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A B S T R A C T

We consider the restless bandits with general finite state space under partial observability with
two observational models: first, the state of each bandit is not observable at all, and second, the
state of each bandit is observable when it is selected. Under the assumption that the models
satisfy a restart property, we prove that both models are indexable. For the first model, we
derive a closed-form expression for the Whittle index. For the second model, we propose an
efficient algorithm to compute the Whittle index by exploiting the qualitative properties of the
optimal policy. We present detailed numerical experiments for multiple instances of machine
maintenance problem. The result indicates that the Whittle index policy outperforms myopic
policy and can be close to optimal in different setups.

1. Introduction

Resource allocation and scheduling problems arise in various applications including telecommunication networks, sensor
management, patient prioritization, and machine maintenance. Restless bandits is a widely-used solution framework for such
models [1–15].

Identifying the optimal policy in restless bandits suffers from the curse of dimensionality because the state space is exponential in
the number of alternatives [16]. To circumvent the curse of dimensionality, Whittle proposed an index heuristic which has a linear
complexity in the number of alternatives [17]. The resulting policy, called the Whittle index policy, operates as follows: assign an
index (called the Whittle index) to each state of each arm (or alternative) and then, at each time, play the arms in states with the
highest indices.

The Whittle index policy is attractive for two reasons. First, it is a scalable heuristic because its complexity is linear in the number
of arms. Second, although it is a heuristic, there are certain settings where it is optimal [18–21] and, in general, it performs close
to optimal in many instances [10,22–26].

Nonetheless, there are two challenges in using the Whittle index policy. First, the Whittle index heuristic is applicable only when
a technical condition known as indexability is satisfied. There is no general test for indexability, and the existing sufficient conditions
are only applicable for specific models [10,23–25,27–30]. Second, while there are closed-form expressions to compute the Whittle
index in some instances [3–6,10,24,26,29,31], in general, the Whittle index policy has to be computed numerically. For a subclass
of restless bandits which satisfy an additional technical condition known as PCL (partial conservation law), the Whittle index can be
computed using an algorithm called the adaptive greedy algorithm [22,32]. Recently, [31,33] presented generalizations of adaptive
greedy algorithm which are applicable to all indexable restless bandits.
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We are interested in resource allocation and scheduling problems where the state of each arm is not fully-observed. Such partially
bservable restless bandit models are conceptually and computationally more challenging. The sufficient conditions for indexability
hat are derived for fully-observed bandits [10,17,19,24,29,31,34] are not directly applicable to the partially observable setting.
he existing literature on partially observable restless bandits often restricts attention to models where each arm has two states [1–
,9,11,13,35–37]. In some cases, it is also assumed that the two states are positively correlated [3–5]; in others, it is assumed that
he state dynamics are independent of the chosen action [6,38,39]. There are very few results for general finite state space models
nder partial observability [6,7,12,38,39], and, for such models, indexability is often verified numerically. In addition, there are
ery few algorithms to compute the Whittle index for such models.

Recently, alternative index-based heuristics for partially observable restless bandits [40] has been proposed, but we restrict to
hittle index policy in this paper.
The main contributions of our paper are as follows:

• We investigate partially observable restless bandits with general finite state spaces and consider two observation models, which
we call model A and model B. We show that both models are indexable.

• For model A, we provide a closed-form expression to compute the Whittle index. For model B, we provide a refinement of the
adaptive greedy algorithm of [31] to efficiently compute the Whittle index.

• We present a detailed numerical study which illustrates that the Whittle index policy performs close to optimal for small scale
systems and outperforms a commonly used heuristic (the myopic policy) for large-scale systems.

The organization of the paper is as follows. In Section 2, we formulate the restless bandit problem under partial observations
or two different models. Then, we define a belief state by which the partially-observable problem can be converted into a fully-
bservable one. In Section 3, we present a short overview of restless bandits. In Section 4, we show the restless bandit problem
s indexable for both models and present a general formula to compute the index. In Section 5, we present a countable state
epresentation of the belief state and use it to develop methods to compute the Whittle index. In Section 6, we present the proofs
f the results. In Section 7, we present a detailed numerical study which compares the performance of Whittle index policy with
wo baseline policies. Finally, we conclude in Section 8.

.1. Notations and definitions

We use uppercase letters to denote random variables; the corresponding lowercase letter to denote their realization and
orresponding calligraphic letters to denote the set of realizations. Superscripts index arms and subscripts index time, e.g., 𝑋𝑖

𝑡 denotes
he state of arm 𝑖 at time 𝑡. The subscript 0∶𝑡 denote the history of the variable from time 0 to 𝑡, e.g., 𝑋𝑖

0∶𝑡 denotes (𝑋0,… , 𝑋𝑡). Bold
letters denote the vector of variable for all arms, e.g., 𝑿𝑡 denotes (𝑋1

𝑡 ,… , 𝑋𝑛
𝑡 ). Given a collection of real numbers 𝑝1,… , 𝑝𝑛, we use

∏𝑛
𝑖=1 𝑝

𝑖 to denote their product 𝑝1 ⋅ 𝑝2 ⋅⋯ ⋅ 𝑝𝑛. Given a collection of sets 1,… ,𝑛, we use ∏𝑛
𝑖=1 

𝑖 to denote their Cartesian product
1 × 2 ×⋯ × 𝑛. For a finite set  , () denote the set of probability mass functions (PMFs) on  .

We use I as the indicator function, E as the expectation operator, P as the probability function, R as the set of real numbers,
as the set of integers and Z≥𝑚 as the set of integers that are not lower than 𝑚.
Given ordered sets  and  , a function 𝑓 ∶  ×  → R is called submodular if for any 𝑥1, 𝑥2 ∈  and 𝑦1, 𝑦2 ∈  such that

𝑥2 ≥ 𝑥1 and 𝑦2 ≥ 𝑦1, we have 𝑓 (𝑥1, 𝑦2)−𝑓 (𝑥1, 𝑦1) ≥ 𝑓 (𝑥2, 𝑦2)−𝑓 (𝑥2, 𝑦1). Furthermore, the transition probability matrix 𝑃 is stochastic
monotone if for any 𝑥, 𝑦 ∈  such that 𝑥 < 𝑦, we have ∑

𝑤∈≥𝑧
𝑃𝑥𝑤 ≤

∑

𝑤∈≥𝑧
𝑃𝑦𝑤 for any 𝑧 ∈  . For any function 𝑓 ∶ → R, span(𝑓 )

denotes the span semi-norm of 𝑓 , i.e., span(𝑓 ) = sup𝑧∈ 𝑓 (𝑧) − inf𝑧∈ 𝑓 (𝑧).

2. Model and problem formulation

2.1. Restless bandit process with restart

A discrete-time restless bandit process (or arm) is a controlled Markov process ( , {0, 1}, {𝑃 (𝑎)}𝑎∈{0,1}, 𝑐, 𝜋0,) where  denotes
the finite set of states; {0, 1} denotes the action space where the action 0 is called the passive action and the action 1 is the active
action; 𝑃 (𝑎), 𝑎 ∈ {0, 1}, denotes the transition matrix when action 𝑎 is chosen; 𝑐 ∶  × {0, 1} → R≥0 denotes the cost function; 𝜋0
denotes the initial state distribution;  denotes the finite set of observations.

Assumption 1 (Restart Property). All rows of the transition matrix 𝑃 (1) are identical.

For models which satisfy Assumption 1, we denote 𝑃 (0) by 𝑃 and denote each (identical) row of 𝑃 (1) by 𝑄. The term restart
property is used following the terminology of [26], where 𝑄 was a PMF on the state space (i.e., on taking active action, the state
resets according to PMF 𝑄). Note [26] considered fully observed models, while we are considering partially observable setups.
Partially observable restless bandits with restart property have been considered in [11,35–37] but these papers restricted attention
2

to models with binary state space, while we are considering general finite state spaces.
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An operator has to select 𝑚 < 𝑛 arms at each time but does not observe the state of the arms. We consider two observation

odels.

• Model A: In model A, the operator does not observe anything. We denote this by 𝑌𝑡 = E, where E denotes a blank symbol.
• Model B: In model B, the operator observes the state of the arm after it has been reset, i.e.,

𝑌𝑡+1 =

{

E if 𝐴𝑡 = 0
𝑋𝑡+1 if 𝐴𝑡 = 1,

(1)

For model A,  = {E} and for model B,  =  ∪ {E}.

2.2. Partially-observable restless multi-armed bandit problem

A partially-observable restless multi-armed bandit (PO-RMAB) problem is a collection of 𝑛 independent restless bandits ( 𝑖, {0, 1},
{𝑃 𝑖(𝑎)}𝑎∈{0,1}, 𝑐𝑖, 𝜋𝑖

0,
𝑖), 𝑖 ∈  ∶= {1,… , 𝑛}.

Let  ∶=
∏

𝑖∈  𝑖, (𝑚) ∶=
{

(𝑎1,… , 𝑎𝑛) ∈ {0, 1}𝑛 ∶
∑

𝑖∈ 𝑎𝑖 = 𝑚
}

, and  ∶=
∏

𝑖∈  𝑖 denote the combined state, action, and

observation spaces, respectively. Also, let 𝑿𝑡 = (𝑋1
𝑡 ,…𝑋𝑛

𝑡 ) ∈  , 𝑨𝑡 = (𝐴1
𝑡 ,… , 𝐴𝑛

𝑡 ) ∈ (𝑚), and 𝒀 𝑡 = (𝑌 1
𝑡 ,… 𝑌 𝑛

𝑡 ) ∈  denote the
combined states, actions taken, and observations made by the operator at time 𝑡 ≥ 0. Due to the independent evolution of each arm,
for each realization 𝒙0∶𝑡 of 𝑿0∶𝑡 and 𝒂0∶𝑡 of 𝑨0∶𝑡, we have

P(𝑿𝑡+1 = 𝒙𝑡+1|𝑿0∶𝑡 = 𝒙0∶𝑡,𝑨0∶𝑡 = 𝒂0∶𝑡) =
∏

𝑖∈
P(𝑋𝑖

𝑡+1 = 𝑥𝑖𝑡+1|𝑋
𝑖
𝑡 = 𝑥𝑖𝑡, 𝐴

𝑖
𝑡 = 𝑎𝑖𝑡)

=
∏

𝑖∈
𝑃 𝑖
𝑥𝑖𝑡 ,𝑥

𝑖
𝑡+1

(𝑎𝑖𝑡).

Let 𝝅0 =
∏

𝑖∈ 𝜋𝑖
0 denote the initial state distribution of all arms.

When the system is in state 𝒙𝑡 and action 𝒂𝑡 is taken, the system incurs a cost 𝒄(𝒙𝑡,𝒂𝑡) ∶=
∑

𝑖∈ 𝑐𝑖(𝑥𝑖𝑡, 𝑎
𝑖
𝑡). The action at time 𝑡 is

chosen according to

𝑨𝑡 = 𝒈𝑡(𝒀 0∶𝑡−1,𝑨0∶𝑡−1), (2)

where 𝒈𝑡 is a history-dependent policy at time 𝑡. Let 𝒈 = (𝑔1, 𝑔2,…) denote the policy for infinite time horizon and let  denote the
family of all such policies. Then, the performance of policy 𝒈 is given by

𝐽 (𝒈) ∶= (1 − 𝛽)E
[ ∞
∑

𝑡=0
𝛽𝑡

∑

𝑖∈
𝑐𝑖(𝑋𝑖

𝑡 , 𝐴
𝑖
𝑡)
|

|

|

𝑋𝑖
0 ∼ 𝜋𝑖

0

]

, (3)

where 𝛽 ∈ (0, 1) denotes the discount factor.
Formally, the optimization problem of interest is as follows:

Problem 1. Given a discount factor 𝛽 ∈ (0, 1), the total number 𝑛 of arms, the number 𝑚 to be selected, the system model
{( 𝑖, {0, 1}, 𝑃 𝑖(𝑎), 𝑐𝑖, 𝑖)}𝑖∈ of each arm, and the observation model at the operator, choose a history-dependent policy 𝒈 ∈  that
minimizes 𝐽 (𝒈) given by (3).

Some remarks
1. Problem 1 is a POMDP and the standard methodology to solve POMDPs is to convert them to a fully observable Markov

decision process (MDP) by viewing the ‘‘belief state’’ as the information state of the system [41]. We present such a belief
state representation in Section 2.4 and point out its limitations in the context of restless bandits.

2. In Problem 1, the objective 𝐽 (𝑔) depends on the initial state distribution (𝜋𝑖
0)𝑖∈ . This can give the impression that the optimal

policy may depend on the initial distribution. It is well known in the MDP literature that there exist policies that are optimal
for all initial distributions [42]. However, our results rely on translating the belief state representation of the POMDP into a
countable state MDP formulation and such a transformation is valid only when the initial state distribution is of a specific
form. See Section 5 for details. Our results do not depend on the specific choice of the initial distribution, as long as it satisfies
Assumption 2 specified in Section 5.

3. In Problem 1, we consider the normalized expected discounted cost as an objective, where the discounted cost is multiplied
by (1−𝛽). In the MDP literature, one typically considers unnormalized objectives. However, normalized objective is typically
used constrained MDPs [43] and has also been used in some of the previous literature on restless bandits [31]. Note that
multiplying the objective by a constant does not change the optimal policy. The reason that we use a normalized expected
discounted cost is that it simplifies the description of the adaptive greedy algorithms to compute the Whittle index presented
3

in Section 5.
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2.3. Some examples

In this section, we present some examples corresponding to the model presented above.

xample 1. Consider a sensor network where there are 𝑛 sensors, each observing an independent Markov processes. We assume
that the state {𝑆𝑖

𝑡}𝑡≥1 of each Markov process is integer valued and evolves in an auto-regressive manner: 𝑆 𝑖
𝑡+1 = 𝑆𝑖

𝑡 + 𝑊 𝑖
𝑡 , where

𝑊 𝑖
𝑡 }𝑡≥1 are i.i.d. processes which are also independent across the sensors. An estimator can observe only 𝑚, where 𝑚 < 𝑛, sensors

t each time. If a sensor is observed, the state of the Markov process at that sensor is revealed to the estimator. If a sensor is not
bserved, the estimator gets no new information about its state and has to estimate the state based on previous observations. The
bjective is to determine a sensor scheduling policy to decide which sensors to observe at each time.

In this case, it can be shown that when the noise processes {𝑊 𝑖
𝑡 }𝑡≥1 have symmetric and unimodal distributions, the optimal

stimation strategy is a Kalman-filter like strategy, i.e., the optimal estimate �̂�𝑖
𝑡 is 𝑆 𝑖

𝑡 when the Markov process 𝑖 is transmitted, and
s equal to the previous estimate �̂�𝑖

𝑡−1 when the Markov process 𝑖 is not transmitted [44]. Thus, the error process 𝐸𝑖
𝑡 ∶= 𝑆𝑖

𝑡 − �̂�𝑖
𝑡 has

restart property [45]. An instance of such a sensor network problem was considered in [46].

xample 2. Consider a maintenance company monitoring 𝑛 machines which are deteriorating independently over time. Each
achine has multiple deterioration states sorted from pristine to ruined levels. However, the state of the machine is not observed.
here is a cost associated with running the machine and the cost is non-decreasing function of the state. If a machine is left un-
onitored, then the state of the machine deteriorates and after a while, it is ruined. However, the state of the machine is not

bserved.
Furthermore, it is assumed the company cannot observe the state of the machines unless it sends a service-person to visit the

achine. Replacing the machine is relatively inexpensive, and when service-persons visit a machine, they simply replace it with a
ew one. Due to manufacturing mistakes, all the machines may not be in pristine state when installed. If the service-person can
bserve the state of the machine when installing a new one, the observation model is same as model B. Otherwise, it is model A.
here are 𝑚, where 𝑚 < 𝑛, service-persons. The objective is to determine a scheduling policy to decide which machines should be
erviced at each time. An instance of such machine maintenance problem in the context of maintaining demand response devices
as considered in [9].

xample 3. Consider the problem of resource constrained health intervention delivery, where a community health center is
onitoring 𝑛 patients to check if they are adhering to the prescribed medication [37]. Each patient has a binary state of ‘‘Adhering’’

r ‘‘Not Adhering’’, which is hidden. There are 𝑚, where 𝑚 < 𝑛, health workers, and if an health worker visits a patient, the state of
he patient is observed. Moreover, it is assumed that after the visit by a health worker, the patient goes into the ‘‘Adhering’’ state.
he objective is to determine a policy to schedule the health workers to maximize the number of patients in the ‘‘Adhering’’ state.

.4. Belief state

Using standard results from Markov decision theory, the partially observable restless bandit problem can be converted to a fully
bservable restless bandit problem with belief (or posterior distribution) as states. We present the details in this section. Let define
he operator’s belief 𝛱 𝑖

𝑡 ∈ ( 𝑖) on the state of arm 𝑖 at time 𝑡 as follows: for any, 𝑥𝑖𝑡 ∈  𝑖, let 𝛱 𝑖
𝑡 (𝑥

𝑖
𝑡) ∶= P(𝑋

𝑖
𝑡 = 𝑥𝑖𝑡 ∣ 𝑌

𝑖
0∶𝑡−1, 𝐴

𝑖
0∶𝑡−1).

ote that 𝛱 𝑖
𝑡 is a distribution-valued random variable. Also, define 𝜫 𝑡 ∶= (𝛱1

𝑡 ,… ,𝛱𝑛
𝑡 ).

Then, for arm 𝑖, the evolution of the belief state is as follows: for model A, the belief update rule is

𝛱 𝑖
𝑡+1 =

{

𝛱 𝑖
𝑡𝑃 , if 𝐴𝑖

𝑡 = 0,
𝑄, if 𝐴𝑖

𝑡 = 1,
(4)

and for model B, the belief update rule is

𝛱 𝑖
𝑡+1 =

⎧

⎪

⎨

⎪

⎩

𝛱 𝑖
𝑡𝑃 , if 𝐴𝑖

𝑡 = 0,
𝛿𝑖
𝑋𝑖
𝑡+1

where 𝑋𝑖
𝑡+1 ∼ 𝑄, if 𝐴𝑖

𝑡 = 1 (5)

here 𝛿𝑥 is the Dirac delta distribution over the discrete state space  with the value of one only for state 𝑥. Fig 1 is an illustation
f the dynamics for this model. The per-step cost function of the belief state 𝛱 𝑖

𝑡 when action 𝐴𝑖
𝑡 is taken is

𝑐(𝛱 𝑖
𝑡 , 𝐴

𝑖
𝑡) = E[𝑐

𝑖
𝑡 (𝑋

𝑖
𝑡 , 𝐴

𝑖
𝑡)|𝑌

𝑖
0∶𝑡−1, 𝐴

𝑖
0∶𝑡−1] =

∑

𝑥∈ 𝑖
𝛱 𝑖

𝑡 (𝑥)𝑐
𝑖(𝑥,𝐴𝑖

𝑡).

Define the combined belief state 𝛩𝑡 ∈ ( ) of the system as follows: for any 𝒙 ∈  ,

𝛩𝑡(𝒙) = P(𝑿𝑡 = 𝒙 ∣ 𝒀 0∶𝑡−1,𝑨0∶𝑡−1).

Note that 𝛩𝑡 is a random variable that takes values in ( ). Using standard results in POMDPs [41], we have the following.

Proposition 1. In Problem 1, 𝛩𝑡 is a sufficient statistic for (𝒀 0∶𝑡−1,𝑨0∶𝑡−1). Therefore, there is no loss of optimality in restricting attention
to decision policies of the form 𝑨𝑡 = 𝑔belief𝑡 (𝛩𝑡). Furthermore, an optimal policy with this structure can be identified by solving an appropriate
dynamic program.
4
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Fig. 1. Belief state dynamics for a 3-state arm 𝑖 in the simplex ({1, 2, 3}) for model B. Dashed arrows show a sample realizations of the belief state evolution
under 𝐴𝑡 = 0 for three time steps and the solid arrow shows a sample realization of the belief state evolution under 𝐴𝑡 = 1.

Next, we present our first simplification for the structure of optimal decision policy as follows.

roposition 2. For any 𝒙 ∈  , we have

𝛩𝑡(𝒙) =
∏

𝑖∈
𝛱 𝑖

𝑡 (𝑥
𝑖), a.s.. (6)

Therefore, there is no loss of optimality in restricting attention to decision policies of the form 𝑨𝑡 = 𝑔simple𝑡 (𝜫 𝑡). Furthermore, an optimal
policy with this structure can be identified by solving an appropriate dynamic program.

Proof. Eq. (6) follows from the conditional independence of the arms, and the nature of the observation function. The structure of
the optimal policies then follow immediately from Proposition 1.

In Propositions 1 and 2, we do not present the dynamic programs because they suffer from the curse of dimensionality. In
particular, obtaining the optimal policy for PO-RMAB is PSPACE-hard [16]. So, we focus on the Whittle index heuristics to solve
the problem.

3. Whittle index policy solution concept

For the ease of notation, we will drop the superscript 𝑖 from all relative variables for the rest of this and the next sections.
Consider an arm ( , {0, 1}, {𝑃 (𝑎)}𝑎∈{0,1}, 𝑐, 𝜋0,) with a modified per-step cost function

𝑐𝜆(𝜋, 𝑎) ∶= 𝑐(𝜋, 𝑎) + 𝜆𝑎, ∀𝜋 ∈ (),∀𝑎 ∈ {0, 1}, 𝜆 ∈ R. (7)

The modified cost function implies that there is a penalty of 𝜆 for taking the active action. Given any time-homogeneous policy
𝑔 ∶ () → {0, 1}, the modified performance of the policy is

𝐽 (𝑔)
𝜆 ∶= (1 − 𝛽)E

[ ∞
∑

𝑡=0
𝛽𝑡𝑐𝜆(𝛱𝑡, 𝑔(𝛱𝑡))

|

|

|

𝛱0

]

. (8)

Subsequently, consider the following optimization problem.

Problem 2. Given an arm ( , , {0, 1}, {𝑃 (𝑎)}𝑎∈{0,1}, 𝑐), the discount factor 𝛽 ∈ (0, 1) and the penalty 𝜆 ∈ R, choose a Markov
policy 𝑔 ∶ () → {0, 1} to minimize 𝐽 (𝑔)

𝜆 given by (8).

Problem 2 is a Markov decision process where one may use dynamic programming to obtain the optimal solution as follows.

Proposition 3. Consider the fixed point equation

𝑉𝜆(𝜋) = min
𝑎∈{0,1}

𝐻𝜆(𝜋, 𝑎) (9)

where for Model A we have

𝐻𝜆(𝜋, 0) = (1 − 𝛽)𝑐(𝜋, 0) + 𝛽𝑉𝜆(𝜋𝑃 ),𝐻𝜆(𝜋, 1) = (1 − 𝛽)𝑐(𝜋, 1) + (1 − 𝛽)𝜆 + 𝛽𝑉𝜆(𝑄)

and for Model B, we have

𝐻𝜆(𝜋, 0) = (1 − 𝛽)𝑐(𝜋, 0) + 𝛽𝑉𝜆(𝜋𝑃 ),𝐻𝜆(𝜋, 1) = (1 − 𝛽)𝑐(𝜋, 1) + (1 − 𝛽)𝜆 + 𝛽
∑

𝑥∈
𝑄𝑥𝑉𝜆(𝛿𝑥).

Then (9) has a unique fixed point 𝑉 ∗
𝜆 , and the policy

𝑔𝜆(𝜋) =

{

0, if 𝐻𝜆(𝜋, 0) < 𝐻𝜆(𝜋, 1)
1, otherwise

is optimal for Problem 2.
5
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Proof. The result follows immediately from Markov decision theory [42].

Finally, we present the following definitions.

efinition 1 (Passive Set). Given penalty 𝜆, define the passive set 𝜆 as the set of states where passive action is optimal for the
odified arm, i.e.,

𝜆 ∶=
{

𝜋 ∈ 𝛱 ∶ 𝑔𝜆(𝜋) = 0
}

.

efinition 2 (Indexability). An arm is indexable if 𝜆 is non-decreasing in 𝜆, i.e., for any 𝜆1, 𝜆2 ∈ R,

𝜆1 < 𝜆2 ⟹ 𝜆1 ⊆ 𝜆2 .

A restless multi-armed bandit problem is indexable if all 𝑛 arms are indexable.

Definition 3 (Whittle Index). The Whittle index of the state 𝜋 of an arm is the smallest value of 𝜆 for which state 𝜋 is part of the
passive set 𝜆, i.e.,

𝑤(𝜋) = inf
{

𝜆 ∈ R ∶ 𝜋 ∈ 𝜆
}

.

Equivalently, the Whittle index 𝑤(𝜋) is the smallest value of 𝜆 for which the optimal policy is indifferent between the active
action and passive action when the belief state of the arm is 𝜋.

The Whittle index policy is as follows: At each time step, select 𝑚 arms which are in states with the highest indices. The Whittle index
policy is easy to implement and efficient to compute but it may not be optimal. As mentioned earlier, Whittle index is optimal in
certain cases [18–21] and performs close to optimal for many other cases [10,22–26].

4. Indexability and the corresponding Whittle index for models A and B

Given an arm, let 𝛴 denote the family of all stopping times 𝜏 ≥ 1, with respect to the natural filtration associated with {𝛱𝑡}𝑡≥0.
For any stopping time 𝜏 ∈ 𝛴 and an initial belief state 𝜋 ∈ 𝛱 , define

𝐿(𝜋, 𝜏) ∶= E
[𝜏−1
∑

𝑡=0
𝛽𝑡𝑐(𝛱𝑡, 0) + 𝛽𝜏𝑐(𝛱𝜏 , 1)

|

|

|

𝛱0 = 𝜋
]

,

𝐵(𝜋, 𝜏) ∶= E[𝛽𝜏 |𝛱0 = 𝜋].

Theorem 1. The PO-RMAB for model A and B is indexable. In particular, each arm is indexable and the Whittle index is given by

𝑤(𝜋) = inf
{

𝜆 ∈ R ∶ 𝐺(𝜋) < 𝛺𝜆
}

,

where

𝐺(𝜋) ∶= (1 − 𝛽) inf
𝜏∈𝛴

𝐿(𝜋, 𝜏) − 𝑐(𝜋, 1)
1 − 𝐵(𝜋, 𝜏)

, (10)

𝛺𝜆 ∶= 𝜆 + 𝛽𝑉 next
1 , (11)

and 𝑉 next
1 = 𝑉𝜆(𝑄) for model A and 𝑉 next

1 =
∑

𝑥∈ 𝑄𝑥𝑉𝜆(𝛿𝑥) for model B.

Proof. Recall that we assert that 𝑉𝜆(𝜋) and 𝛺𝜆 are non-decreasing in 𝜆 for any 𝜋 ∈ 𝛱 . Hence, for any policy 𝑔 ∶ () → {0, 1}

𝑉 (𝑔)
𝜆 (𝜋) = (1 − 𝛽)E

[ ∞
∑

𝑡=0
𝛽𝑡𝑐𝜆(𝛱𝑡, 𝐴𝑡)

|

|

|

|

𝛱𝑡 = 𝜋
]

where 𝑐𝜆(𝜋, 𝑎) = 𝑐𝜆(𝜋, 𝑎) + 𝜆𝑎 is non-decreasing in 𝜆 for any 𝜋 ∈ () and 𝑎 ∈ {0, 1}. From Markov decision theory we know that
𝑉𝜆(𝜋) = inf𝑔∶()→{0,1} 𝑉

(𝑔)
𝜆 (𝜋). Since the infimum of non-decreasing functions is non-decreasing, 𝑉𝜆(𝜋) is non-decreasing in 𝜆 for any

𝜋 ∈ (). Consequently, 𝑉 next
1 is non-decreasing which implies 𝛺𝜆 is non-decreasing in 𝜆.

Given any stopping time 𝜏 ∈ 𝛴, let ℎ𝜏 denote a policy that takes the passive action up to and including time 𝜏 − 1, takes the
active action at time 𝜏, and follows the optimal policy from time 𝜏 + 1 onwards. The performance 𝐶𝜆(𝜋, 𝜏) of policy ℎ𝜏 is given by

𝐶𝜆(𝜋, 𝜏) = (1 − 𝛽)Eℎ𝜏
[ ∞
∑

𝑡=0
𝛽𝑡𝑐𝜆(𝜋𝑡, 𝐴𝑡)

|

|

|

𝛱0 = 𝜋
]

= (1 − 𝛽)𝐿(𝜋, 𝜏) +E[𝛽𝜏𝛺𝜆|𝛱0 = 𝜋]

= (1 − 𝛽)𝐿(𝜋, 𝜏) + 𝐵(𝜋, 𝜏)𝛺𝜆. (12)

We use ℎ0 to denote a policy that takes active action at time 0 and follows the optimal policy from time 1 onwards. The performance
𝐶𝜆(𝜋, 0) of policy ℎ0 is given by

𝐶𝜆(𝜋, 0) = (1 − 𝛽)𝑐(𝜋, 1) +𝛺𝜆. (13)
6

The next result generalizes [26, Lemma 2].
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Lemma 1. The following characterizations of the passive sets are equivalent to Definition 1.

1. 𝜆 =
{

𝜋 ∈ 𝛱 ∶ 𝐻𝜆(𝜋, 0) < 𝐻𝜆(𝜋, 1)
}

.
2. 𝜆 =

{

𝜋 ∈ 𝛱 ∶ ∃𝜎 ∈ 𝛴 such that 𝐶𝜆(𝜋, 𝜎) < 𝐶𝜆(𝜋, 0)
}

.
3. 𝜆 =

{

𝜋 ∈ 𝛱 ∶ 𝐺(𝜋) < 𝛺𝜆
}

.

roof. Characterization (1) follows from the dynamic program given in Proposition 3. Characterization (2) follows from the fact
hat 𝐶𝜆(𝜋, 0) = 𝐻𝜆(𝜋, 1) and for 𝜋 ∈ 𝜆, 𝐶𝜆(𝜋, 𝜎) = 𝐻𝜆(𝜋, 0), where 𝜎 is the hitting time of the set () ⧵𝜆. Characterization (3)
ollows from characterization (2) and rearranging the terms using (12) and (13).

Note that 𝐺(𝜋) does not depend on 𝜆 while we showed that 𝛺𝜆 is non-decreasing in 𝜆. Hence, 𝜆 =
{

𝜋 ∈ 𝛱 ∶ 𝐺(𝜋) < 𝛺𝜆
}

is
on-decreasing in 𝜆 by the lemma. Thus, arm 𝑖 is indexable. The expression for the Whittle index in the theorem follows from the
efinitions.

. Whittle index computation

Computing the Whittle index using the belief state representation is intractable in general. Inspired by the approach taken in [47],
e introduce a new information state which is equivalent to the belief state.

.1. Countable information state

For models A and B, define 𝐴 =
{

𝑄𝑃 𝑘 ∶ 𝑘 ∈ Z≥0
}

, 𝐵 =
{

𝛿𝑠𝑃 𝑘 ∶ 𝑠 ∈  , 𝑘 ∈ Z≥0
}

.

Assumption 2. For model A, 𝜋0 ∈ 𝐴 and for model B, 𝜋0 ∈ 𝐵 .

For model A, define a process {𝐾𝑡}𝑡≥0 as follows. The initial state 𝑘0 is such that 𝜋0 = 𝑄𝑃 𝑘0 and for 𝑡 > 0, 𝐾𝑡 is given by

𝐾𝑡 =

{

0, if 𝐴𝑡−1 = 1
𝐾𝑡−1 + 1, if 𝐴𝑡−1 = 0.

(14)

Similarly, for model B, define a process {𝑆𝑡, 𝐾𝑡}𝑡≥0 as follows. The initial state (𝑠0, 𝑘0) is such that 𝜋0 = 𝛿𝑠0𝑃
𝑘0 and for 𝑡 > 0, 𝐾𝑡

volves according to (14) and 𝑆𝑡 evolves according to

𝑆𝑡 =

{

𝑋𝑡−1 where 𝑋𝑡−1 ∼ 𝑄, if 𝐴𝑡−1 = 1
𝑆𝑡−1, if 𝐴𝑡−1 = 0.

(15)

Note that once the first observation has been taken in both models, 𝐾𝑡 denotes the time elapsed since the last observation of
rm 𝑖 and, in addition in model B, 𝑆𝑡 denotes the last observed states of arm 𝑖. Let 𝑺 𝑡 ∶= (𝑆1

𝑡 ,…𝑆𝑛
𝑡 ) and 𝑲 𝑡 ∶= (𝐾1

𝑡 ,…𝐾𝑛
𝑡 ). The

relation between the belief state 𝛱𝑡 and variables 𝑆𝑡 and 𝐾𝑡 is characterized in the following lemma (see Fig. 1). .

Lemma 2. The following statements hold under Assumption 2:

• For model A, for any 𝑡, 𝛱𝑡 ∈ 𝐴. In particular, 𝛱𝑡 = 𝑄𝑃𝐾𝑡 .
• For model B, for any 𝑡, 𝛱𝑡 ∈ 𝐵 . In particular, 𝛱𝑡 = 𝛿𝑆𝑡

𝑃𝐾𝑡 .

Proof. The results immediately follow from (4)–(5) and (14)–(15).

For model A, the expected per-step cost at time 𝑡 may be written as

𝑐(𝐾𝑡, 𝐴𝑡) ∶= 𝑐(𝑄𝑃𝐾𝑡 , 𝐴𝑡) =
∑

𝑥∈
[𝑄𝑃𝐾𝑡 ]𝑥𝑐(𝑥,𝐴𝑡). (16)

Similarly, for model B, the expected per-step cost at time 𝑡 may be written as

𝑐(𝑆𝑡, 𝐾𝑡, 𝐴𝑡) ∶= 𝑐(𝛿𝑆𝑡
𝑃𝐾𝑡 , 𝐴𝑡) =

∑

𝑥∈
[𝛿𝑆𝑡

, 𝑃𝐾𝑡 ]𝑥𝑐(𝑥,𝐴𝑡). (17)

Proposition 4. In Problem 1, there is no loss of optimality in restricting attention to decision policies of the form 𝑨𝑡 = 𝑔info𝑡 (𝑲 𝑡) for model A
and of the form 𝑨𝑡 = 𝑔info𝑡 (𝑺 𝑡,𝑲 𝑡) for model B.
7

Proof. This result immediately follows from Lemma 2, (16) and (17).
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5.2. Threshold policies

We assume that the model satisfies the following condition.

ssumption 3. Let 𝑐(𝑥, 𝑎) = (1 − 𝑎)𝜙(𝑥) + 𝑎𝜌(𝑥) where 𝜙 ∶  → [0, 𝜙max) and 𝜌 ∶  → [0, 𝜌max) are non-decreasing functions in 
and 𝑐(𝑥, 𝑎) is submodular in (𝑥, 𝑎).

Under Assumption 3, we derive structural properties of the optimal policies for models A and B. Then, we show how 𝐽 (𝑔)
𝜆 can

be decomposed and computed.
In the following theorem, we show that the optimal policy for model A has a threshold structure and the optimal policy for

model B has a threshold structure with respect to the second dimension of the information state.

Theorem 2. Under Assumptions 2 and 3, the following statements hold:

1. In model A, for any 𝜆 ∈ R, the optimal policy 𝑔𝐴𝜆 (𝑘) is a threshold policy, i.e., there exists a threshold 𝜃𝐴𝜆 ∈ Z≥−1 such that

𝑔𝐴𝜆 (𝑘) =

{

0, 𝑘 < 𝜃𝐴𝜆
1, otherwise.

Moreover, the threshold 𝜃𝐴𝜆 is non-decreasing in 𝜆.
2. In model B, for any 𝜆 ∈ R, the optimal policy 𝑔𝐵𝜆 (𝑠, 𝑘) is a threshold policy with respect to 𝑘 for every 𝑠 ∈  , i.e., there exists a
threshold 𝜃𝐵𝑠,𝜆 ∈ Z≥−1 for each 𝑠 ∈  such that

𝑔𝐵𝜆 (𝑠, 𝑘) =

{

0, 𝑘 < 𝜃𝐵𝑠,𝜆
1, otherwise.

Moreover, for every 𝑠 ∈  , the threshold 𝜃𝐵𝑠,𝜆 is non-decreasing in 𝜆.

See Section 6 for the proof.
We use 𝜽𝐵 to denote the vector (𝜃𝐵𝑠 )𝑠∈ .

5.3. Performance of threshold based policies

We simplify the notation and denote the policy corresponding to thresholds 𝜃𝐴 and 𝜽𝐵 by simply 𝜃𝐴 and 𝜽𝐵 instead of 𝑔(𝜃𝐴) and
𝑔(𝜽𝐵 ).

5.3.1. Model A
Let 𝐽 (𝜃𝐴)

𝜆 (𝑘) be the total discounted cost incurred under policy 𝑔(𝜃𝐴) with penalty 𝜆 when the initial state is 𝑘, i.e.,

𝐽 (𝜃𝐴)
𝜆 (𝑘) ∶= (1 − 𝛽)E

[ ∞
∑

𝑡=0
𝛽𝑡𝑐𝜆(𝐾𝑡, 𝑔

(𝜃𝐴)(𝐾𝑡))
|

|

|

𝐾0 = 𝑘
]

∶= 𝐷(𝜃𝐴)(𝑘) + 𝜆𝑁 (𝜃𝐴)(𝑘), (18)

here

𝐷(𝜃𝐴)(𝑘) ∶= (1 − 𝛽)E
[ ∞
∑

𝑡=0
𝛽𝑡𝑐(𝐾𝑡, 𝑔

(𝜃𝐴)(𝐾𝑡))
|

|

|

𝐾0 = 𝑘
]

,

𝑁 (𝜃𝐴)(𝑘) ∶= (1 − 𝛽)E
[ ∞
∑

𝑡=0
𝛽𝑡𝑔(𝜃

𝐴)(𝐾𝑡)
|

|

|

𝐾0 = 𝑘
]

.

𝐷(𝜃𝐴)(𝑘) represents the expected total discounted cost while 𝑁 (𝜃𝐴)(𝑘) represents the expected number of times active action is selected
under policy 𝑔(𝜃𝐴) starting from the initial information state 𝑘.

We will show (see Theorem 7) that the Whittle index for model A can be computed as a function of 𝐷(𝜃𝐴)(𝑘) and 𝑁 (𝜃𝐴)(𝑘). First,
we present a method to compute these two variables. Let

𝐿(𝜃𝐴)(𝑘) ∶= (1 − 𝛽)
𝜃𝐴−1
∑

𝑡=𝑘
𝛽𝑡−𝑘𝑐(𝑡, 0) + (1 − 𝛽)𝛽𝜃

𝐴−𝑘𝑐(𝜃𝐴, 1)

𝑀 (𝜃𝐴)(𝑘) ∶= (1 − 𝛽)𝛽𝜃
𝐴−𝑘

where 𝐿(𝜃𝐴)(𝑘) and 𝑀 (𝜃𝐴)(𝑘), respectively, denote the expected discounted cost and time starting from information state 𝑘 until
reaching information state 𝜃𝐴 for the first time.

Theorem 3. For any 𝑘 ∈ Z≥0, we have

𝐷(𝜃𝐴)(𝑘) = 𝐿(𝜃𝐴)(𝑘) + 𝛽𝜃
𝐴−𝑘+1 𝐿(𝜃𝐴)(0)

𝐴 ,
8

1 − 𝛽𝜃 +1



Performance Evaluation 163 (2024) 102394N. Akbarzadeh and A. Mahajan

5

i

𝑁 (𝜃𝐴)(𝑘) = 𝑀 (𝜃𝐴)(𝑘) + 𝛽𝜃
𝐴−𝑘+1 𝑀 (𝜃𝐴)(0)

1 − 𝛽𝜃𝐴+1
.

See Section 6 for the proof.

.3.2. Model B
Let 𝐽 (𝜽𝐵 )

𝜆 (𝑠, 𝑘) be the total discounted cost incurred under policy 𝑔(𝜽𝐵 ) with penalty 𝜆 when the initial information state is (𝑠, 𝑘),
.e.,

𝐽 (𝜽𝐵 )
𝜆 (𝑠, 𝑘) = (1 − 𝛽)E

[ ∞
∑

𝑡=0
𝛽𝑡𝑐𝜆(𝑆𝑡, 𝐾𝑡, 𝑔

(𝜽𝐵 )(𝑆𝑡, 𝐾𝑡))
|

|

|

(𝑆0, 𝐾0) = (𝑠, 𝑘)
]

∶= 𝐷(𝜽𝐵 )(𝑠, 𝑘) + 𝜆𝑁 (𝜽𝐵 )(𝑠, 𝑘), (19)

where

𝐷(𝜽𝐵 )(𝑠, 𝑘) ∶= (1 − 𝛽)E
[ ∞
∑

𝑡=0
𝛽𝑡𝑐(𝑆𝑡, 𝐾𝑡, 𝑔

(𝜽𝐵 )(𝑆𝑡, 𝐾𝑡))
|

|

|

(𝑆0, 𝐾0) = (𝑠, 𝑘)
]

,

𝑁 (𝜽𝐵 )(𝑠, 𝑘) ∶= (1 − 𝛽)E
[ ∞
∑

𝑡=0
𝛽𝑡𝑔(𝜽

𝐵 )(𝑆𝑡, 𝐾𝑡)
|

|

|

(𝑆0, 𝐾0) = (𝑠, 𝑘)
]

.

𝐷(𝜽𝐵 )(𝑠, 𝑘) and 𝑁 (𝜽𝐵 )(𝑠, 𝑘) have the same interpretations as the ones for model A. We will show (see Theorem 8) that Whittle index
for model B can be computed as a function of 𝐷(𝜽𝐵 )(𝑠, 𝑘) and 𝑁 (𝜽𝐵 )(𝑠, 𝑘). But first let us define vector 𝑱 (𝜽𝐵 )

𝜆 (0) = (𝐽 (𝜽𝐵 )
𝜆 (1, 0), …,

𝐽 (𝜽𝐵 )
𝜆 (||, 0)) and vectors 𝑫(𝜽𝐵 )(0) and 𝑵 (𝜽𝐵 )(0) in a similar manner. Then, from (19), 𝑱 (𝜽𝐵 )

𝜆 (0) = 𝑫(𝜽𝐵 )(0) + 𝜆𝑵 (𝜽𝐵 )(0). Let us also
define

𝐿(𝜽𝐵 )(𝑠, 𝑘) ∶= (1 − 𝛽)
𝜃𝐵𝑠 −1
∑

𝑡=𝑘
𝛽𝑡−𝑘𝑐(𝑠, 𝑡, 0) + (1 − 𝛽)𝛽𝜃

𝐵
𝑠 −𝑘𝑐(𝑠, 𝜃𝐵𝑠 , 1),

𝑀 (𝜽𝐵 )(𝑠, 𝑘) ∶= (1 − 𝛽)𝛽𝜃
𝐵
𝑠 −𝑘.

Let 𝑳(𝜽𝐵 )(0) = (𝐿(𝜽𝐵 )(1, 0),… , 𝐿(𝜽𝐵 )(||, 0)) and 𝑴 (𝜽𝐵 )(0) = (𝑀 (𝜽𝐵 )(1, 0),… ,𝑀 (𝜽𝐵 )(||, 0)).

Theorem 4. For any (𝑠, 𝑘) ∈  ×Z≥0, we have

𝐷(𝜽𝐵 )(𝑠, 𝑘) = 𝐿(𝜽𝐵 )(𝑠, 𝑘) + 𝛽𝜃
𝐵
𝑠 −𝑘+1

∑

𝑟∈
𝑄𝑟𝐷

(𝜽𝐵 )(𝑟, 0),

𝑁 (𝜽𝐵 )(𝑠, 𝑘) = 𝑀 (𝜽𝐵 )(𝑠, 𝑘) + 𝛽𝜃
𝐵
𝑠 −𝑘+1

∑

𝑟∈
𝑄𝑟𝑁

(𝜽𝐵 )(𝑟, 0).

Let 𝑍(𝜽𝐵 ) be a || × || matrix where 𝑍(𝜽𝐵 )
𝑠𝑟 = 𝛽𝜃𝐵𝑠 +1𝑄𝑟, for any 𝑠, 𝑟 ∈  . Then,

𝑫(𝜽𝐵 )(0) = (𝐼 −𝑍(𝜽𝐵 ))−1𝑳(𝜽𝐵 )(0),

𝑵 (𝜽𝐵 )(0) = (𝐼 −𝑍(𝜽𝐵 ))−1𝑴 (𝜽𝐵 )(0).

See Section 6 for the proof.

5.4. Finite state approximation

For computing Whittle index, we provide a finite state approximation of Proposition 3 for models A and B. Essentially, we
truncate the countable set of possible information state 𝐾𝑡 to a finite set and provide the approximation bound on the optimal value
function for each of the models.

Theorem 5 (Model A). Given 𝓁 ∈ N, let N𝓁 ∶= {0,… ,𝓁} and 𝑉𝓁,𝜆 ∶ N𝓁 → R be the unique fixed point of equation

𝑉𝓁,𝜆(𝑘) = min
𝑎∈{0,1}

𝐻𝓁,𝜆(𝑘, 𝑎), �̂�𝓁,𝜆(𝑘) = arg min
𝑎∈{0,1}

𝐻𝓁,𝜆(𝑘, 𝑎)

where

𝐻𝓁,𝜆(𝑘, 0) = (1 − 𝛽)𝑐(𝑘, 0) + 𝛽𝑉𝓁,𝜆(min{𝑘 + 1,𝓁}),

𝐻𝓁,𝜆(𝑘, 1) = (1 − 𝛽)𝑐(𝑘, 1) + (1 − 𝛽)𝜆 + 𝛽𝑉𝓁,𝜆(0).

We set �̂�𝓁,𝜆(𝑘) = 1 if 𝐻𝓁,𝜆(𝑘, 0) = 𝐻𝓁,𝜆(𝑘, 1). Then, we have the following: (i) For any 0 ≤ 𝑘 ≤ 𝓁, we have

|𝑉𝜆(𝑘) − 𝑉𝓁,𝜆(𝑘)| ≤
𝛽𝓁−𝑘+1 span(𝑐𝜆) .
9
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(ii) For all 𝑘 ∈ Z≥0, lim𝓁→∞ 𝑉𝓁,𝜆(𝑘) = 𝑉𝜆(𝑘). Moreover, let �̂�∗𝜆(⋅) be any limit point of {�̂�𝓁,𝜆(⋅)}𝓁≥1. Then, the policy �̂�∗𝜆(⋅) is optimal for
Problem 2.

See Section 6 for the proof.

Remark 1 (Choice of 𝓁). Suppose we want to ensure that |𝑉𝜆(0) − 𝑉𝓁,𝜆(0)| ≤ 𝛼, where 𝛼 > 0 is some pre-specified constant. The result
of Theorem 5 implies that we can ensure the above constraint by choosing 𝓁 > log𝛽 (𝛼(1 − 𝛽)∕ span(𝑐𝜆)).

Theorem 6 (Model B). Given 𝓁 ∈ N, let N𝓁 ∶= {0,… ,𝓁} and 𝑉𝓁,𝜆 ∶  ×N𝓁 → R be the unique fixed point of equation

𝑉𝓁,𝜆(𝑠, 𝑘) = min
𝑎∈{0,1}

𝐻𝓁,𝜆(𝑠, 𝑘, 𝑎), �̂�𝓁,𝜆(𝑠, 𝑘) = arg min
𝑎∈{0,1}

𝐻𝓁,𝜆(𝑠, 𝑘, 𝑎)

where

𝐻𝓁,𝜆(𝑠, 𝑘, 0) = (1 − 𝛽)𝑐(𝑠, 𝑘, 0) + 𝛽𝑉𝓁,𝜆(𝑠,min{𝑘 + 1,𝓁}),

𝐻𝓁,𝜆(𝑠, 𝑘, 1) = (1 − 𝛽)𝑐(𝑠, 𝑘, 1) + (1 − 𝛽)𝜆 + 𝛽
∑

𝑥′∈̃
𝑄𝑥′𝑉𝓁,𝜆(𝑥′, 0).

We set �̂�𝓁,𝜆(𝑠, 𝑘) = 1 if 𝐻𝓁,𝜆(𝑠, 𝑘, 0) = 𝐻𝓁,𝜆(𝑠, 𝑘, 1). Then, we have the following: (i) For any 0 ≤ 𝑘 ≤ 𝓁,

|𝑉𝜆(𝑠, 𝑘) − 𝑉𝓁,𝜆(𝑠, 𝑘)| ≤
𝛽𝓁−𝑘+1 span(𝑐𝜆)

1 − 𝛽
,∀𝑠 ∈  .

ii) For all (𝑠, 𝑘) ∈  ×Z≥0, lim𝓁→∞ 𝑉𝓁,𝜆(𝑠, 𝑘) = 𝑉𝜆(𝑠, 𝑘). Let �̂�∗𝜆(⋅, ⋅) be any limit point of {�̂�𝓁,𝜆(⋅, ⋅)}𝓁≥1. Then, the policy �̂�∗𝜆(⋅, ⋅) is optimal
for Problem 2.

See Section 6 for the proof. Similar to Remark 1, choosing 𝓁 > log𝛽 (𝛼(1 − 𝛽)∕ span(𝑐𝜆)), for some 𝛼 > 0, ensures that
|𝑉𝜆(0, 𝑘) − 𝑉𝓁,𝜆(0, 𝑘)| ≤ 𝛼.

Due to Theorems 5 and 6, we can restrict the countable part of the information state to a finite set, N𝓁 .

5.5. Computation of Whittle index

Next, we derive a closed form expression to compute the Whittle index for model A and provide an efficient algorithm to compute
the Whittle index for model B.

5.5.1. Whittle index formula for model A
For model A, we obtain the Whittle index formula based on the two variables 𝐷(𝜃𝐴)(⋅) and 𝑁 (𝜃𝐴)(⋅) as follows.

Theorem 7. Let 𝛬𝐴
𝑘 = {𝑘0 ∈ {0, 1,… , (𝓁 + 1) − 1} ∶ 𝑁 (𝑘)(𝑘0) ≠ 𝑁 (𝑘+1)(𝑘0)}. Then, under Assumption 3, 𝛬𝐴

𝑘 ≠ ∅, and the Whittle index
of model A at information state 𝑘 ∈ N𝓁 is

𝑤𝐴(𝑘) = min
𝑘0∈𝛬𝐴

𝑘

𝐷(𝑘+1)(𝑘0) −𝐷(𝑘)(𝑘0)
𝑁 (𝑘)(𝑘0) −𝑁 (𝑘+1)(𝑘0)

. (20)

Proof. Since model A is a restart model, the result follows from [31, Lemma 4].

Theorem 7 gives us a closed-form expression to approximately compute the Whittle index for model 𝐴.

5.5.2. Modified adaptive greedy algorithm for model B
Let 𝐵 = ||(𝓁+1) and 𝐵𝐷(≤ 𝐵) denote the number of distinct Whittle indices. Let 𝛬∗ = {𝜆0, 𝜆1,… , 𝜆𝐵𝐷

} where 𝜆1 < 𝜆2 < ⋯ < 𝜆𝐵𝐷
denote the sorted distinct Whittle indices with 𝜆0 = −∞. Let 𝑏 ∶= {(𝑠, 𝑘) ∈  ×N𝓁 ∶ 𝑤(𝑠, 𝑘) ≤ 𝜆𝑏}. For any subset  ⊆  ×N𝓁 ,
define the policy �̄�() ∶  ×N𝓁 → {0, 1} as

�̄�()(𝑠, 𝑘) =

{

0, if (𝑠, 𝑘) ∈ 
1, if (𝑠, 𝑘) ∈ ( ×N𝓁)∖ .

Given 𝑏, define 𝛷𝑏 = {(𝑠, 𝑘) ∈ ( × N𝓁) ⧵ 𝑏 ∶ (𝑠,max{0, 𝑘 − 1}) ∈ 𝑏} and 𝛤𝑏+1 = 𝑏+1∖𝑏. Additionally, for any
∈ {0,… , 𝐵𝐷 − 1}, and all states 𝑦 ∈ 𝛷𝑏, define ℎ𝑏 = �̄�(𝑏), ℎ𝑏,𝑦 = �̄�(𝑏∪{𝑦}) and 𝛬𝑏,𝑦 = {(𝑥, 𝑘) ∈ ( ×N𝓁) ∶ 𝑁 (ℎ𝑏)(𝑥, 𝑘) ≠ 𝑁 (ℎ𝑏,𝑦)(𝑥, 𝑘)}.

Then, for all (𝑥, 𝑘) ∈ 𝛬𝑏,𝑦, define

𝜇𝑏,𝑦(𝑥, 𝑘) =
𝐷(ℎ𝑏,𝑦)(𝑥, 𝑘) −𝐷(ℎ𝑏)(𝑥, 𝑘)
𝑁 (ℎ𝑏)(𝑥, 𝑘) −𝑁 (ℎ𝑏,𝑦)(𝑥, 𝑘)

. (21)

emma 3. For 𝑑 ∈ {0,… , 𝐵 − 1}, we have the following:
10
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Algorithm 1: Computing Whittle index of all information states of model B
input: RB ( , {0, 1}, 𝑃 ,𝑄, 𝑐, 𝜌), discount factor 𝛽, truncation 𝓁.
Initialize 𝑏 = 0, 𝑏 = ∅.
while 𝑏 ≠  ×N𝓁 do

Compute 𝛬𝑏,𝑦 and 𝜇𝑏,𝑦(𝑥) using (21), ∀𝑦 ∈ 𝛷𝑏.
Compute 𝜇∗

𝑏,𝑦 = min𝑥∈𝛬𝑏,𝑦
𝜇𝑏,𝑦(𝑥), ∀𝑦 ∈ 𝛷𝑏.

Compute 𝜆𝑏+1 = min𝑦∈𝛷𝑏
𝜇∗
𝑏,𝑦.

Compute 𝛤𝑏+1 = argmin𝑦∈𝛷𝑏
𝜇∗
𝑏,𝑦.

Set 𝑤(𝑧) = 𝜆𝑏+1, ∀𝑧 ∈ 𝛤𝑏+1.
Set 𝑏+1 = 𝑏 ∪ 𝛤𝑏+1.
Set 𝑏 = 𝑏 + 1.

1. For all 𝑦 ∈ 𝛤𝑏+1, we have 𝑤(𝑦) = 𝜆𝑏+1.
2. For all 𝑦 ∈ 𝛷𝑏 and 𝜆 ∈ (𝜆𝑏, 𝜆𝑏+1], we have 𝐽

(ℎ𝑏,𝑦)
𝜆 (𝑥) ≥ 𝐽 (ℎ𝑏)

𝜆 (𝑥) for all 𝑥 ∈  with equality if and only if 𝑦 ∈ 𝑏+1∖𝑏 and 𝜆 = 𝜆𝑏+1.

roof. The result follows from [31, Lemma 3]. The only difference is that since we know from Theorem 2 that the optimal policy
s a threshold policy with respect to the second dimension, we restrict to 𝑦 ∈ 𝛷𝑏.

heorem 8. The following properties hold:

1. For any 𝑦 ∈ 𝛤𝑏+1, the set 𝛬𝑏,𝑦 is non-empty.
2. For any 𝑥 ∈ 𝛬𝑏,𝑦, 𝜇𝑏,𝑦(𝑥) ≥ 𝜆𝑏+1 with equality if and only if 𝑦 ∈ 𝛤𝑏+1.

roof. The result follows from [31, Theorem 2]. Similar to Lemma 3, we consider 𝑦 ∈ 𝛷𝑏.

By Theorem 8, we can find the Whittle indices iteratively. This approach is summarized in Algorithm 1. For a computationally-
fficient implementation using the Sherman–Morrison formula, see [31, Algorithm 2].

. Proof of main results

.1. Proof of Theorem 2

Let 𝜇1 and 𝜇2 be two probability mass functions on totally ordered set ̃ . Then we say 𝜇1 stochastically dominates 𝜇2 if for all
∈ ̃ , ∑𝑧∈̃≥𝑥

𝜇1
𝑧 ≥

∑

𝑧∈̃≥𝑥
𝜇2
𝑧 . Given two |̃|× |̃| transition matrices 𝑀 and 𝑁 , we say 𝑀 stochastically dominates 𝑁 if each row

f 𝑀 stochastically dominates the corresponding 𝑁 . A basic property of stochastic dominance is the following.

emma 4. If 𝑀1 stochastically dominates 𝑀2 and 𝑐 is an non-decreasing function defined on ̃ , then for all 𝑥 ∈ ̃ , ∑𝑦∈̃ 𝑀1
𝑥𝑦𝑐(𝑦) ≥

𝑦∈̃ 𝑀2
𝑥𝑦𝑐(𝑦).

roof. This follows from [42, Lemma 4.7.2].

Consider a fully-observable restless bandit process {(̃ , {0, 1}, {𝑃 , �̃�}, 𝑐, �̃�0)} (note that  is removed due to the observability
ssumption). According to [31], we say a fully-observable restless bandit process is stochastic monotone if it satisfies the following
onditions.

(D1) 𝑃 and �̃� are stochastic monotone transition matrices.
(D2) For any 𝑧 ∈ ̃ , ∑𝑤∈̃≥𝑧

[𝑃 − �̃�]𝑥𝑤 is non-decreasing in 𝑥 ∈ ̃ .
(D3) For any 𝑎 ∈ {0, 1}, 𝑐(𝑥, 𝑎) is non-decreasing in 𝑥.
(D4) 𝑐(𝑥, 𝑎) is submodular in (𝑥, 𝑎).

The following is established in [31, Lemma 5].

roposition 5. The optimal policy of a stochastic monotone fully-observable restless bandit process is a threshold policy denoted by �̃�,
hich is a policy which takes passive action for states below a threshold denoted by 𝜃 and active action for the rest of the states, i.e.,

�̃� =

{

0, 𝑥 < 𝜃
11

1, otherwise.



Performance Evaluation 163 (2024) 102394N. Akbarzadeh and A. Mahajan

s

T
b

m
i

6

L

P

6.1.1. Proof of Theorem 2, part 1
We show that each machine in model A is a stochastic monotone fully-observable restless bandit process. Each condition of

tochastic monotone fully-observable restless bandit process is presented and proven for model A below.

(D1’) The transition probability matrix under passive action for model A based on the information states is 𝑃𝐴
𝑥𝑦 = I{𝑦=𝑥+1} and

the transition probability matrix under active action for model A is 𝑄𝐴
𝑥𝑦 = I{𝑦=0}. Thus, 𝑃𝐴 and 𝑄𝐴 are stochastic monotone

matrices.
(D2’) Since 𝑃𝐴 is a stochastic monotone matrix and 𝑄𝐴 has constant rows, ∑𝑟≥𝑧[𝑃𝐴 −𝑄𝐴]𝑠𝑟 is non-decreasing in 𝑠 for any integer

𝑧 ≥ 0.
(D3’) As 𝑃 stochastically dominates the identity matrix, we infer from [48, Theorem 1.1-b and Theorem 1.2-c], that 𝑄𝑃 𝓁

stochastically dominates 𝑄𝑃 𝑘 for any 𝓁 > 𝑘 ≥ 0. Additionally, 𝑐𝜆(𝑥, 𝑎) is non-decreasing in 𝑥 for any 𝑎 ∈ {0, 1}. By (16)
we have 𝑐𝜆(𝑘, 𝑎) =

∑

𝑥∈ [(𝑄𝑃 )𝑘]𝑥𝑐𝜆(𝑥, 𝑎). Therefore, by Lemma 4, 𝑐𝜆(𝑘, 𝑎) is non-decreasing in 𝑘.
(D4’) As 𝑐(𝑥, 𝑎) is submodular in (𝑥, 𝑎) and as shown in (D3’), 𝑄𝑃 𝓁 stochastically dominates 𝑄𝑃 𝑘 for any 𝓁 > 𝑘 ≥ 0. Therefore, by

Lemma 4, 𝑐𝜆(𝑘, 0) − 𝑐𝜆(𝑘, 1) =
∑

𝑥∈ [(𝑄𝑃 )𝑘]𝑥(𝑐𝜆(𝑥, 0) − 𝑐𝜆(𝑥, 1)) is non-decreasing in (𝑘, 𝑎).

herefore, according to Proposition 5, the optimal policy of a fully-observable restless bandit process under model A is a threshold
ased policy.

Finally, since the optimal policy is threshold based, the passive set 𝜆 is given by {𝑘 ∈ Z≥−1 ∶ 𝑘 < 𝜃𝐴𝜆 }. As shown in Theorem 1,
odel A is indexable. Therefore, the passive set must be non-decreasing in 𝜆, which implies that the threshold 𝜃𝐴𝜆 is non-decreasing

n 𝜆.

.1.2. Proof of Theorem 2, part 2
We first characterize the behavior of value function and state–action value function for Model B.

emma 5. We have

a. 𝑐𝜆(𝑠, 𝑘, 𝑎) is non-decreasing in 𝑘 for any 𝑠 ∈  and 𝑎 ∈ {0, 1}.
b. Given a fixed 𝜆, 𝑉𝜆(𝑠, 𝑘) is non-decreasing in 𝑘 for any 𝑠 ∈  .
c. 𝑐𝜆(𝑠, 𝑘, 𝑎) is submodular in (𝑘, 𝑎), for any 𝑠 ∈  .
d. 𝐻𝜆(𝑠, 𝑘, 𝑎) is submodular in (𝑘, 𝑎), for any 𝑠 ∈  .

roof. The proof of each part is as follows.

a. By definition, we have

𝑐𝜆(𝑠, 𝑘, 𝑎) =
∑

𝑥∈
[𝛿𝑠𝑃 𝑘](𝑥)𝑐(𝑥, 𝑎) + 𝜆𝑎.

Similar to the proof of (D3’) in Proposition 5, for a given 𝑠 ∈  and 𝑎 ∈ {0, 1}, [𝛿𝑠𝑃 𝑘](𝑥) is non-decreasing in 𝑘 and 𝑥 and as
𝑐(𝑥, 𝑎) is non-decreasing in 𝑥, 𝑐𝜆(𝑠, 𝑘, 𝑎) is non-decreasing in 𝑘.

b. Let

𝐻 𝑗
𝜆(𝑠, 𝑘, 0) ∶= (1 − 𝛽)𝑐(𝑠, 𝑘, 0) + 𝛽𝑉 𝑗

𝜆 (𝑠, 𝑘 + 1),

𝐻 𝑗
𝜆(𝑠, 𝑘, 1) ∶= (1 − 𝛽)𝑐(𝑠, 𝑘, 1) + (1 − 𝛽)𝜆 + 𝛽

∑

𝑟
𝑄𝑟𝑉

𝑗
𝜆 (𝑟, 0),

𝑉 𝑗+1
𝜆 (𝑠, 𝑘) ∶= min

𝑎∈{0,1}
{𝐻 𝑗

𝜆(𝑠, 𝑘, 𝑎)},

where 𝑉 0
𝜆 (⋅, ⋅) = 0 for all (𝑠, 𝑘) ∈  ×Z≥0.

Claim: 𝑉 𝑗
𝜆 (𝑠, 𝑘) is non-decreasing in 𝑘 for any 𝑠 ∈  and 𝑗 ≥ 0.

We prove the claim by induction. By construction, 𝑉 0
𝜆 (𝑠, 𝑘) is non-decreasing in 𝑘 for any 𝑠 ∈  . This forms the basis of

induction. Now assume that 𝑉 𝑗
𝜆 (𝑠, 𝑘) is non-decreasing in 𝑘 for any 𝑠 ∈  and some 𝑗 ≥ 0. Consider 𝓁 > 𝑘 ≥ 0. Then, by

induction hypothesis we have

𝐻 𝑗
𝜆(𝑠,𝓁, 0) = (1 − 𝛽)𝑐(𝑠,𝓁, 0) + 𝛽𝑉 𝑗

𝜆 (𝑠,𝓁 + 1)

≥ (1 − 𝛽)𝑐(𝑠, 𝑘, 0) + 𝛽𝑉 𝑗
𝜆 (𝑠, 𝑘 + 1) = 𝐻 𝑗

𝜆(𝑠, 𝑘, 0),

𝐻 𝑗
𝜆(𝑠,𝓁, 1) = (1 − 𝛽)𝑐(𝑠,𝓁, 1) + (1 − 𝛽)𝜆 + 𝛽

∑

𝑟
𝑄𝑟𝑉

𝑗
𝜆 (𝑟, 0)

≥ (1 − 𝛽)𝑐(𝑠, 𝑘, 1) + (1 − 𝛽)𝜆 + 𝛽
∑

𝑟
𝑄𝑟𝑉

𝑗
𝜆 (𝑟, 0) = 𝐻 𝑗

𝜆(𝑠, 𝑘, 1).

Therefore,

𝑉 𝑗+1
𝜆 (𝑠,𝓁) = min

𝑎
{𝐻 𝑗

𝜆(𝑠,𝓁, 𝑎)} ≥ min
𝑎
{𝐻 𝑗

𝜆(𝑠, 𝑘, 𝑎)} = 𝑉 𝑗+1
𝜆 (𝑠, 𝑘).

Thus, 𝑉 𝑗+1
𝜆 (𝑠, 𝑘) is non-decreasing in 𝑘 for any 𝑠 ∈  . This completes the induction step. 𝑉𝜆(𝑠, 𝑘) = lim𝑗→∞ 𝑉 𝑗

𝜆 (𝑠, 𝑘) and
monotonicity is preserved under limits, the induction proof is complete.
12
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c. 𝑐(𝑥, 𝑎) is submodular in (𝑥, 𝑎). Also, note that 𝛿𝑠𝑃 𝑘 is the 𝑠th row of 𝑃 𝑘. Thus, 𝛿𝑠𝑃 𝑘+1 stochastically dominates 𝛿𝑠𝑃 𝑘 and by
Lemma 4 we have

∑

𝑥∈
[𝛿𝑠(𝑃 𝑘+1 − 𝑃 𝑘)]𝑥(𝑐(𝑥, 0) − 𝑐(𝑥, 1)) ≥ 0.

Therefore,
∑

𝑥∈
[𝛿𝑠(𝑃 𝑘 − 𝑃 𝑘+1)]𝑥𝑐(𝑥, 1) ≥

∑

𝑥∈
[𝛿𝑠(𝑃 𝑘 − 𝑃 𝑘+1)]𝑥𝑐(𝑥, 0).

Consequently,
∑

𝑥∈
[𝛿𝑠𝑃 𝑘]𝑥𝑐(𝑥, 1) −

∑

𝑥∈
[𝛿𝑠𝑃 𝑘]𝑥𝑐(𝑥, 0) ≥

∑

𝑥∈
[𝛿𝑠𝑃 𝑘+1]𝑥𝑐(𝑥, 1) −

∑

𝑥∈
[𝛿𝑠𝑃 𝑘+1]𝑥𝑐(𝑥, 0).

Hence,

𝑐(𝑠, 𝑘, 1) − 𝑐(𝑠, 𝑘, 0) ≥ 𝑐(𝑠, 𝑘 + 1, 1) − 𝑐(𝑠, 𝑘 + 1, 0).

d. As for any 𝑠 ∈  , 𝑉𝜆(𝑠, 𝑘) is non-decreasing in 𝑘, and 𝑐𝜆(𝑠, 𝑘, 𝑎) is submodular in (𝑘, 𝑎), for any 𝑘 ∈ N𝓁 and 𝑎 ∈ {0, 1}, we have

𝐻𝜆(𝑠, 𝑘, 1) −𝐻𝜆(𝑠, 𝑘, 0) = (1 − 𝛽)𝑐(𝑠, 𝑘, 1) + (1 − 𝛽)𝜆 + 𝛽
∑

𝑟
𝑄𝑟𝑉𝜆(𝑟, 0)

− (1 − 𝛽)𝑐(𝑠, 𝑘, 0) − 𝛽𝑉𝜆(𝑠, 𝑘 + 1)

≥ (1 − 𝛽)𝑐(𝑠, 𝑘 + 1, 1) + (1 − 𝛽)𝜆 + 𝛽
∑

𝑟
𝑄𝑟𝑉𝜆(𝑟, 0)

− (1 − 𝛽)𝑐(𝑠, 𝑘 + 1, 0) − 𝛽𝑉𝜆(𝑠, 𝑘 + 2)

= 𝐻𝜆(𝑠, 𝑘 + 1, 1) −𝐻𝜆(𝑠, 𝑘 + 1, 0).

emma 6. Suppose 𝑓 ∶  ×  → R is a submodular function and for each 𝑥 ∈  , 𝑚𝑖𝑛𝑦∈𝑓 (𝑥, 𝑦) exists. Then, max{arg min𝑦∈ 𝑓 (𝑥, 𝑦)}
s monotone non-decreasing in 𝑥.

roof. This result follows from [42, Lemma 4.7.1].

Now, we conclude that as 𝐻𝜆(𝑠, 𝑘, 𝑎) is submodular in (𝑘, 𝑎) for any 𝑠 ∈  , then, based on Lemma 6 and as only two actions is
vailable, the optimal policy is a threshold policy specified in the theorem statement.

Finally, since the optimal policy is threshold based, the passive set 𝜆 is given by {(𝑠, 𝑘) ∈  × Z≥−1 ∶ 𝑘 < 𝜃𝐵𝑠,𝜆}. As shown in
heorem 1, model B is indexable. Therefore, the passive set must be non-decreasing in 𝜆, which implies that, for every 𝑠 ∈  , the
hreshold 𝜃𝐵𝑠,𝜆 is non-decreasing in 𝜆.

.2. Proof of Theorem 3

By the strong Markov property, we have

𝐷(𝜃𝐴)(𝑘) = (1 − 𝛽)
𝜃𝐴
∑

𝑗=𝑘
𝛽𝑡𝑐(𝑡, 𝑔(𝑡)) + 𝛽𝜃

𝐴−𝑘+1𝐷(𝜃𝐴)(0) = 𝐿(𝜃𝐴)(𝑘) + 𝛽𝜃
𝐴−𝑘+1𝐷(𝜃𝐴)(0),

𝑁 (𝜃𝐴)(𝑘) = (1 − 𝛽)𝛽𝜃
𝐴−𝑘 + 𝛽𝜃

𝐴−𝑘+1𝑁 (𝜃𝐴)(0) = 𝑀 (𝜃𝐴)(𝑘) + 𝛽𝜃
𝐴−𝑘+1𝑁 (𝜃𝐴)(0).

If we set 𝑘 = 0 in the above,

𝐷(𝜃𝐴)(0) =
𝐿(𝜃𝐴)(0)
1 − 𝛽𝜃𝐴+1

and 𝑁 (𝜃𝐴)(0) =
𝑀 (𝜃𝐴)(0)
1 − 𝛽𝜃𝐴+1

.

6.3. Proof of Theorem 4

By the strong Markov property, we have

𝐷(𝜽𝐵 )(𝑠, 𝑘) = (1 − 𝛽)
𝜃𝐵𝑠
∑

𝑗=𝑘
𝛽𝑡𝑐(𝑠, 𝑡, 𝑔(𝑠, 𝑡)) + 𝛽𝜃

𝐵
𝑠 −𝑘+1

∑

𝑟∈
𝑄𝑟𝐷

(𝜽𝐵 )(𝑟, 0)

= 𝐿(𝜽𝐵 )(𝑠, 𝑘) + 𝛽𝜃
𝐵
𝑠 −𝑘+1

∑

𝑟∈
𝑄𝑟𝐷

(𝜽𝐵 )(𝑟, 0),

𝑁 (𝜽𝐵 )(𝑠, 0) = (1 − 𝛽)𝛽𝜃
𝐵
𝑠 −𝑘 + 𝛽𝜃

𝐵
𝑠 −𝑘+1

∑

𝑟∈
𝑄𝑟𝑁

(𝜽𝐵 )(𝑟, 0)

= 𝑀 (𝜽𝐵 )(𝑠, 𝑘) + 𝛽𝜃
𝐵
𝑠 −𝑘+1

∑

𝑟∈
𝑄𝑟𝑁

(𝜽𝐵 )(𝑟, 0).
13
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If we set 𝑘 = 0 in the above,

𝐷(𝜽𝐵 )(𝑠, 0) = 𝐿(𝜽𝐵 )(𝑠, 0) + 𝛽𝜃
𝐵
𝑠 +1

∑

𝑟∈
𝑄𝑟𝐷

(𝜽𝐵 )(𝑟, 0),

𝑁 (𝜽𝐵 )(𝑠, 0) = 𝑀 (𝜽𝐵 )(𝑠, 0) + 𝛽𝜃
𝐵
𝑠 +1

∑

𝑟∈
𝑄𝑟𝑁

(𝜽𝐵 )(𝑟, 0).

which results in

𝑫(𝜽𝐵 )(0) = 𝑳(𝜽𝐵 )(0) +𝑍(𝜽𝐵 )𝑫(𝜽𝐵 )(0),

𝑵 (𝜽𝐵 )(0) = 𝑴 (𝜽𝐵 )(0) +𝑍(𝜽𝐵 )𝑵 (𝜽𝐵 )(0)

nd hence, the statement is obtained by reformation of the terms inside the equations.

.4. Proof of Theorem 5

(i): Starting from information state 𝑘 ∈ N𝓁 , the cost incurred by �̂�𝓁,𝜆(⋅) is the same as 𝑔𝐴𝜆 (⋅) for information states {𝑘,… ,𝓁}. The
er-step cost incurred by �̂�𝓁,𝜆(⋅) differs from 𝑔𝐴𝜆 (⋅) for information states {𝓁 + 1,…} by at most span(𝑐𝜆).

(ii): The sequence of finite-state models described above is an augmentation type approximation sequence. As a result, a limit point
f �̂�∗𝜆 exists and the final result holds by [49, Proposition B.5, Theorem 4.6.3].

.5. Proof of Theorem 6

(i): Starting from information state (𝑠, 𝑘), given any 𝑠 ∈  and 𝑘 ∈ N𝓁 , the cost incurred by �̂�𝓁,𝜆(⋅, ⋅) is the same as 𝑔𝐵𝜆 (⋅, ⋅) for
nformation states {(𝑠, 𝑙)}𝓁𝑙=𝑘. The per-step cost incurred by �̂�𝓁,𝜆(⋅, ⋅) differs from 𝑔𝐵𝜆 (⋅, ⋅) for later realized information states by at
ost 𝛥𝑐𝜆. Thus, the bound holds.

(ii): The sequence of finite-state models described above is an augmentation type approximation sequence. As a result, a limit point
f �̂�∗𝜆 exists and the final result holds [49, Proposition B.5, Theorem 4.6.3].

. Numerical analysis

In this section, we consider Example 2 and compare the performance of the following policies:

opt: the optimal policy obtained using dynamic programming. As discussed earlier, the dynamic programming computation to
obtain the optimal policy suffers from the curse of dimensionality. Therefore, the optimal policy can be computed only for
small-scale models.

myp: myopic policy, which is a heuristic which sequentially selects 𝑚 machines as follows. Suppose 𝜁 < 𝑚 machines have been
selected. Then select machine 𝜁 + 1 to be the machine which provides the smallest increase in the total per-step cost. The
detailed description for model B is shown in Alg. 2.

wip: whittle index heuristic, as described in this paper.

Algorithm 2: Myopic Heuristic (Model B)
input: RB ( , {0, 1}, 𝑃 ,𝑄, 𝑐, 𝜌), discount factor 𝛽, 𝑚.
nitialize 𝑡 = 0.
hile 𝑡 ≥ 0 do

Set 𝜁 = 0.
while 𝜁 ≤ 𝑚 do

Compute 𝑖∗𝜁 ∈ argmin𝑖∈
∑

𝑗∈⧵{𝑖} 𝑐
𝑗 (𝑆𝑗

𝑡 , 𝐾
𝑗
𝑡 , 0) + 𝑐𝑖(𝑆 𝑖

𝑡 , 𝐾
𝑖
𝑡 , 1).

Let  =  ∪ {𝑖∗𝜁},  =  ⧵ {𝑖∗𝜁}.
Set 𝜁 = 𝜁 + 1.

Service the machines with indices collected in .
Update 𝐾 𝑖

𝑡 according to (14) and 𝑆𝑖
𝑡 according to (15) for all 𝑖 ∈  .

Set 𝑡 = 𝑡 + 1.

7.1. Experiments and results

We conduct numerical experiments for both models A and B, and vary the number 𝑛 of machines, the number 𝑚 of service-persons
nd the parameters associated with each machine. There are three parameters associated with each machine: the deterioration
robability matrix 𝑃 𝑖, the reset PMF 𝑄𝑖 and the per-step cost 𝑐𝑖(𝑥, 𝑎). We assume the matrix 𝑃 𝑖 is chosen from a family of four
ypes of structured transition matrices 𝛾 (𝑝), 𝛾 ∈ {1, 2, 3, 4} where 𝑝 is a parameter of the model. The details of all these models

𝑖

14

re presented in Appendix. We assume each element of 𝑄 is sampled from Exp(1), i.e., exponential distribution with the rate
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Table 1
𝜀myp for different choice of parameters of Model A in Experiment 2.

(a) Model A, 𝑚 = 1

𝜀myp 𝛾

1 2 3 4

𝑛
20 1.99 2.54 2.24 7.44
40 3.41 6.90 4.71 8.14
60 2.97 6.19 2.80 6.70

(b) Model A, 𝑚 = 5

𝜀myp 𝛾

1 2 3 4

𝑛
20 0.21 0.26 0.19 0.97
40 0.68 1.73 1.28 4.54
60 1.36 2.35 2.32 6.41

Table 2
𝜀myp for different choice of parameters of Model B in Experiment 2.

(a) Model B, 𝑚 = 1

𝜀myp 𝛾

1 2 3 4

𝑛
20 7.67 11.17 12.12 9.39
40 14.96 13.85 14.55 9.17
60 15.02 12.12 13.39 6.63

(b) Model B, 𝑚 = 5

𝜀myp 𝛾

1 2 3 4

𝑛
20 0.63 1.62 1.01 2.92
40 2.92 3.14 3.21 6.57
60 4.86 7.22 6.99 9.96

parameter of 1, and then normalized such that the sum of all elements becomes 1. Finally, we assume that the per-step cost is given
by 𝑐𝑖(𝑥, 0) = (𝑥 − 1)2 and 𝑐𝑖(𝑥, 1) = 0.5| 𝑖

|

2.
In all experiments, the discount factor is 𝛽 = 0.99. The performance of every policy is evaluated using Monte-Carlo simulation

f length 1000 averaged over 5000 sample paths.
In Experiment 1, we consider a small scale problem where we can compute opt and we compare the performance of wip with it.

owever, in Experiment 2, we consider a large scale problem where we compare the performance of wip with myp as computing the
ptimal policy is highly time-consuming.

The code for both experiments is available at [50].

xperiment (1) comparison of whittle index with the optimal policy.
In this experiment, we compare the performance of wip with opt. We assume || = 4, (𝓁 + 1) = 6 and 𝑛 = 3, 𝑚 = 1 for both

odels A and B. In order to model heterogeneous machines, we consider the following. Let (𝑝1,… , 𝑝𝑛) denote 𝑛 equispaced points
n the interval [0.05, 0.95]. Then we choose 𝛾 (𝑝𝑖) as the transition matrix of machine 𝑖. We denote the accumulated discounted cost
f wip and opt by 𝐽 (wip) and 𝐽 (opt), respectively. In order to have a better perspective of the performances, we compute the relative
erformance of wip with respect to opt by computing

𝛼opt = 100 ×
𝐽 (opt)
𝐽 (wip) . (22)

he closer 𝛼 is to 100, the closer wip is to opt. The results of 𝛼opt for all different combinations of parameter were 100 which means
the Whittle policy is as good as the optimal policy.

Experiment (2) comparison of whittle index with the myopic policy for structured models.
In this experiment, we increase the state space size to || = 20 and we set (𝓁 + 1) = 40, we select 𝑛 from the set {20, 40, 60}

and 𝑚 from the set {1, 5}. We denote the accumulated discounted cost of myp by 𝐽 (myp). In order to have a better perspective of the
performances, we compute the relative improvement of wip with respect to myp by computing

𝜀myp = 100 ×
𝐽 (myp) − 𝐽 (wip)

𝐽 (myp) . (23)

Note that 𝜀myp > 0 means that wip performs better than myp. We generate structured transition matrices, similar to Experiment 1, and
apply the same procedure to build heterogeneous machines. The results of 𝜀myp for different choice of the parameters for models A
and B are shown in Tables 1 and 2, respectively.

7.2. Discussion

In Experiment 1 where wip is compared with opt, we observe 𝛼opt is very close to 100 for almost all experiments, implying that
ip performs as well as opt for these experiments. 𝛼opt in model B is less than model A as model B is more complex than model A

or a given set of parameters and hence, the difference between the performance of the two polices is more than model A.
In Experiment 2 where wip is compared with myp, we observe 𝜀myp ranges from 0.2% to 15%. In a similar interpretation as

xperiment 1, as model B is more complex than model A, 𝜀myp for model B is higher than the ones model A given the same set of
arameters.

Furthermore, we observe that as 𝑛 increases, 𝜀myp also increases overall. Also, as 𝑚 increases, 𝜀myp decreases in general. This
uggests that as 𝑚 increases, there is an overlap between the set of machines chosen according to wip and myp, and hence, the
15

erformance of wip and myp become close to each other.
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8. Conclusion

We investigated partially observable restless bandits. Unlike most of the existing literature which restricts attention to models
ith binary state space, we consider general state space models. We presented two observation models, which we call model A and
odel B, and showed that the partially observable restless bandits are indexable for both models.

To compute the Whittle index, we work with a countable space representation rather than the belief state representation. We
stablished certain qualitative properties of the auxiliary problem to compute the Whittle index. In particular, for both models we
howed that the optimal policies of the auxiliary problem satisfy threshold properties. For model A, we used the threshold property
o obtain a closed form expression to compute the Whittle index. For model B, we used the threshold policy to present a refinement
f the adaptive greedy algorithm of [31] to compute the Whittle index.

Finally, we presented a detailed numerical study of a machine maintenance model. We observed that for small-scale models, the
hittle index policy is close-to-optimal and for large-scale models, the Whittle index policy outperforms the myopic policy baseline.
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ppendix. Structured Markov chains

Consider a Markov chain with || states. Then a family of structured stochastic monotone matrices which dominates the identity
matrix is illustrated below.

1. Matrix 1(𝑝): Let 𝑞1 = 1 − 𝑝 and 𝑞2 = 0. Then,

1(𝑝) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑝 𝑞1 𝑞2 0 0 0 0 … 0
0 𝑝 𝑞1 𝑞2 0 0 0 … 0
0 0 𝑝 𝑞1 𝑞2 0 0 … 0
0 0 0 𝑝 𝑞1 𝑞2 0 … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 0 𝑝 𝑞1 𝑞2
0 0 0 0 0 0 0 𝑝 𝑞1 + 𝑞2
0 0 0 0 0 0 0 … 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

2. Matrix 2(𝑝): Similar to 1(𝑝) with 𝑞1 = (1 − 𝑝)∕2 and 𝑞2 = (1 − 𝑝)∕2.
3. Matrix 3(𝑝): Similar to 1(𝑝) with 𝑞1 = 2(1 − 𝑝)∕3 and 𝑞2 = (1 − 𝑝)∕3.
4. Matrix 4(𝑝): Let 𝑞𝑖 = (1 − 𝑝)∕( − 𝑖). Then,

4(𝑝) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑝 𝑞1 𝑞1 … 𝑞1 𝑞1
0 𝑝 𝑞2 … 𝑞2 𝑞2
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 … 𝑝 𝑞𝑛−1
0 0 0 … 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.
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