definition of submodular function. Given ordered sets X and
Y , a function f : X × Y → R is called submodular if for any x1, x2 ∈ X and y1, y2 ∈ Y
such that x2 ≥ x1 and y2 ≥ y1, we have f(x1, y2)− f(x1, y1) ≥ f(x2, y2)− f(x2, y1).

We say that the RB is stochastic monotone if it satisfies the following conditions.

(D1) For any a ∈ {0, 1}, P (a) is stochastically monotone, i.e., for any x, y ∈ X such
that x < y, we have

∑
w∈X≥z

Pxw(a) ≤
∑

w∈X≥z
Pyw(a) for any z ∈ X .

(D2) For any z ∈ X , Szx(a) :=
∑

w∈X≥z
Pxw(a) is submodular in (x, a).

(D3) For any a ∈ {0, 1}, c(x, a) is non-decreasing in x.

(D4) c(x, a) is submodular in (x, a).

For ease of notation, for any ℓ ∈ X0, we let g(ℓ) = ḡ(X≤ℓ) denote a policy with
threshold ℓ (where ḡ(S) is as defined in (13)).

Lemma 5. A stochastic monotone RB satisfies the following properties:

1. For any λ ∈ R, there exists a threshold ℓλ ∈ X ∗ such that the thershold policy g(ℓλ)

is optimal for Problem 2. If there are multiple such thresholds, we use ℓλ to denote
the largest threshold.

2. If, for any x ∈ X , N (g(ℓ))(x) is non-increasing in ℓ, then ℓλ is non-decreasing
with λ. Therefore, the model satisfies property (P) and is, therefore, indexable.

Proof. For the first part, we note that conditions (D1)–(D4) are the same as the
properties of [27, Theorem 4.7.4], which implies that there exists a threshold based

For the second part, we first show that for any ℓ ∈ X ∗, J
(g(ℓ))
λ (x) is submodular in

(ℓ, λ) for all x ∈ X . In particular, for any k < ℓ, we have

J
(g(ℓ))
λ (x)− J

(g(k))
λ (x) = D

(g(ℓ))
λ (x)−D

(g(k))
λ (x) + λ(N

(g(ℓ))
λ (x)−N

(g(k))
λ (x)).

Now (D5) implies that the difference J
(g(ℓ))
λ (x) − J

(g(k))
λ (x) is non-increasing in λ.

Therefore, J
(g(ℓ))
λ (x) is submodular in (ℓ, λ). Consequently, from [27, Theorem 2.8.2],

ℓλ = max{ℓ′ ∈ argminℓ∈X∗ J
(g(ℓ))
λ (x)} is non-decreasing in λ. □
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5.3. Restless bandits with controlled restarts

Consider restless bandits with controlled restarts (i.e., models where Pxy(1) does
not depend on x). By Proposition 2c, such models are indexable. In this section, we
explain how to simplify the computation of the Whittle index for such models. For ease
of notation, we use Pxy to denote Pxy(0) and Qy to denote Pxy(1).

Define D(g) =
∑

x∈X QxD
(g)(x) and N(g) =

∑
x∈X QxN

(g)(x). Now, following
the discussion of Sec. 4, we can show that the result of Theorem 2 continues to holds
when µd,y is replaced by

µ̂d,y =
D(hy) − D(ḡ(Pd))

N(ḡ(Pd)) − N(hy)
.

Therefore, we can replace µd,y(x) in Algorithm 1 by µ̂d,y. Our key result for this section
is D(g) and N(g) can be computed efficiently for models with controlled restarts.

For that matter, given any policy g, let τg denote the hitting time of the set
Π(g) = {x ∈ X : g(x) = 1}. Let

L(g) := E
[ τg∑
t=0

βtc(Xt, g(Xt))
∣∣∣ X0 ∼ Q

]
and M(g) := E

[ τg∑
t=0

βt
∣∣∣ X0 ∼ Q

]
denote the expected discounted cost and expected discounted time for hitting Π(g)

starting with an initial state distribution of Q. Then, using ideas from renewal theory,
we can show the following.

Theorem 4. For any policy g,

D(g) =
L(g)

M(g)
and N(g) =

1

βM(g)
− 1− β

β
.

Proof. The proof follows from standard ideas in renewal theory. By strong Markov
property, we have

D(g) = E
[
(1− β)

τg∑
t=0

βtc(Xt, g(Xt)) + βτg+1D(g)
∣∣∣ X0 ∼ Q

]
= (1− β)L(g) + E[βτg+1|X0 ∼ Q]D(g). (22)

Using M(g) definition, we have E[βτg+1|X0 ∼ Q] = 1− (1− β)M(g). Substituting this
in (22) and rearranging the terms we get D(g) = L(g)/M(g).

For N(g), by strong Markov property we have

N(g) = E
[
(1− β)βτg + βτg+1N(g)

∣∣∣ X0 ∼ Q
]

= E[βτg |X0 ∼ Q](1− β + βN(g)) =
1− (1− β)M(g)

β
(1− β + βN(g)).

Therefore, we get N(g) =
(
1− (1− β)M(g)

)
/βM(g). □

Given any policy g, we can efficiently compute L(g) and M(g) using standard formulas
for truncated Markov chains. For any vector v, let v(g) denote the vector with
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Algorithm 5: Myopic Heuristic

input : Set N of arms; arms m to be activated
foreach time t do

let ℓ = 0, M = ∅, and Z = N .
foreach ℓ ∈ {0, . . . ,m} do

i∗ℓ ∈ argmini∈Z
∑

j∈Z\{i}{cj(X
j
t , 0) + ci(Xi

t , 1)} // Pick any arg min

let M = M∪ {i∗ℓ}, Z = Z \ {i∗ℓ}
Activate arms in Z

components indexed by the set {x ∈ X : g(x) = 0} and ṽ(g) denote the remaining
components. For example, if X = {1, 2, 3, 4}, g = (1, 0, 1, 0), and v = [1, 2, 3, 4], then
v(g) = (2, 4) and ṽ(g) = (1, 3). Similarly, for any square matrix Z, let Z [g] denote the
square sub-matrix corresponding to elements {x ∈ X : g(x) = 0}, and Z̃ [g] denote
the sub-matrix with rows {x ∈ X : g(x) = 0} and columns {x ∈ X : g(x) = 1}. For

example, if g = [1, 0, 1, 0] and if Z =

[
1 2 3 4
5 6 8 8
9 10 11 12
13 14 15 16

]
, then Z [g] = [ 6 8

14 16 ] and Z [g] = [ 5 8
13 15 ].

Then, from standard formulas for truncated Markov chains, we have the following.

Proposition 3. For any policy g, let c0 and c1 denote column vectors corresponding
to c(·, 0) and c(·, 1). Then,

L(g) = Q(g)(I − βP [g])−1(c
(g)
0 + βP̃ [g]c̃

(g)
1 ) + Q̃(g)c̃

(g)
1 ,

M(g) = Q(g)(I − βP [g])−1(1(g) + βP̃ [g]1̃(g)) + Q̃(g)1̃(g).

This gives us an efficient method to compute L(g) and M(g), which can in turn be used
to compute D(g) and N(g) and used in a modified version of Algorithm 1 as explained.

6. Numerical Experiments

In this section, we evaluate how well the Whittle index policy (wip) performs
compared to the optimal policy (opt) as well as to a baseline policy known as the
myopic policy (myp) (shown in Algorithm 5). The code is available at https://

codeocean.com/capsule/8680851/tree/v1.

6.1. Experimental Setup

In our experiments, we consider restart bandits with P (1) = [1,0, . . . ,0]. There are
two other components of the model: The transition matrix P (0) and the cost function c.
We choose these components as follows.

6.1.1. The choice of transition matrices. We have three setups for choosing P (0). The
first setup is a family of 4 types of structured stochastic monotone matrices, which
we denote by Pℓ(p), ℓ ∈ {1, . . . , 4}, where p ∈ [0, 1] is a parameter of the model. The
second setup is a randomly generated stochastic monotone matrices which we denote
by R(d), where d ∈ [0, 1] is a parameter of the model. In the third setup, we generate
random stochastic matrices using Levy distribution. The details of these models are
presented in the supplementary material.

https://codeocean.com/capsule/8680851/tree/v1
https://codeocean.com/capsule/8680851/tree/v1
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Figure 2: Relative performance αopt of wip versus opt for Experiment 2.
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Figure 3: Relative improvement εmyp of wip vs. myp for Experiment 3.

6.1.2. The choice of the cost function. For all our experiments we choose c(x, 0) = (x−1)2

and c(x, 1) = 0.5(|X | − 1)2.

6.2. Experimental details and result

We conduct different experiments to compare the performance of Whittle index with
the optimal policy and the myopic policy for different setups (described in Section 6.1)
and for different sizes |X | of the state space, the number n of the arms, and the number
m of active arms. For all experiments we choose the discount factor β = 0.95.

We evaluate the performance of a policy via Monte Carlo simulations over S
trajectories, where each trajectory is of length T . In all our experiments, we choose
S = 2500 and T = 250.

Experiment 1) Comparison of Whittle index with the optimal policy for structured
models. The optimal policy is computed by solving the MDP for Problem 1, which is
feasible only for small values of |X | and n. We choose |X | = 5 and n = 5 and compare
the two policies for model Pℓ(·), ℓ ∈ {1, . . . , 4} and m ∈ {1, 2}.

For a given value of n and ℓ, we pick n equispaced points (p1, . . . , pn) in the
interval [0.35, 1] and choose Pℓ(pi) as the transition matrix of arm i. We observed that
αopt = J(opt)/J(wip), the relative (percentage) performance improvement of wip
compared to opt, was in the range of 99.95%–100% for all parameters.

Experiment 2) Comparison of Whittle index with the optimal policy for randomly
sampled models. As before, we pick |X | = 5 and n = 5 so that it is feasible to calculate
the optimal policy. For each arm, we sample the transition matrix from R(5/|X |)
and repeat the experiment 250 times. The histogram of αopt over experiments for
m ∈ {1, 2} is shown in Fig 2, which show that wip performs close to opt in all cases.

Experiment 3) Comparison of Whittle index with the myopic policy for structured
models. We generate the structured models as in Experiment 1 but for |X | = 25,
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Figure 4: Relative improvement εmyp of
wip vs. myp for Experiment 4.
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Figure 5: Relative improvement εmyp of
wip vs. myp for Experiment 5.

n ∈ {25, 50, 75}, and m ∈ {1, 2, 5}. In this case, let εmyp = (J(myp)− J(wip))/J(myp)
denote the relative improvement of wip compared to myp. The results of εmyp for
different choice of the parameters are shown in Fig 3.

In Fig 3, we observe that wip performs considerably better than myp. In addition
to that, performance of wip is better with respect to myp when ℓ = 4 which is more
complicated than models where ℓ ∈ {1, 2, 3}. However, increasing m doesn’t necessarily
contribute to better εmyp as overlap between the choices of the two policies may increase.
Note that as P4(·) is very different from the rest of the models, the trend of bars in
Fig 3d with respect to n varies differently from the rest of the models.

Experiment 4) Comparison of Whittle index with the myopic policy for randomly
sampled models We generate 250 random models as described in Experiment 2 but for
|X | = 25 and larger values of n. For each case, εmyp is computed. The histogram of
εmyp for different choices of the parameters are shown in Fig 4.

The result shows that on average, wip performs considerably better than myp and
this improvement is guaranteed as the concentration of data for the sampled models is
mostly on positive values of εmyp.

Experiment 5) Comparison of Whittle index with the myopic policy for restart models.
We generate 250 random stochastic matrices for P (0). Each row of the matrix is
generate according to Section 1.3 of the supplementary material. We set |X | = 25 and
n ∈ {25, 50, 75} and m ∈ {1, 2}. For each case, εmyp is computed and the histogram of
εmyp for different choices of the parameters is shown in Fig 5.
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7. Conclusion

We present two general sufficient conditions for restless bandit processes to be
indexable. The first condition depends only on the transition matrix P (1) while the
second condition depends on both P (0) and P (1). These sufficient conditions are based
on alternative characterizations of the passive set, which might be useful in general as
well. We also present refinements of these sufficient conditions that are simpler to verify.
Two of these simpler conditions are worth highlighting: models where the active action
resets the state according to a known distribution and models where the discount factor
is less than 0.5.

We then present a generalization of a previous proposed adaptive greedy algorithm,
which was developed to compute the Whittle index for a sub-class of restless bandits
known as PCL indexable bandits. We show that the generalized adaptive greedy
algorithm computes the Whittle index for all indexable bandits. We provide a
computationally efficient implementation of our algorithm, which computes the Whittle
indices of a restless bandit with K states in O(K3) computations.

Finally, we show how to refine the results for two classes for restless bandits: stochastic
monotone bandits and restless bandits with controlled restarts. We also present a
detailed numerical study which shows that Whittle index policy performs close to the
optimal policy and is considerably better than a myopic policy.

Appendix A. Proof of Proposition 1

We first present a preliminary result.

Lemma 6. For τ = 0, the policy h0 satisfies J
(h0)
λ (x) = Hλ(x, 1) = (1−β)c(x, 1)+Wλ.

Proof. Consider the stopping time τ = 0. The policy h0, takes the active action at
time 0 and follows the optimal policy afterwards. Thus, for any x ∈ X , J (h0)(x) =
(1−β)(c(x, 1)+λ)+β

∑
y∈X Pxy(1)Vλ(y) = Hλ(x, 1). By (4) and (6) we haveHλ(x, 1) =

(1− β)c(x, 1) +Wλ(x). □

We now proceed with the proof of Proposition 1. By definition, Π
(a)
λ = Πλ. We

establish the equality of other characterizations.

(i) Π
(a)
λ = Π

(b)
λ . We have x ∈ Πλ

(a)⇐⇒ gλ(x) = 0
(b)⇐⇒ Hλ(x, 0) < Hλ(x, 1) where

(a) follows from (5) and (b) follows from the dynamic program (3).

(ii) Π
(b)
λ ⊆ Π

(c)
λ . Let σ denote the hitting time of X \ Πλ. If we start in state x ∈

Π
(b)
λ = Πλ, then the policy hσ,λ is same as the optimal policy. Hence, J

(hσ,λ)
λ (x) =

Hλ(x, 0). Thus, for any x ∈ Π
(b)
λ = Πλ, J

(hσ,λ)
λ (x) = Hλ(x, 0)

(a)
< Hλ(x, 1)

(b)
=

J
(h0)
λ (x) where (a) follows from fact that x ∈ Π

(b)
λ and (b) from Lemma 6.

(iii) Π
(c)
λ ⊆ Π

(b)
λ . Let x ∈ Π

(c)
λ and σ ∈ Σ denote a stopping time such that J

(hσ,λ)
λ (x) <

J
(h0)
λ (x). Now, the optimal policy performs at least as well as policy hσ,λ.

Therefore, Vλ(x) ≤ J
(hσ,λ)
λ (x). Combining this result with Lemma 6 we have

Vλ(x) < Hλ(x, 1). Thus, we must have Vλ(x) = Hλ(x, 0) which results in

Hλ(x, 0) < Hλ(x, 1) which implies x ∈ Π
(b)
λ .
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(iv) Π
(c)
λ = Π

(d)
λ . According to the definitions of L(x, τ) and Wλ(x) we have

J
(hτ,λ)
λ (x) = (1− β)L(x, τ) + E[βτWλ(Xτ )|X0 = x]. (23)

Thus, J
(hσ,λ)
λ (x) < J

(h0)
λ (x) if and only if

(1− β)L(x, σ) + E[βσWλ(Xσ)|X0 = x] < (1− β)c(x, 1) +Wλ(x) (24)

where we have used (23) for J
(hσ,λ)
λ (x) and Lemma 6 for J

(h0)
λ (x). Rearranging

the terms of (24) we get the expression in Π
(d)
λ . Hence, Π

(c)
λ = Π

(d)
λ .

Appendix B. Proof of Theorem 1

B.1. Proof of Theorem 1.a

We first present a preliminary result. Let ∆λ := λ′′ − λ′ for any

Lemma 7. Under (11), for any λ′′ > λ′ and σ ∈ Σ, σ ̸= 0, we have that for any
x ∈ X ,

Wλ′(x)− E[βσWλ′(Xσ)|X0 = x] ≤ Wλ′′(x)− E[βσWλ′′(Xσ)|X0 = x],

Proof. By (6), we have for any x ∈ X ,

(Wλ′′(x)− E[βσWλ′′(Xσ)|X0 = x])− (Wλ′(x)− E[βσWλ′(Xσ)|X0 = x])

= (1−β)∆λ

(
1−M(x, σ)

)
+βE

[∑
y∈X

(
Pxy(1)−βσPXσy(1)

)(
Vλ′′(y)−Vλ′(y)

) ∣∣∣∣ X0 = x

]
(25)

Now since σ ≥ 1, M(x, σ) ≤ β and,

(1− β)∆λ(1−M(x, σ)) ≥ ∆λ(1− β)2 (26)

Now consider,

βE
[∑
y∈X

(
Pxy(1)− βσPXσy(1)

)(
Vλ′′(y)− Vλ′(y)

) ∣∣∣∣ X0 = x

]
(a)

≥ βE
[∑
y∈X

(
Pxy(1)− βPXσy(1)

)(
Vλ′′(y)− Vλ′(y)

) ∣∣∣∣ X0 = x

]
(b)

≥ β∆λE
[∑
y∈X

{[
Pxy(1)− βPXσy(1)

]+
N (gλ′′ )(y)

+
[
Pxy(1)− βPXσy(1)

]−
N (gλ′ )(y)

}∣∣∣∣X0 = x

]
(c)

≥ −∆λ(1− β)2, (27)

where (a) holds due to σ ≥ 1 and (b) holds by Lemma 2 and (c) follows from (11).
Substituting (26) and (27) in (25), we get the result of the Lemma. □
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We now proceed with the proof of Theorem 1a. Consider λ′ < λ′′. Suppose
x ∈ Πλ′ . By Proposition 1.d, there exists a σ ̸= 0 such that (1−β) (L(x, σ)− c(x, 1)) <
Wλ′(x) − E[βσWλ′(Xσ)|X0 = x]. Combining this result with the result of Lemma 7,
we infer (1− β) (L(x, σ)− c(x, 1)) < Wλ′′(x)− E[βσWλ′′(Xσ)|X0 = x]. Thus, x ∈ Πλ′′ .
Hence, Πλ′ ⊆ Πλ′′ and the RB is indexable.

B.2. Proof of Theorem 1.b

Consider λ′ < λ′′. A RB is indexable if Πλ′ ⊆ Πλ′′ or equivalently, for any x such
that Hλ′(x, 0) < Hλ′(x, 1) then Hλ′′(x, 0) < Hλ′′(x, 1). A sufficient condition for that
is to show that Hλ′(x, 1) − Hλ′(x, 0) ≤ Hλ′′(x, 1) − Hλ′′(x, 0), or equivalently, show
that Hλ′′(x, 0)−Hλ′(x, 0) ≤ Hλ′′(x, 1)−Hλ′(x, 1). We prove this inequality as follows.

Let ∆λ = λ′′ − λ′. By (4), we have for any x ∈ X ,

(Hλ′′(x, 1)−Hλ′(x, 1))− (Hλ′′(x, 0)−Hλ′(x, 0))

= ∆λ(1− β) + β
∑
y∈X

(Pxy(1)− Pxy(0))(Vλ′′(y)− Vλ′(y))

(a)

≥ ∆λ

(
1− β + β

∑
y∈X

[Pxy(1)− Pxy(0)]
+
N (gλ′′ )(y) + [Pxy(1)− Pxy(0)]

−
N (gλ′ )(y)

) (b)

≥ 0

where (a) follows from Lemma 2 and (b) holds by (12). Therefore the RB is indexable.

Appendix C. Proof of Proposition 2

We prove the result of each part separately.

a. This follows from observing that∑
y∈X

{[
βPzy(1)− Pxy(1)

]+
N (g)(y)−

[
Pxy(1)− βPzy(1)

]+
N (h)(y)

}
(a)

≤
∑
y∈X

[
βPzy(1)− Pxy(1)

]+
N (g)(y)

(b)

≤
∑
y∈X

[
βPzy(1)− Pxy(1)

]+ ≤ max
x,z∈X

∑
y∈X

[
βPzy(1)− Pxy(1)

]+
where we are ignoring negative terms in (a) and using N (g)(x) ≤ 1 in (b).

b. For any x, y, z ∈ X , Pxy(1)− βPzy(1) = (1− β)Pxy(1). Thus,∑
y∈X

{[
βPzy(1)− Pxy(1)

]+
N (g)(y)−

[
Pxy(1)− βPzy(1)

]+
N (h)(y)

}
= −

∑
y∈X

(1− β)Pxy(1)N
(h)(y) ≤ 0 <

(1− β)2

β
.

c. This follows from observing that∑
y∈X

{[
Pxy(0)− Pxy(1)

]+
N (g)(y)−

[
Pxy(1)− Pxy(0)

]+
N (h)(y)

}
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(a)

≤
∑
y∈X

[
Pxy(0)− Pxy(1)

]+
N (g)(y)

(b)

≤
∑
y∈X

[
Pxy(0)− Pxy(1)

]+ ≤ max
x∈X

∑
y∈X

[
Pxy(0)− Pxy(1)

]+
where we are ignoring negative terms in (a) and using N (g)(x) ≤ 1 in (b).

d. β ≤ 0.5 implies that

1− β

β
≥ 1 ≥ max

x∈X

[
Pxy(0)− Pxy(1)

]+
which is the same as sufficient condition (c) established above.

Appendix D. Proof of Lemma 3

The proof of each part is as follows:

1. Since the model is indexable and y ∈ Γd+1, w(d) = λd+1. Therefore, the optimal
policy is indifferent between choosing the active and the passive action at λ = λd+1.

2. By definition, for any λ ∈ (λd, λd+1], hd is an optimal policy. Therefore, we have

J
(hd,y)
λ (x) ≥ J

(hd)
λ (x) with y ∈ X\Pd, for all x ∈ X with equality if y ∈ Γd+1 and

λ = λd+1.
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