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Abstract— We present a robotic exploration technique in
which the goal is to learn a visual model that can be used
to distinguish between different terrains and other visual com-
ponents in an unknown environment. We use ROST, a realtime
online spatiotemporal topic modeling framework to model these
terrains using the observations made by the robot, and then use
an information theoretic path planning technique to define the
exploration path. We conduct experiments with aerial view and
underwater datasets with millions of observations and varying
path lengths, and find that paths that are biased towards
locations with high topic perplexity produce better terrain
models with high discriminative power.

I. INTRODUCTION

This work presents an exploration technique using a
realtime online topic modeling framework, which models
the cause of the observations made by a robot with a latent
variable (called topic) that is representative of different kinds
of terrains or other visual constructs in the scene, and then
uses simple gradient ascent in semantic information space to
find an exploratory path through the world.

We define curiosity as the unsupervised act of moving
through the world in order to seek novel observations with
high information content. We posit that observation data
collected from such paths that seek novelty and maximize
information gain would result in better terrain models. Com-
puting information gain on low level sensor data, which
in the case of vision corresponds to pixel colors or edges,
might not work in many scenarios where we are interested in
modeling more abstract visual constructs. Hence, we propose
the use of a topic modeling framework, which have been
shown to produce semantic labeling of text [1] and images
[2], including satellite maps [3].

In this work we use a realtime online spatiotemporal topic
modeling technique called ROST [4] that is suitable for
use in the robotic exploration context. ROST allows for
topic modeling of streaming data (observations made by
a robot over time), while taking into account the spatial
and temporal distribution of the data. Moreover, ROST can
process the incoming observation data in real time, while
providing a very close approximation to traditional batch
implementations [4].

At each time step, we add the observations from the
current location to the topic model, and compute the per-
plexity of the observations from the neighboring locations.
This perplexity score, along with a repulsive potential from
previously visited locations, is then used to bias the proba-
bility of next step in the path. Since observations with high
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Fig. 1. Example of an exploratory path (top) produced by the proposed
technique on a satellite map. The path begins in Blue, and ends in Red.
Output of this exploration is a terrain model, which when applied to the ob-
servation from entire map produces terrain label for every location(bottom).
Different colors represent different terrains.

perplexity have high information gain, we claim that this
approach would results in faster learning of the terrain topic
model, which would imply shorter exploration paths for the
same accuracy in predicting terrain labels for unseen regions.

The main contribution of this work is in demonstrating
that first, robots can use online topic modeling to learn a
visual terrain model with no supervision, and second, that
even with the use of a simple greedy exploration approach,
we can achieve improved results.

II. PRIOR WORK

Autonomous exploration is a well studied field in robotics,
and there are different variants of the exploration problem.



A. Exploration for Navigation

Navigating a robot through free space is a fundamental
problem in robotics. Yamauchi [5] defined exploration as
the “act of moving through an unknown environment while
building a map that can be used for subsequent navigation”.
Yamauchi’s proposed solution involved moving the robot
towards the frontier regions in the map, which were described
as the boundary between known free space and the uncharted
territories.

If we have an inverse sensor model of the range sensor,
it is possible to compute locations in the world which
would maximize the utility of the sensor reading in resolving
obstacle position and shape. Grabowski [6] proposed such
an exploration strategy where the goal is to maximize the
understanding of obstacles rather than the exposure to free
space. In this approach, the robot identifies the location
with next best view in space where a sonar sensor reading
would have the greatest utility in improving the quality of
representation of an obstacle.

If there is no external localizer available to the robot, then
it is desirable that robot explores, maps and localizes in the
environment at the same time [7][8][9][10]. Bourgault [2]
and Stachniss [11] have proposed an exploration strategy
which moves the robot to maximize the map information
gain, while minimizing the robot’s pose uncertainty.

B. Exploration for Monitoring Spatiotemporal Phenomenon

In underwater and aerial environments, obstacle avoidance
is typically not the primary concern, but many different kinds
of high level exploration tasks still exist.

Binney [12] has described an exploration technique to op-
timize the monitoring spatiotemporal phenomena by taking
advantage of the submodularity of the objective function.
Bender [13] has proposed a Gaussian process based explo-
ration technique for benthic environments, which uses an
experiment specific utility function. Das et al. [14] have pre-
sented techniques to autonomously observe oceanographic
features in the open ocean. Hollinger et al. [15] have studied
the problem of autonomously studying underwater ship hulls
by maximizing the accuracy of sonar data stream. Smith
et al. [16] have looked at computing robot trajectories
which maximize information gained, while minimizing the
deviation from the planned path.

Thompson et al. [17] have experimented with autonomous
planetary surveys using a rover and an orbiter providing non-
local information. They used a gaussian process to model
sensor data uncertainty, using the data from the orbiter and
the rover, and then planned a path maximizing information
gain.

III. TERRAIN MODELING

A. Topic Models

Topic modeling methods were originally developed for
text analysis. Probabilistic Latent Semantic Analysis (PLSA)
proposed by Hoffman [18], models the probability of observ-
ing a word wi in a given document M as:

P(wi = v|M) =

K∑
k=1

P(wi = v|zi = k)P(zi = k|M). (1)

where v takes a value between 1 . . . V , the vocabulary size,
and zi is the hidden variable or topic label for wi. Topic
label zi takes a value between 1 . . .K, where K is a much
smaller than V . The central idea here is the introduction
of the latent variable z, which models the underlying topic,
or the context responsible for generating the word. Latent
Dirichlet Allocations [1] improve upon PLSA by placing
Dirichlet priors on P(w|z) and P(z|M), which bias these
distributions to be sparse, preventing overfitting.

Spatial LDA (SLDA) [19] is an extension to LDA allowing
it to be useful on data with spatial information, such as
images. SLDA models the documents as spatial regions in an
image, and models them as another random variable. A word
is likely to be assigned to a document if its location is close
to other words in the document, and has the same topic label
as other words in the document. This approach is however
not suitable for realtime implementation because computing
the topic distribution of the spatial context (document) of
the word requires O(WM ) time, where WM is the number
of words in an image. ROST on the other hand models
the spatial and temporal context of the words using only
the spatiotemporal information and not the topic label. As
a result, it is able to compute the topic distribution of the
spatiotemporal context of a word in O(1) time through the
use of a cellular decomposition of the spatiotemporal data.

For modeling visual data observed by the robot, instead
of text words, we use two different kinds of visual words:
Oriented BRIEF (ORB) [20] based visual words [21] that
describing local visual features, and texton words [22] in
Lab color space to describe texture properties of a region.
Moreover, instead of documents, we compute the prior topic
distribution for a given word by taking into account the topic
distribution in its spatial neighborhood. We posit that the
resulting topic labels modeled by the system then represent
high level visual patterns that are representative of different
terrain types in the world.

B. Generative Process for Observations

We assume the following generative process for obser-
vations produced by the spatial region being explored. The
world is decomposed into C cells, in which each cell c ∈ C is
connected to its neighboring cells G(c) ⊆ C. In this paper,
we only experiment with grid decomposition of the world,
where each cell is connected to its four nearest neighbors.
However, the general ideas presented here are applicable
to any topological decomposition of space-time. Note that
neighborhoods of neighboring cells are overlapping, which
is essential to model continuity in space-time.

Each cell is modeled by a mixture of at most K different
kinds of terrain topics, each of which when observed by a
robot can result in one of the V different types of visual
words. Let θG(c) be the distribution of topics in and around
the cell. Intuitively, we would like visual words with the
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Fig. 2. Dirichlet Priors for 2D Maps. The table shows random maps
sampled from the generative process used to characterize spatial terrain
information in 2D worlds. Columns show variation in neighborhood size
δ, and rows show variation in Dirichlet concentration parameter α. We see
that changes in α control cluster sizes, whereas changes in δ control mixing
of adjacent clusters.

same topic to cluster together in space. This phenomena can
be modeled by placing a Dirichlet prior on θG(c).

Figure 2 shows random samples from the generative pro-
cess used to describe these terrain topic distribution in a 2D
map, with 16 topics. As we vary the Dirichlet concentration
parameter α and the neighborhood size δ, we see that smaller
α results in fewer topics in the neighborhood of any given
cell, and smaller δ results is clusters with less mixing.

Similar to LDA, we describe each topic k by a word
distribution φk over V different types of visual words, and
φk is assumed to have a Dirichlet prior with parameter β.
This Dirichlet prior puts a constraint on the complexity of the
terrain being described by this topic. Topic model Φ = {φk}
is a K × V matrix that encodes the global topic description
information shared by all cells.

The overall generative process for a word w in cell c is
thus described as following:

1) Word distribution for each topic k:

φk ∼ Dirichlet(β)

2) Topic distribution for words in neighborhood of c :

θG(c) ∼ Dirichlet(α)

3) Topic label for w:

z ∼ Discrete(θG(c))

4) Word label:
w ∼ Discrete(φz)

where x ∼ Y implies that random variable x is sampled
from distribution Y .

C. Gibbs Sampling

At each time step, we add the observed words to their
corresponding cells, and use a Gibbs sampler to update and
refine the topic labels until the next time step.

Let P = {p1, . . . , pT }, pi ∈ C, be the set of cells in the
current path at time T .

The posterior topic distribution for a word wi in cell pt = c
is given by:

P(zi = k|wi = v, pt = c) ∝
nvk,−i + β∑V

v=1(nvk,−i + β)
·

nkG(c),−i + α∑K
k=1(nkG(c),−i + α)

,

(2)

where nvk,−i counts the number of words of type v in
topic k, excluding the current word wi, and nkG(c),−i is the
number of words with topic label k in neighborhood of cell
c, excluding the current word wi, and α, β are the Dirichlet
hyper-parameters. Note that for a neighborhood size of 0,
G(c) = c, and the above Gibbs sampler is equivalent to the
LDA Gibbs sampler proposed by Griffiths et al. [23].

Several different strategies exist in the literature to do
online refinement of the topic label assignment on streaming
data [24]. However, in this work, we are interested in the
more constrained realtime version of the problem. After each
new observation, we only have a constant amount of time
to do topic label refinement, hence any online refinement
algorithm that has computational complexity which increases
with new data is not applicable.

We then must use a refinement strategy which only par-
tially updates the topic labels after each time step. To ensure
that the topic labels from the last observation converge before
the next observation arrives, at each time step, for each
refine iteration, we refine the last observation with probability
τ , or a previous observation with probability (1 − τ). We
pick the previous observation using age proportional random
sampling. We found τ = 0.5 to work well in most cases,
however on faster machines, τ could be set to a lower
value, which would encourage better globally optimal topic
labels. Algorithm 1 summarizes the proposed realtime topic
refinement strategy.

IV. CURIOSITY BASED EXPLORATION

At time t, let the robot be in cell pt = c, and let G(c) =
{gi} be the set of cells in its neighborhood. We would like
to compute a weight value for each gi, such that

P(pt+1 = gi) ∝ weight(gi) (3)

In this work we consider a four different weight functions.



while true do
while no new observation do

a ∼ Bernoulli(τ)
if a == 0 then

(*select last observation*)
t← T

else
(*pick an observation with probability
proportional to its timestamp*)
t← q,P(q = j) ∝ j, 1 ≤ j ≤ T

end
foreach word wi in pt do

(*update the topic label for word in the
observation *)
zi ∼ P(zi = k|wi = v, pt = c)

end
end
T ← T + 1
Add new observed words to their corresponding
cells.

end
Algorithm 1: Keep topic labels up-to-date as new obser-
vations arrive.

1) Random Walk - Each cell in the neighborhood is
equally likely to be the next step:

weight(gi) = 1. (4)

2) Stochastic Coverage - Use a potential function to repel
previously visited locations:

weight(gi) =
1∑

j nj/d
2(pt, cj)

. (5)

where nj is the number of times we have visited cell
cj , and d(pt, cj) is the Euclidean distance between
these two cells.

3) Word Perplexity - Bias the next step towards cells
which have high word perplexity:

weight(gi) =
WordPerplexity(gi)∑

j nj/d
2(pt, gj)

. (6)

4) Topic Perplexity - Bias the next step towards cells
which have high topic perplexity:

weight(gi) =
TopicPerplexity(gi)∑

j nj/d
2(pt, gj)

. (7)

We compute the word perplexity of the words observed in
gi by taking the inverse geometric mean of the probability
of observing the words in the cell, given the current topic
model and the topic distribution of the path thus far.

WordPerplexity(gi) =

exp

(
−
∑W

i log
∑

k P(wi = v|k)P(k|P )

W

)
,

(8)

where W is the number of words observed in gi, P(wi =
v|k) is the probability of observing word v if its topic label

Dataset width(px) height(px) n.cells n.words
Montreal1 1024 1024 4096 3,239,631
Montreal2 1024 1024 4096 1,675,171
SouthBellairs 2500 2500 6241 1,664,749

TABLE I
DATASET SPECIFICATIONS

is k, and P(k|P ) is the probability of seeing topic label k
in the path executed by the robot thus far.

To compute topic perplexity of the words observed in gi,
we first compute topic labels zi for these observed words by
sampling them from the distribution in Eq. 2, without adding
these words to the topic model. These temporary topic labels
are then used to compute the perplexity of gi in topic space.

TopicPerplexity(gi) =

exp

(
−
∑W

i logP(zi = k|P )

W

)
.

(9)

V. EXPERIMENTS

To validate our hypothesis that biasing exploration towards
high perplexity cells will result in a better terrain topic model
of the environment, we conducted the following experiment.
We considered three different maps, two aerial view, and
one underwater coral reef map, the specifications of which
is given in Table I. We extracted ORB words describing local
features, and texton words describing texture at every pixel
(every second pixel for the SouthBellairs underwater dataset).
ORB words had a dictionary size of 5000, and texton words
had a dictionary size of 1000. The dictionary was computed
by extracting features from every 30th frame of a completely
unrelated movie1.

Each of these maps were decomposed into square cells
of width 16 (32 for SouthBellairs). Now for each weight
function, we computed exploration paths of varying length,
with 20 different random restart locations for each case. Each
time step was fixed at 200 milliseconds to allow the topic
model to converge. We limited the path length to 320 steps,
which is about 5

√
|C|.

Each of these exploration runs returned a topic model Φp,
which we then used to compute topic labels for each pixel
in the map in batch mode. Let Zp be these topic labels. We
compared this topic labeling with two other labelings: human
labeled ground-truth Zh, and labels computed in batch mode
Zb, with random access to the entire map. An example of
this labeling for each of the three dataset is shown in Fig.
3 (j,k,l). Here different colors correspond to different topic
labels, and hence regions with the same color, within a map,
correspond to similar terrains. Note that there is no relation
between colors of topic labels between different maps.

We then computed the mutual information between Zp and
Zh, Zp and Zb, and plotted the results as a function of path
length, as shown in Fig. 4.

1We used the documentary movie Baraka(1992) for extracting visual
feature, because of its rich visuals from many different contexts



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3. (a)-(c) Input image used to generate observation data, (d)-(f) Groundtruth labeling. (g)-(i) An example path and the topic labels computed online.
Parts of the path with higher density of points is indicative of multiple passes through that cell. (j)-(l) Terrain labeling of the map using the topic model
computed on the path. Similar colors in the ground truth and topic labels correspond to similar terrains, however the colors between differnt ground truth
and topic label maps are not related.
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Fig. 4. Evaluation of the proposed exploration techniques. The plots show mutual information between the maps labeling produced using the topic model
computed online during the exploration, with maps labeled by a human, and maps labeled by batch processing of the data.

ROST was run with Dirichlet hyper-parameters α = 0.01
and β = 0.1, and number of topics K = 5.

VI. RESULTS AND DISCUSSION

The results are both encouraging and surprising. As shown
in Fig. 4, we see that topic perplexity based exploration
(shown with blue squares) performs consistently better than
all other weight functions, when compared against ground
truth, or the batch results.

For paths of length 80, which is close to the width of
the maps, we see that mutual information between topic
perplexity based exploration and ground truth is 1.51, 1.20
and 1.05 times higher respectively for the three datasets,
compared to the next best performing technique.

For long path lengths (320 steps or more), stochastic cov-
erage (shown with orange circles) based exploration matches
the mean performance of topic perplexity exploration. This
is expected because the maps are bounded, and as the path
length increases, the stochastic coverage algorithm is able
to stumble across different terrains, even without a guiding
function.

For short path lengths (40 steps or less), we do not see any
statistical difference between the performance of different
techniques.

Marked with purple triangles, we see the results of explo-
ration using Brownian random motion. Although this strategy

has a probabilistic guarantee of asymptotically complete cov-
erage, but it does so at a lower rate than stochastic coverage
exploration startegy. A random walk in two dimensions is
expected to travel a distance of

√
n from start, where n is the

number of steps. Hence it is highly likely that it never visits
different terrains. The resulting topic models from these paths
are hence unable to resolve between these unseen terrains.

The performance of word perplexity exploration (shown
with green diamonds) is surprisingly poor in most cases. We
hypothesize that this poor performance is due to the algo-
rithm getting pulled towards locations with terrain described
by a more complex word distribution. This will cause the
algorithm to stay in these complex terrains, and not explore
as much as the other algorithms. In comparison, the topic
perplexity exploration is not affected by the complexity of
the distribution describing the topic, and is only attracted to
topic rarity.

VII. CONCLUSION

We have presented a novel exploration technique that aims
to learn a terrain model for the world by finding paths
with high information content. The use of a realtime online
topic modeling framework allows us to model incoming
streams of low level observation data via the use of a latent
variable representing the terrain. Given this online model,
we measure the utility of the potential next steps in the path.
We validated the effectiveness of the proposed exploration



technique over candidate techniques by computing mutual
information between the terrain maps generated using the
learned terrain model and hand labeled ground truth, on three
different datasets.

In our ongoing future work, we are in the process of im-
plementing the proposed approach on Aqua[25] underwater
robot and aerial vehicles. We expect the approach to be useful
in studying delicate ecosystems by adaptively focusing data
collection on regions with higher information content, which
in physical world might relate to surprising phenomena.
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