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Scalable Operator Allocation for Multirobot
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Abstract—In this article, we consider the problem of al-
locating human operators in a system with multiple semi-
autonomous robots. Each robot is required to perform an
independent sequence of tasks, subject to a chance of
failing and getting stuck in a fault state at every task. If and
when required, a human operator can assist or teleoperate
a robot. Conventional dynamic programming-based tech-
niques used to solve such problems face scalability issues
due to an exponential growth of state and action spaces
with the number of robots and operators. In this article,
we derive conditions under which the operator allocation
problem satisfies a technical condition called indexability,
thereby enabling the use of the Whittle index heuristic. The
conditions are easy to check, and we show that they hold
for a wide range of problems of interest. Our key insight
is to leverage the structure of the value function of indi-
vidual robots, resulting in conditions that can be verified
separately for each state of each robot. We apply these
conditions to two types of transitions commonly seen in re-
mote robot supervision systems. Through numerical simu-
lations, we demonstrate the efficacy of Whittle index policy
as a near-optimal and scalable approach that outperforms
existing scalable methods.

Index Terms—Decision support systems (DSS), human–
robot collaboration, Markov decision processes (MDPs),
restless bandits (RBs).

I. INTRODUCTION

ADVANCES in robot autonomy have led to a decrease
in the necessity of strict human supervision of robots.

This has enabled the development of human–robot collaborative
systems where the task is primarily executed by a number of
semi-autonomous robots requiring intermittent assistance from
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Fig. 1. Overview of the multirobot assistance problem for robots nav-
igating in an environment. A number of mobile robots are tasked to
navigate through a series of waypoints. Operators are allocated to the
robots when required. This is done by decomposing the complete K-
robot problem into K single-robot problems and computing the Whittle
index heuristic. Given the current state of the system, this heuristic can
be used to efficiently compute the operator allocation.

a human teammate, either in the event of a fault [1], [2] or
to further increase performance of the multiagent teams in
warehouse operation [3], search-and-rescue [4], or in a social
setting [5]. However, identifying which robot to assist in an
uncertain environment is a challenging task for human oper-
ators [3], [6]. Moreover, as the number of robots increases, it
becomes challenging for the operators to maintain awareness
of every robot, which cripples a system’s performance [7], [8].
Therefore, human operators can benefit from having a decision
support system (DSS) that advises which robots require attention
and when [3], [9].

In this article, we present such a DSS for a multirobot system
comprising a fleet of semiautonomous robots with multiple
human operators available for assistance if and when required.
Fig. 1 presents an overview of the problem setup, showing K
robots navigating in a city block-like environment, moving from
start to goal locations. While navigating, a robot passes through a
series of waypoints, each characterized by a different probability
of success in progressing to the next waypoint. There is also a
possibility that the robot may fail at a task and get stuck in
a fault (error) state from which human operator assistance is
required to continue. There are M identical human operators
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available (M ≤ K), each of whom can assist/teleoperate at most
one robot at a time. When being assisted by an operator, robots
have different probabilities of success and failure, and to get out
of a fault state.

It is possible to solve the above problem by modeling it
as a Markov decision process (MDP) [10]. However, such
formulations suffer from the curse of dimensionality, making
conventional MDP-based solution techniques scale poorly with
problem size [11]. Moreover, the policy needs to be recomputed
every time a robot or an operator enters or leaves the system. To
tackle the scalability issue, researchers have proposed solutions
based on simple myopic policies, sampling-based planner, or
an approximation algorithm [3], [12], [13]. However, these
solutions either do not apply to stochastic settings, or they do not
scale well with an increasing number of robots and/or operators.

In this article, we show how an index-based policy can provide
a scalable and better performing solution than the existing
approaches for the given multirobot multioperator allocation
problem with stochastic transitions. The contributions of this
article are as follows.

1) We show that the operator allocation problem with multiple
independent robots can be formulated as an instance of the
restless multiarmed bandit (RMAB) problem. We leverage this
formulation to decompose the problem into several single-robot
problems and computing the Whittle index heuristic (see Fig. 1).
The resulting policy scales linearly with the number of robots
and is independent of the number of operators.

2) We derive simple conditions to verify indexability of the
model. These conditions can be checked independently for each
state of each robot, thus providing a method that scales linearly
with the size of the problem. This method can be applied to
systems with any number of states and does not require the
optimal policy to be of a threshold type.

3) We then implement our approach in two practical sce-
narios and present numerical experiments. The results show
that the proposed method provides near-optimal solutions and
outperforms existing efficient solution approaches, namely the
reactive policy, 1- and 2-step myopic policies, and the benefit-
maximizing policy.

The Appendix contains details about the relevant proofs. A
more detailed version of the proofs can be found in the arXiv
preprint of the article [14].

A. Background and Related Work

The problem of allocating operators in a multirobot team bears
similarities with the disciplines of multirobot supervision, task
scheduling, and queuing theory. In this section, we briefly review
the related research, followed by an introduction of RMABs.

In the literature, several studies discuss the problem of
enabling human operators to assist multiple robots such as
a team of navigating robots, a fleet of multiple UAVs, or
a team performing search and rescue operations [15], [16].
To understand and improve human supervision, researchers
have used frameworks, such as sliding autonomy, to incor-
porate various human-robot team capabilities (like coordina-
tion and situational awareness) [17], [18]. Some studies also

present interaction interfaces to facilitate and improve such
supervision [19], [20].

The most closely related work to our problem is presented
in [3], where the authors discuss single-operator multirobot
supervision systems. An advising agent guides the operator on
which robot they should assist. The problem is solved using
an l-step look-ahead (myopic) approach, which provides an
efficient and practical solution, but suffers from scalability issues
with the increasing number of operators and the look-ahead
steps. Researchers have also discussed deterministic versions of
the problem, where exact outcomes of robots’ actions and times
for fault occurrences are known, and the allocation policy is
determined using a sampling-based planner [12]. Hari et al. [13],
present an approximation algorithm for a similar scheduling
problem. These approaches, however, are not applicable in a
stochastic setting.

The problem of assisting a number of independent robots has
also been studied under a learning framework. The approach
presented in [2] learns the decision-making model of a human
operator from recorded data and tries to replicate that behavior,
optimizing based on the operator’s internal utility function. In
contrast, the problem presented in this article is designed to
optimize a global performance metric assuming the knowledge
of success and failure rates of robots with and without an
operator allocated to them. Such knowledge can be estimated
using recorded data similar to the work presented in [3]. For the
scope of this article, we will assume this knowledge takes the
form of known transition probabilities.

In the queuing discipline, several studies have investigated
the effects of different queuing techniques [21] or threshold-
based strategies [22] to prioritize an operator’s attention to the
robots. However, the model that we study is different from a
queuing model as it is possible for the robots to complete their
tasks without the help of operators, and for the operators to be
allocated to robots not stuck in a fault state.

The multitarget–multiagent problems form another class of
problems similar to the operator allocation problem. These
problems deal with allocation of multiple agents to a number
of targets aiming to detect or follow the targets under certain
constraints [23], [24]. However, our problem setup is different
because the behavior of the targets (robots) changes with the
allocation of agents (operators) and it is not possible to allocate
multiple agents to a single target at once. Moreover, our problem
presents a collaborative task, where both the robots and operators
are working to achieve a common goal.

Restless Multiarmed Bandit: RMAB, first introduced
in [25], is a generalization of multiarmed bandits (MAB) [26],
which has been previously used in problems like assisting
human partners [27] and distributing resources among human
teammates [28]. RMAB is a class of scheduling problems
where limited resources have to be allocated among several
alternative choices. Each choice, referred to as an arm, is a
discrete-time controlled Markov process which evolves de-
pending on the resource allocated to it. RMAB framework
has been applied to problems in stochastic scheduling, pa-
trol planning, sensor management, and resource allocation in
general [29].
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Fig. 2. State-transition diagram for robot k working on task n, where
in (n, 0), the robot is in the normal state s = 0, and in (n, 1), the robot is
in the fault state s = 1. Transitions can occur between (n, 0), (n, 1), and
(n+ 1, 0), and the probabilities change with operating mode a.

Finding the optimal policy for RMAB suffers from the curse
of dimensionality as the state-space grows exponentially with
the number of arms. In general, obtaining the optimal policy
in an RMAB is PSPACE-hard [30]. However, the Whittle index
policy offers a simpler and scalable alternative to the optimal
policy. Even though the Whittle index policy does not guarantee
an optimal solution, it minimizes expected cost for a relaxed
problem under a time-averaged constraint [25]. This approach
is shown to work quite well for several scheduling and re-
source allocation problems [31]–[33]. Some studies have also
implemented index-based methods to solve a sensor scheduling
problem [34] or to serve a number of users transmitting a
queue of data packets through a channel [32]. Therefore, it
is a reasonable approach to solve an RMAB given that the
problem satisfies a technical condition known as indexability
(more details in Section III). Unfortunately, it is difficult to verify
this condition in general and there is no universal framework that
applies to all problems. Existing methods proposed for verifying
indexability have been investigated for specific systems such as
two-state restless bandits (RBs) [35], [36] or RBs with optimal
threshold-based policy [33], [35], [37].

B. Organization

The rest of this article is organized as follows. The multirobot
assistance problem is presented in Section II. We discuss the gen-
eral restless bandit problem in Section III and indexability of the
assistance problem in Section IV. In Section V, we present two
practical classes of transition functions and establish conditions
under which problem indexability is ensured. In Section VI, we
cover the calculation of Whittle index heuristic and present an
efficient policy for the problem. Next, we present simulations of
the problem in Section VII to examine validity and performance
of the presented policy. Finally, Section VIII concludes this
article.

II. MULTIROBOT ASSISTANCE PROBLEM

Consider a DSS, consisting of a team of M human operators
supervising a fleet of K semi-autonomous robots. Each robot
k ∈ K := {1, . . . ,K} is required to complete a sequence of Nk

tasks to reach its goal. We will use a fleet of robots delivering

packages in a city as a running example but similar interpre-
tations hold for other applications mentioned in previous sec-
tions (e.g., robots reaching a sequence of configurations [12]).
In this case, the robot’s trajectory would correspond to a series of
waypoints that a robot needs to navigate to reach its destination
(goal location). At each waypoint, a robot can either operate
autonomously or be teleoperated by one of the human operators.
We assume that all human operators are identical in the way they
operate the robots and that a human operator can operate at most
one robot at a time. We now provide a mathematical model for
different components of the system.1

A. Model of the Robots

It is assumed that when operating autonomously, each robot
uses a prespecified control algorithm to complete its task. For the
delivery robot example, this could be, for instance, a simultane-
ous localization and mapping (SLAM)-based local path planner
that the robot uses for navigating between the waypoints. We
will not model the details of this control algorithm but simply
assume that this control is imperfect and occasionally causes the
robot to enter a fault state while doing a task (e.g., delivery robot
getting stuck in a pothole or losing its localization). We model
this behavior by assuming that while completing each task, the
robot may be in one of the two internal states: a normal state
(denoted by s = 0) or a fault state (denoted by s = 1). When a
robot is being teleoperated, it may still be possible for it to enter
into a fault state.

The operating state of robot k ∈ K at time t, denoted by xk
t =

(nk
t , s

k
t ), is tuple of its current task and internal state. The state-

space for robot k is given by

X k :=

Nk⋃
n=1

{(n, 0), (n, 1)} ∪ {(G, 0)}

where the terminal state (G, 0) indicates that all tasks have been
completed. The state-space for all robots is denoted by XXX =
X 1 × · · · × XK .

The state of a robot evolves differently depending on whether
it is operating autonomously (denoted by mode ak = 0) or
teleoperated (denoted by ak = 1). Given robot k ∈ K in state
(n, s) ∈ X k operating in mode a ∈ {0, 1}, let pkans denote the
probability of successfully completing the current task at the
current time step and let qkans denote the probability of toggling
the current internal state (i.e., going from normal to fault state
and vice versa). A diagram describing these transitions is shown
in Fig. 2. Note that the terminal state (G, 0) is an absorbing state,
so pkaG0 = 0 and qkaG0 = 0.

There is a per-step cost Ck : X k × {0, 1} → R≥0, where
Ck((nk, sk), ak) denotes the cost of operating robot k ∈ K in
modeak when the robot is in state (nk, sk). Note that the per-step
cost is zero in the terminal state, i.e., Ck((G, 0), a) = 0.

1Remark on Notation: Throughout this article, we use calligraphic font to
denote sets and roman font to denote variables. Uppercase letters are used to
represent random variables and the corresponding lowercase letters represent
their realizations. Bold letters are used for variables pertaining to multirobot
system while light letters represent corresponding single-robot variables.

Authorized licensed use limited to: McGill University. Downloaded on September 23,2022 at 21:16:50 UTC from IEEE Xplore.  Restrictions apply. 



1400 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2022

B. Model of the Decision Support System

There is a DSS that helps to allocate operators to the
robots. At each time, the DSS observes the operating state
Xt := (X1

k , . . . , X
K
t ) of all robots and picks at most M

robots to teleoperate. We capture this by the allocation At =
(A1

t , . . . , A
K
t ) ∈ A, where

A =

{
a := (a1, . . . , aK) ∈ {0, 1}K :

K∑
k=1

ak ≤M

}
. (1)

The allocation is selected according to a time-homogeneous
Markov policy π : XXX → A. The expected total cost incurred by
any policy π is given by

J(π) = Eπ

[ ∞∑
t=0

γt
K∑

k=1

Ck(Xk
t , A

k
t )

∣∣∣∣X0 = x0

]
(2)

where γ ∈ (0, 1) is the discount factor and x0 = (x1
0, . . . , x

K
0 )

is the initial state with xk
0 = (1, 0) for every k ∈ K.

C. Problem Objective

We impose the following assumptions on the model.
A1) Given an allocation a = (a1, . . . , aK) by the DSS, the

operating states of the robots evolve independently of
each other.

A2) For every robot k ∈ K, the probability of getting out the
faulty internal state when teleoperated is strictly greater
than 0, i.e., pk1n1 + qk1n1 > 0.

A3) Under autonomous operation, a robot stays in the fault
state, i.e., pk0n1 = qk0n1 = 0.

The design objective is to solve the following optimization
problem.

Problem 1: Given the set K of robots, the system dynamics
and the per-step costs, the number M of human operators, and
the discount factor γ ∈ (0, 1), choose a policy π : XXX → A to
minimize the total discounted cost J(π) given by (2).

Optimal solution for Problem 1 can be found by modeling it as
a MDP and solving using dynamic programming [10]. However,
the sizes of state and action spaces of the resulting model grow
exponentially with the number of robots and operators. Thus,
solving Problem 1 using dynamic programming becomes in-
tractable for larger systems. To address this, we model Problem 1
as a RMAB problem and use the notion of indexability to find an
efficient and scalable policy. We start by providing an overview
of RMAB in the next section.

III. OVERVIEW OF RESTLESS MULTIARMED BANDITS

In this section, we provide an overview of RMAB, indexabil-
ity, and the Whittle index policy.

A. Restless Bandit Process

A RB process is a controlled Markov pro-
cess (Z̃, {0, 1}, T̃ , C̃, z̃0), where Z̃ is the state-space, {0, 1} is
the action space, T̃ : Z̃ × Z̃ × {0, 1} → R[0,1] is the transition
probability function, C̃ : Z̃ × {0, 1} → R is the per-step cost

function, and z̃0 is the initial state. By convention, action 0 is
called the passive action and action 1 is called the active action.

B. Restless Multiarmed Bandit Problem

An RMAB is a collection of K independently evolving
RBs (Z̃k, {0, 1}, T̃ k, C̃k, z̃k0 ), k ∈ K := {1, . . . ,K}. Each pro-
cess is conventionally called an arm. A decision-maker selects
at most M arms (M < K) at each time instance. Let Z̃k

t and
Ãk

t denote the state of arm k and the action chosen for arm k at
time t, respectively. Let {Z̃t}t≥0 and {Ãt}t≥0 where

Z̃t := (Z̃1
t , . . . , Z̃

K
t ) and Ãt := (Ã1

t , . . . , Ã
K
t )

denote the states and actions of all arms. As the dynamics of
each arm are independent, we have

T̃ (Z̃t+1|Z̃t, Ãt) =
∏
k∈K

T̃ k(Z̃k
t+1|Z̃k

t , Ã
k
t ).

The instantaneous cost of the system is the sum of costs in-
curred by each arm. The performance of any time-homogeneous
Markov policy π̃ :

∏K
k=1Zk → {a ∈ {0, 1}K : ||a||1 ≤M}

is measured by

J̃(π̃) = E

[ ∞∑
t=0

γt
K∑

k=1

C̃k(Z̃k
t , π̃(Z̃

k
t ))

∣∣∣∣z̃10 , . . . , z̃K0
]

(3)

where γ ∈ (0, 1) denotes the discount factor. Finally, the RMAB
optimization problem is as follows.

Problem 2: Given a discount factor γ ∈ (0, 1), a collection
of arms {(Z̃k, {0, 1}, T̃ k, C̃k, z̃k0 )}k∈K, and the number M of
arms to be chosen at each time, choose a policy π̃ :

∏K
k=1Zk →

{a ∈ {0, 1}K : ||a||1 ≤M} that minimizes J̃(π̃).
Even though the arms operate independently, the actions

applied to them are not independent. They are coupled through
the operator allocation constraints. Therefore, we cannot decom-
pose the dynamic programming into multiple smaller MDPs.
As discussed earlier, the Whittle index policy is one of the
commonly used heuristic to solve an RMAB problem [25] and it
addresses the scalability issues of dynamic programming-based
solutions. This policy is computationally efficient and it readily
generalizes to the setting where K or M changes over time.
Next, we present the required definitions.

C. Indexability and the Whittle Index Policy

In this section, we restrict our discussion to a single arm and
therefore omit the superscriptk for the ease of notation. Consider
an arm (Z̃, {0, 1}, T̃ , C̃λ, z̃0) where, for some penalty λ ∈ R,
modify the per-step cost as

C̃λ(z, a) := C̃(z, a) + λa ∀ z ∈ Z̃, a ∈ {0, 1}. (4)

Then, the performance of any given time-homogeneous
Markov policy π̃ : Z̃ → {0, 1} is given by

J̃λ(π̃) := E

[ ∞∑
t=0

γtC̃λ(Z̃t, π̃(Z̃t))

∣∣∣∣Z̃0 ∼ z̃0

]
. (5)

Now consider the following auxiliary problem.
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Problem 3: Given an arm (Z̃, {0, 1}, T̃ , C̃, z̃0), the discount
factorγ ∈ (0, 1), and the penalty λ ∈ R, choose a Markov policy
π̃ : Z̃ → {0, 1} to minimize J̃

(π̃)
λ (z̃0) given by (5).

Problem 3 is an MDP. Let us denote the optimal policy of
Problem 3 by π̃λ. It is assumed that the optimal policy picks
passive action at any state where both the active and passive
actions result in the same expected cost. Next, define passive
sets and indexability.

Definition 1 (Passive set): Givenλ ∈ R, the passive set P̃(λ)
is the set of states where passive action is prescribed by π̃λ, i.e.,

P̃(λ) := {z ∈ Z : π̃λ(z) = 0} .
Definition 2 (Indexability): An arm is indexable if P̃(λ) is

nondecreasing in λ, i.e., for any λ1, λ2 ∈ R,

λ1 ≤ λ2 ⇒ P̃(λ1) ⊆ P̃(λ2).

An RMAB problem is indexable if all n arms are indexable.
Definition 3 (Whittle index): For an indexable arm, the Whit-

tle index of the state z of an arm is the smallest value of λ for
which state z is part of P̃(λ), i.e.,

w̃(z) = inf
{

λ ∈ R : z ∈ P̃(λ)
}
. (6)

Equivalently, the Whittle index w̃(z) is the smallest value of λ

for which π̃λ is indifferent between the active action and passive
action when the arm is in state z.

The Whittle index policy is as follows: At each time, compute
the Whittle indices of the current state of all arms and select the
arms in states with M highest Whittle indices (provided they are
positive).

IV. INDEXABILITY OF THE ASSISTANCE PROBLEM

Problem 1 can be formulated as an instance of RMAB, where
each robot corresponds to an arm. Under such a formulation, the
state Z̃k

t of armk corresponds to operating statexk
t = (nk

t , s
k
t )of

robot k. The transition function T̃ k corresponds to the robot state
evolution shown in Fig. 2 and the cost function C̃k corresponds
to the associated per-step cost Ck. In addition, allocating an
operator to robot corresponds to choosing the active action for
that arm while autonomous operation corresponds to choosing
the passive action. This motivates using the Whittle index policy
to solve Problem 1. However, before we can implement this
approach, we must check for indexability of the problem. As
discussed earlier, there is no universal framework to verify
indexability of a problem. Moreover, the optimal policy for
the given problem does not show any threshold-based behavior.
Therefore, we determine sufficient conditions for indexability
from first principles by using properties of the value function of
each individual arm.

Since indexability has to be checked for each arm separately,
for this analysis, we drop the superscript k from all variables.

Let Vλ : X → R be the unique fixed point of the following
equation:

Vλ(x) = min
a∈{0,1}

Qλ(x, a)

where

Qλ(x, a) = C(x, a) + λa+ γ
∑
x′∈X

T (x′|x, a)Vλ(x
′) (7)

represents the Q-value of taking action a in state x. Here the
transition function T (x′|x, a) denotes the probability of transi-
tion from state x to state x′ under action a and is represented by
Fig. 2. Let πλ : X → {0, 1} be the corresponding optimal policy

πλ(x) = arg min
a∈{0,1}

Qλ(x, a).

To ensure uniqueness of the argmin, we follow the conven-
tion that when Qλ(x, 0) = Qλ(x, 1), the passive action a = 0 is
chosen. LetP(λ) be the passive set given penalty λ and w(x) be
the Whittle index of statex for the problem of operator allocation
in a single-robot system. Furthermore, define the benefit function
as

Bλ(x) = Qλ(x, 1)−Qλ(x, 0). (8)

Then, a sufficient condition for indexability is as follows.
Lemma 1: A sufficient condition for Problem 1 to be in-

dexable is that the benefit function Bλ(x) for each robot is
monotonically increasing in λ for all states x ∈ X .

Proof: The result follows from the observation that using (8)
and Def. 1, we can rewrite the passive set as

P(λ) = {x ∈ X : Bλ(x) ≥ 0} . (9)

Thus, monotonicity of the benefit function Bλ(x) implies that
the condition for indexability given in Definition 2 is satisfied.�

We verify the monotonicity of Bλ(x) by finding bounds on
the value function and establish the following.

Theorem 1: Let rans � 1− pans − qans denote the probability
of repeating a task n under mode a with internal state s. Define
α1(n) and β0(n) as follows:

α1(n) = 1 +
γq1n0

1− γ r1n1

+

γq0n0

(
γ r1n0 +

γ2q1n0q
1
n1

1− γ r1n1
− 1

)

1− γ r1n1 − γ r0n0 + γ2r1n1r
0
n0 − γ2q0n0q

1
n1

and

β0(n) =
γ(p1n0 − p0n0) + γ2

(
p0n0r

1
n0 − p1n0r

0
n0

)
1− γ r0n0

.

Then, the single-robot problem is indexable if for all n ∈
{1, 2, . . . , N}

α1(n) ≥ 0 and
β0(n)

1− γ
≥ −1. (10)

Proof: See Appendix. �
The multirobot problem is indexable if the conditions given in

Theorem 1 hold true for all robots. In the next section, we present
specific instances of the general model described in Section II
which are indexable and discuss their relevance in practical
assistance problems for (semi)autonomous delivery robots.
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Fig. 3. State-transition probabilities under the autonomous operation
and teleoperation for type-1 transitions.

V. SPECIAL CASES: ROBOT TRANSITIONS IN THE CITY

This section presents two specific classes of transition func-
tions which represent two types of faults commonly occurring
in systems with remote navigating robots.

A. Transition Type-1: Faults With Continuation

Consider the following transition behavior along a robot’s
waypoints. At each time step, the robot moves to its next way-
point with a probability representing, for example, the crowd
in the area. There is also a probability of getting into a fault
state such as encountering an unidentifiable obstacle. A human
operator can teleoperate the robot to its next waypoint both from
a normal or fault state. Such transitions represent faults where the
robot is functioning properly but is unsure about how to proceed
due to uncertainty in its surroundings. Thus, the probability
of success when being teleoperated is the same regardless of
whether the robot is in its normal state or stopped in the fault
state, i.e., p1n0 = p1n1 and q1n0 = q1n1 = 0. The corresponding
transition dynamics are shown in Fig. 3. Note that in this case
r1n0 = r1n1 = 1− p1n0.

In this case, the coefficientsα1(n) andβ0(n) can be simplified
to the following expressions:

α1(n) = 1− γq0n0
1− γr0n0

,

β0(n) =
γ(1− γ)(r0n0 − r1n0) + γq0n0(1− γ r1n0)

1− γ r0n0
. (11)

Note that

α1(n) =
1− γ + γp0n0
1− γr0n0

≥ 0,

β0(n)

1− γ
+ 1 ≥ γ(r0n0 − r1n1)

1− γr0n0
+ 1 =

1− γr1n1
1− γr0n0

≥ 0.

Thus, α1(n) and β0(n) satisfy the sufficient condition of The-
orem 1 for all allowed values of transition probabilities and the
discount factor γ. Therefore, any robot following the type-1
transitions is indexable.

B. Transition Type-2: Faults With Reset

Consider another type of transition where the robot can get
into a fault state and needs error fixing while staying at its current
waypoint. This includes scenarios such as losing localization or

Fig. 4. State-transition probabilities under the autonomous and as-
sist/teleoperate actions for Type-2 transition dynamics.

getting stuck in a minor obstacle. The human operator can try to
assist the robot out of that situation by fixing the fault, resetting
it back to its current waypoint (assuming the system is equipped
with means to do so). Such transitions will mean that the
probabilities q1n0 = p1n1 = 0 and the corresponding transition
dynamics are shown in Fig. 4.

Substituting the values of transition probabilities from Fig. 4
to the expressions of α1(n) and β0(n), the coefficients can be
simplified to the following:

α1(n) = 1− γq0n0(1− γr1n0)

(1− γr0n0)(1− γ(1− q1n1))− γ2q0n0q
1
n1

β0(n) =
γ(1− γ)(r0n0 − r1n0) + γq0n0(1− γ r1n0)

1− γ r0n0
. (12)

Note that β0(n) here is the same as (11) and, therefore,
satisfies (10). For α1(n) to satisfy (10), the conditionα1(n) ≥ 0
results in the following condition on q1n1:

q1n1 ≥ 1− 1

γ
+

γq0n0p
1
n0

1− γr0n0 − γq0n0
. (13)

As q1n1 ≤ 1, (13) also yields the following condition on q0n0:

q0n0 ≤
1− γr0n0

γ(1 + γp1n0)
. (14)

Therefore, any robot state following the Type-2 transitions
will satisfy the condition of indexability in Theorem 1 if (13)
and (14) are satisfied, i.e., the probability q0n0 that the robot
transitions from a normal state to fault state during autonomous
operation is not too high and the probability q1n1 that the operator
brings the robot from a fault state to a normal state is not too
small.

As an example, consider a robot following Type-2 transi-
tions with p0n0 = q0n0 = p1n0 = 0.3 and γ = 0.95. In this set-
ting, any q0n0 ∈ [0, 1] satisfies (14) and any q1n1 ∈ [0.1462, 1]
satisfies (13). Thus, the model is indexable if there is at least a
14.62% chance that teleoperation successfully resets the robot
from the fault state to a normal state.

VI. COMPUTATION OF WHITTLE INDEX

As discussed in Section I-A, once the indexability of the
problem instance has been verified, we can compute Whittle
indices for all robots and determine the Whittle index policy.

General approaches of computing Whittle indices are ei-
ther based on adaptive greedy algorithm [33], [38] or binary
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Algorithm 1: Adaptive Greedy Algorithm for Whittle Index
Computation.

1: Input: Robot (X ,A, T, C, γ, x0).
2: Initialize P = ∅.
3: while P �= X do
4: Compute μ∗y , ∀y ∈ X\P using (15)
5: λ∗ ← miny∈X\P μ∗y
6: Y ← argminy∈X\P μ∗y
7: w(y)← λ∗, ∀y ∈ Y
8: P ← P ∪ Y
9: end while

search [37]. In this section, we briefly provide details on adaptive
greedy algorithm and describe how the Whittle index policy
works. Readers are encouraged to refer to [33] for a detailed
explanation and validation of the algorithm. The algorithm is
presented in Algorithm 1 for computing Whittle indices for a
single robot.

The algorithm operates as follows: For any subset Z ⊆ X ,
define the policy vector2 π(Z) : X → {0, 1} as

π(Z)(x) =

{
0, if x ∈ Z
1, if x ∈ X\Z.

Also define Cπ = [C(x, π(x))]x∈X , the cost vector for all
states under a policy π, and Tπ = [T (x′|x, π(x))]x,x′∈X , the
transition matrix under policy π.

Then, in each iteration of the while loop, compute μ∗y as
follows:

μy(x) = −Dπ(P)(x)−Dπ(P∪{y})(x)

Nπ(P)(x)−Nπ(P∪{y})(x)
∀x ∈ X

μ∗y = min
x∈Λy

μy(x) (15)

where

Dπ(x) =
[
(I − γTπ)

−1Cπ

]
(x)

Nπ(x) =
[
(I − γTπ)

−1π
]
(x)

Λy = {s ∈ X : Nπ(P)(x)−Nπ(P∪{y})(x) �= 0}.
The minimum value of μ∗y calculated in Line 5 in Algorithm 1
corresponds to the Whittle indices of the minimizing states
(Line 6). These states are then taken out of consideration in the
next iteration of the while loop by including them in the passive
setP . When Algorithm 1 exits the while loop, the Whittle indices
for all states of that robot are calculated. This procedure is then
repeated for all the robots in the system.

Once the Whittle indices for all states of all robots are
obtained, the Whittle index policy can be implemented as
given in Algorithm 2. In Line 2 of the algorithm, the function
arg_top_M({wk(xk)}) returns indices of top M positive
elements in a set, where ties are broken randomly. As deter-
mined in [33], the computational complexity of this method is

2In the following expressions, π is used as a vector of size |X |, constructed
as a mapping from each state to the corresponding action a ∈ {0, 1}.

Algorithm 2: Whittle Index Policy πI .

1: Input: Set of Whittle indices wk(xk) for all
k ∈ {1, . . . ,K} and xk ∈ Sk, No. of Operators M

2: M← arg_top_M({wk(xk)})
3: ak ← 0 for all k /∈M
4: ak ← 1 for all k ∈M // Allocate operators
5: return (a1, . . . , aK)

Fig. 5. An instance of multirobot assistance problem for robots navi-
gating in a city block-like environment. Transition zones are marked by
different color shadings, representing type-1 and type-2 transitions, as
described in Section V. Three robots are shown navigating to their cor-
responding goal locations, via a sequence of waypoints shown as black
circles. These waypoints may lie in different transition zones resulting in
varied performance for the robots.

O(K|X |3). In contrast, the computational complexity of finding
the optimal policy for Problem 1 is O((KM)|X |2K) using value
iteration, where |X | is the size of state-space of individual robot.

VII. SIMULATIONS AND RESULTS

In this section, we present performance results for a simulated
multirobot assistance problem under the following policies (de-
scribed later): 1) Optimal policy; 2) Index policy; 3) Benefit-
maximizing policy; 4) Myopic policy; and 5) Reactive policy.
The problem and the solution frameworks for all policies were
implemented using POMDPs.jl library in Julia [39].

A. Simulation Setup

For the simulations, a city map is generated, as shown in
Fig. 5, where the map is randomly divided into different zones
corresponding to one of the two transition types presented in
Section V.

The exact values of transition probabilities at different loca-
tions in the map are sampled randomly from a uniform distribu-
tion, according to Table I. The bounds on transition probabilities
qk1n1 and qk0n0 for transition type-2 are determined by (13) and (14)
respectively.
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TABLE I
PROBABILITIES VALUES USED FOR SIMULATIONS FOR THE

TWO TYPES OF TRANSITIONS

TABLE II
PARAMETER VALUES USED IN THE SIMULATED ASSISTANCE TASK

For simplicity, for a given parameter, the same range
is used for every state of all robots. Therefore, we
have removed subscript k from the notation.

For the teleoperation problem, we use the following cost
structure:

Ck ((n, s), a) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if n = G

ρkn if a = 0, s = 0

φk
n if a = 0, s = 1

ρkn + ρkT if a = 1, s = 0

φk
n + ρT if a = 1, s = 1

(16)

with ρkn, φ
k
n, ρ

k
T ∈ R≥0 for any n ∈ {1, . . . , Nk}. This cost

function captures the time that a robot takes to reach its goal, i.e.,
zero cost on reaching goal, non-negative costs for intermediate
states, and an additional cost while being assisted.

Values of the different costs and the discount factor used are
sampled from ranges specified in Table II.

Separate tests were performed to test the validity, perfor-
mance, and scalability of the index policy. At the beginning
of each simulation, a number of robots are placed on the map
(ranging from 1 to 25) with randomly generated start and goal
locations, and seven waypoints uniformly placed between the
two. In practice, these waypoints are generated by a separate
robot path planner for each individual robot, and are considered
as an input for the operator allocation problem.

B. Baseline Policies

We consider the following baseline policies to assess the
performance of the index policy.

Optimal Policy: The Optimal policy π∗ : XXX → A, as de-
fined by (2), is found by encoding the complete problem with
all robots as an MDP and solving it using the Sparse Value
Iteration Solver from the POMDP.jl library.

Reactive Policy: The reactive policy allocates an operator
to any robot stuck in a fault state. If there are more such robots
than operators, a random subset of those robots is selected.

Myopic Policy: Myopic/greedy policies are commonly
used to obtain fast (but suboptimal) solutions to intractable

problems. In this article, we implement an l-step myopic policy
presented in [3] for l ∈ {1, 2}. Define V 0(xt+1) as the expected
cost incurred by the system from current time step to infinity
under passive actions. The l-step myopic policy πG−l : XXX → A
is then defined as

πG−l(xt) = argmin
a∈A

g(xt,a, l) (17)

where the l-step look-ahead cost g(xt,a, l) is given by

g(xt,a, l) =

⎧⎪⎪⎨
⎪⎪⎩
C (xt,a)+∑
xt+1

γ T (xt+1|xt,a) g(xt,a, l − 1), if l = 0

V 0(xt+1), otherwise

where

C (x,a) =
K∑

k=1

Ck
(
xk, ak

)
is the cost incurred in the current time step.

Benefit-Maximizing Policy: For comparison, we also pro-
pose a heuristic policy which we call benefit-maximizing policy
that tries to exploit the independence of the robots’ transitions.
This policy is inspired by the advantage function used in rein-
forcement learning (for example, see [40]). The policy considers
the benefit or advantage of taking the active action over the
passive action for each robot and picks the robots with highest
benefit at each time step, i.e.,

πB(xt) = argmin
a∈A

K∑
k=1

ak B0(x
k
t ) (18)

where B0(x) corresponds to Bλ(s) defined in (8) with λ = 0.

C. Comparison With the Optimal Policy

First, the index policy is compared against the optimal policy
to validate its applicability for our problem. Due to its poor
scalability, the optimal policy cannot be computed for larger
problem instances; therefore, this test is limited to smaller
problem size (up to four robots and two operators). The relative
performance (ratio of the cost incurred under index policy to
that under optimal policy) is shown in Fig. 6. For comparison,
100 problem instances were tested under both policies and were
simulated through Monte–Carlo rollouts. Each problem instance
is run until all robots reach their respective goal locations. This
is repeated for 106 iterations and average cost is recorded.

It is observed that the index policy performs quite close to
the optimal policy for all test cases. As the ratio of number of
robots to number of operators increases, the index policy starts
to degrade in comparison to the optimal. However, the relative
cost for most cases still remains within 5% of the optimal.

D. Comparison With Other Baseline Policies

Next, we compare the performance (measured as average cost
incurred per robot before reaching its goal) of the index policy
with the three baseline policies on larger problem instances. For
the comparison, a set of 100 problem instances is created, each
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Fig. 6. Relative performance of index policy compared to the optimal
policy. The plots show distribution of 100 indexable problem instances
based on their performance under the two policies. Relative perfor-
mance is calculated as the ratio of the average cost incurred under index
policy to that under optimal policy.

with a set of seven waypoints with randomly sampled transition
probabilities, according to Table I. Each instance of the problem
is then simulated separately under the different policies using
Monte–Carlo rollouts until all robots reach their goal states,
repeated for 500 iterations. Each simulation iteration (rollout)
is timed out at 10 s for each policy. If an iteration takes longer
than this time, the simulations are interrupted and the policy’s
result for that test condition is not reported.

Fig. 7 shows performance comparison of the four policies.
The index policy performs best out of the four policies, followed
by the benefit-maximizing policy (πB) and the myopic policy
(πG). The reactive policy performed the worst as expected. As
a side note, the average cost incurred per robot under any policy
is strongly correlated with the ratio of number of robots to the
number of available operators. This observation supports the
intuition that as human operators are required to distribute their
assistance among more robots, their effectiveness decreases.

E. Scalability

Table III shows the time that each policy takes to compute
operator the allocation under different problem sizes. For these

Fig. 7. Performance comparison of the four policies for different num-
ber of operators available for allocation. Error bars in the plots show
one standard deviation above and below the average. Note that in larger
problem instances, the simulations for myopic policies timed out and
could not be completed in the specified time limit (10 s per rollout).

TABLE III
COMPUTATION TIMES OF DIFFERENT POLICIES (SECONDS)

simulations, each robot is set to have seven waypoints. As ob-
served from the table, the computation times of the two myopic
policies scale exponentially with both the number of robots and
the number of operators, with the time for 2-step myopic policy
growing at a much higher rate.

The computation times for the index and benefit maximizing
policies scale linearly with the number of robots and are inde-
pendent of the number of operators. Also, note that the Whittle
index computation for one robot is independent from the rest.
Therefore, robots can be added/removed without recomputation
of already computed indices. Furthermore, if the number of op-
erators changes to M > 1, the policy simply allocates operators
to the robots with the M highest Whittle indices. As a result,
the policy is efficiently scalable with the number of robots and
operators. For reference, the simulations were run on a Desktop
PC with a 4 core, 4.20 GHz processor and 32 GB of RAM.

VIII. CONCLUSION

In this article, we provide an analysis of operator allocation
problem for a multirobot assistance task and demonstrate the
effectiveness of RB framework to obtain a scalable policy. This
policy is based on Whittle index heuristic and performs close to
the optimal and significantly better than other efficient solution
approaches. We also provide an analysis of indexability of such
problems and give a simplified condition to quickly verify if a
problem instance is indexable. These results can also be used
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to specify required transition behavior in the form of bounds on
transition probabilities.

There are, however, a few limitations of the proposed ap-
proach. When a problem instance is not indexable, the Whittle
indices are not defined and the methods of computing these
indices may not give meaningful values. Therefore, the proposed
approach is not applicable in such cases.

Also, note that the conditions for indexability identified in
Theorem 1 are sufficient but not necessary. However, the as-
sistance problem presented here is indexable in most instances.
This was verified by randomly generating problem instances
without any bounds and numerically verifying monotonicity of
the passive set P(λ). Out of the 1000 random instances, 999,
992, and 940 instances were found to be indexable for discount
factors γ = 0.9, 0.95, 0.99, respectively. However, the sufficient
conditions were satisfied for 700, 607, and 452 instances for
γ = 0.9, 0.95, 0.99. This suggests that model is, in general,
indexable and the Whittle index heuristic is applicable. It also
suggests that the system may benefit from improved sufficient
conditions for indexability. It is worth noting that this analysis
can provide us with a class of transitions for which there is
no need to check the conditions. For instance, in the case of
transition type-1, the sufficient conditions are satisfied for all
values of transitions probabilities and thus the requirements for
indexability are always met.

There are several research directions for future work that can
lead to a richer modeling of such operator allocation problems.
Incorporating the notion of uncertain transition probabilities
instead of assuming the knowledge of exact values will result in
a more robust model. The probabilities can be estimated using
recorded data [2], [3] or, by modeling performance parameters
such as operators’ expertise [41]. Shifting the system definition
from discrete to continuous space (or just adding the time di-
mension to the actions) can represent a more practical scenario.
Overall, this article presents a starting point to a wide variety
of human–robot collaborative systems with multiple agents and
provides a promising framework to solve large instances of such
problems.

APPENDIX

For any fixed value of λ, the value function Vλ(x) can also be
written as

Vλ(x) = min
π∈Π

E

[ T∑
t=0

[C(Xt, At) + λAt] |X0 = x

]

where Π denotes the set of all Markov policies from X to
{0, 1}. Since the state-space X is finite, so is Π. Thus, Vλ(x)
is the minimum of a finite number of functions, each of which
is linear in λ. Therefore, Vλ(x) is continuous and piecewise
linear, with a finite number of corner points. This means Vλ(x),
and therefore, Qλ(x, a) and Bλ(x), are nondifferential with
respect to λ at a finite number of points. Therefore, Bλ(x) is
monotonically increasing if ∂Bλ(x)/∂λ, wherever it exists, is
non-negative. Let Λ∗(x) denote the finite set of values where
Bλ(x) is nondifferentiable. Let Λ∗ = ∪x∈XΛ∗(x).

The main idea for the proof of Theorem 1 is to show that
if (10) is satisfied, then ∂Bλ(x)/∂λ is non-negative for λ /∈ Λ∗.
Then, Lemma 1 implies the indexability of the problem.

Now fix an n ∈ {1, . . . , N}. Define z = (n, 0), z′ = (n+
1, 0) and e = (n, 1). Then, using (7) and Fig. 2, we have

Qλ(z, a) = C(z, a) + λa+ γqan0Vλ(e)

+ γpan0Vλ(z
′) + γran0Vλ(z) (19)

Qλ(e, a) = C(e, a) + λa+ γqan1Vλ(z)

+ γpan1Vλ(z
′) + γran1Vλ(e). (20)

Then, we have the following results3:
Lemma 2: For all λ /∈ Λ∗,

0 ≤ ∂Vλ(x)

∂λ
≤ 1

1− γ
∀x ∈ X .

Proof: Under an optimal policy π∗, we have

Vλ(x) = E

[ ∞∑
t=0

γtCλ(Xt, π
∗(Xt))

∣∣∣∣X0 = x

]
.

Therefore, we get

∂Vλ(x)

∂λ
=

∂

∂λ
E

[ ∞∑
t=0

γtCλ(Xt, π
∗(Xt))

∣∣∣∣X0 = x

]

= E

[ ∞∑
t=0

γt ∂

∂λ
Cλ(Xt, π

∗(Xt))

∣∣∣∣X0 = x

]
.

Since ∂
∂λ
Cλ(x, π

∗(x)) ∈ [0, 1] for all x ∈ X , we can write

0 ≤ ∂Vλ(x)

∂λ
≤

∞∑
t=0

γt ⇒ 0 ≤ ∂Vλ(x)

∂λ
≤ 1

1− γ
.

�
Define

α0(n) = 1

β0(n) =
γ(p1n0 − p0n0) + γ2

(
p0n0r

1
n0 − p1n0r

0
n0

)
1− γ r0n0

α1(n) = 1 +
γq1n0

1− γ r1n1

+

γq0n0

(
γ r1n0 +

γ2q1n0q
1
n1

1− γ r1n1
− 1

)

1− γ r1n1 − γ r0n0 + γ2r1n1r
0
n0 − γ2q0n0q

1
n1

,

β1(n) = γp1n0 +
γ2q1n0p

1
n0

1− γr1n1

+

(
γp0n0 − γ2p0n0r

1
n1 + γ2q0n0p

1
n0

)(
γr1n0 +

γ2q1n0q
1
n1

1− γr1n1
− 1

)

1− γr1n1 − γr0n0 + γ2r1n1r
0
n0 − γ2q0n0q

1
n1

.

3More details are provided in arXiv preprint [14].
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Also define b00(n) = b10(n) = 1 and

b01(n) =
1− γr0n0
1− γr1n0

b11(n) =
1− γr1n1 − γr0n0 + γ2r1n1r

0
n0 − γ2q1n1q

0
n0

1− γr1n1 − γr1n0 + γ2r1n1r
1
n0 − γ2q1n1q

1
n0

.

Lemma 3: Let πλ(z) = i and πλ(e) = j, then for λ /∈ Λ∗,

∂Bλ(z)

∂λ
= bij(n)

[
αj(n) + βj(n)

∂Vλ(z
′)

∂λ

]
.

Proof: Observe that when i = 0, from (19), we get that

Qλ(z, 0) =
C(z, 0) + γq0n0Vλ(e) + γp0n0Vλ(z

′)
1− γr0n0

(21)

Qλ(z, 1) = C(z, 1)+λ + γq1n0Vλ(e) + γp1n0Vλ(z
′)

+ γr1n0Qλ(z, 0). (22)

Similarly, when i = 1, from (19), we get that

Qλ(z, 0) = C(z, 0) + γq0n0Vλ(e) + γp0n0Vλ(z
′)

+ γr0n0Qλ(z, 1) (23)

Qλ(z, 1) =
C(z, 1)+λ + γq1n0Vλ(e) + γp1n0Vλ(z

′)
1− γr1n0

. (24)

Furthermore, when j = 1, from (20), we get

Vλ(e) =
C(e, 1) + λ + γq1n1Vλ(z) + γp1n1Vλ(z

′)
1− γr1n1

(25)

and when j = 0, we get

Vλ(e) =
C(e, 0)

1− γ
. (26)

The result then follows from considering the four cases
(i, j) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} separately and simplifying

∂Bλ(z)

∂λ
=

∂Qλ(z, 1)

∂λ
− ∂Qλ(z, 0)

∂λ
. (27)

�
Lemma 4: For all λ /∈ Λ∗, ∂Bλ(e)/∂λ ≥ 0.
Proof: We consider two cases.
1) Case I: πλ(e) = 0:
From (20), we have

Qλ(e, 0) = Vλ(e) =
C(e, 0)

1− γ

which is independent of λ. Therefore, we get

∂Bλ(e)

∂λ
=

∂Qλ(e, 1)

∂λ
= 1 + γq1n1

∂Vλ(z)

∂λ
+ γp1n1

∂Vλ(z
′)

∂λ
.

From Lemma 2, we know that ∂Vλ(z)/∂λ ≥ 0 and
∂Vλ(z

′)/∂λ ≥ 0. This gives us ∂Bλ(e)/∂λ ≥ 0.
2) Case II: πλ(e) = 1:
As a result, we have

Qλ(e, 0) = C(e, 0) + γVλ(e).

Therefore, using (27), we get

∂Bλ(e)

∂λ
= (1− γ)

∂Vλ(e)

∂λ
.

From Lemma 2, we get that ∂Bλ/∂λ ≥ 0. �

A. Proof of Theorem 1

Lemma 4 shows that the benefit function Bλ(x) is always
monotonically increasing for all fault states. Since γ ∈ (0, 1)
and qans ≤ 1− rans for alla, s ∈ {0, 1}, we can verify that b01(n)
and b11(n) are strictly positive (by replacing qans with 1− rans
and using the fact that γ − γrans < 1− γrans).

Lemma 2 gives us bounds on the derivative of the value
function with respect to λ. These bounds are then used with
results of Lemma 3 to show that the function Bλ(x) is monoton-
ically increasing for all x ∈ X if for all n ∈ {1, 2, . . . , N} and
j ∈ {0, 1}4

αj(n) ≥ 0 and αj(n) + βj(n)
1

1− γ
≥ 0.

We observe that α0(n) = 1 ≥ 0. Also, the terms in α1(n) +
β1(n)/(1− γ) can be simplified to 1/b11(n) by rearranging and
canceling the common terms. Since b11(n) > 0, we getα1(n) +
β1(n)/(1− γ) > 0.

Therefore, the single-robot problem is indexable if

α1(n) ≥ 0 and
β0(n)

1− γ
≥ −1 ∀n ∈ {1, . . . , N}.

�
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