
Offline Navigation Summaries

Yogesh Girdhar and Gregory Dudek

Abstract— In this paper we focus on the task of summarizing
observations made by a mobile robot on a trajectory. A
navigation summary is the synopsis of these observations. We
pose the problem of generating navigation summaries as a
sampling problem. The goal is to select a few samples from
the set of all observations, which are characteristic of the
environment, and capture its mean properties and surprises.
We define the surprise score of an observation as its distance
to the closest sample in the summary. Hence, an ideal summary
is defined to have a low mean and a low max surprise score,
measured over all the observations.

We present three different strategies for solving this sampling
problem. Of these, we show that the kCover sampling algorithm
produces summaries with low mean and max surprise scores;
even in the presence of noise. These results are demonstrated
on datasets acquired in different robotics context.

I. INTRODUCTION

A navigation summary is a synopsis of observations made
by a robot on a trajectory. Several years ago the term vacation
snapshot problem[1] was coined to refer to the algorithm
task analogous to what many tourists face: summarize their
vacation using a small set of images. Hence, the task of gen-
erating a navigation summary can be seen as a generalization
of the vacation snapshot problem, as it incorporates not just
image data, but any other sensor data, including location.

We pose the problem of generating navigation summaries
as a sampling problem. Three different data sampling strate-
gies to generate navigation summaries are proposed. An ideal
navigation summary consists of a small set of observation
samples, which are characteristic of what was observed. The
size of the summary is a user definable parameter, and can be
arbitrarily small. By analogy, when you show your friends
a slide show of you last vacation, the length of the show
is determined in advance (or we at least hope so, for your
friend’s sake).

The summary samples should not only represent the mean
appearance of the trajectory, but also its surprises. Hence, we
judge the quality of a given summary using two different cri-
terion: mean surprise and max surprise. We define surprise of
an observation as its distance to the nearest observation in the
summary. Finally, we analyze the properties of the navigation
summaries generated using the proposed algorithms for data
collected over two different terrains. This paper focuses on
observation data in the form of images and the corresponding
camera locations. The techniques discussed can however be
applied to observations coming from any other sensors.

Applications of this work extend into several different
areas such as surveillance, automated sample collection by
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Fig. 1. Focus of this paper is to compute navigation summaries using
information-theoretic and statistical tools. Generating semantic summaries
requires either task specific information, or learning from a biological agent.

a planetary rover, and automated inspections of an environ-
ment. Simply saving every observation or collecting every
sample is often of little utility. The approach presented in
this paper can be used to produce summaries of size suitable
for analysis by a human directly.

In our previous work [2] we have explored the problem
of generating navigation summaries online. The goal of this
paper is to formalize the offline version of this problem.

II. RELATED WORK

The problem of generating navigation summaries with
image data is related to both the video segmentation problem
and the problem of identifying landmark views in a view
based mapping system.

A good example of work on view based maps is by
Konolige et al. [3]. In this work, the goal is to identify a
set of representative views and the spatial constraints among
these views. These views are then used to localize the robot.
With this approach we end up with a number of images
proportional to the length of the robot trajectory, and hence
these view images do not satisfy our size criterion.

Related is the work by Ranganathan and Dellaert [4],
where the goal is to identify a set of landmark locations, and
then build a topological map using them. This work is also
the first to introduce the notion of “Bayesian Surprise” [5] to
the robotics community. The images selected by this system,
although well suited to building topological maps, are how-
ever still not suitable for generating navigation summaries.
First, we are not only interested in selecting surprising
landmark locations, but also images which represent the
typical (i.e. mean) appearance of the world. Second, number
of samples selected are a function of trajectory length and
complexity.

2011 IEEE International Conference on Robotics and Automation
Shanghai International Conference Center
May 9-13, 2011, Shanghai, China

978-1-61284-385-8/11/$26.00 ©2011 IEEE 5769



Chang et al. [6] have used Set Cover methods to build
a video indexing and retrieval scheme. We use a similar
sampling strategy, however our goal of building naviga-
tion summaries is quite different from this work. First, we
consider data collected using GPS and other sensors while
selecting the samples. Second, we modify and extend the set
cover based sampling strategy to enable it to work with noisy
data.

The seminal work by Cummins and Newman [7] on loop
closure involves ability to identify the common geographic
origin of images, which might not be completely similar;
thereby producing a meaningful clustering of images, which
could be used to generate summaries. This would indeed
produce very detailed summaries, however, our focus is on
producing a much sparser sampling of the observed data.

Methods of video summarization have generally put em-
phasis on summaries for video data created by humans where
significance is related to both temporal extent and audio
content. For example, in Gong and Liu [8] video summaries
were produced by exploiting a principal components repre-
sentation of the color space of the video frames. They used a
set of local color histograms and computed a singular value
decomposition (SVD) of these local histograms to capture the
primary statistical properties (with respect to a linear model)
of how the color distribution varied. This allowed them
the detect frames whose color content deviated substantially
from the typical frame, as described by this model. Cai et
al.[9] have proposed a technique to creating video digests
from omni-direction street view video sequence.

Video segmentation, in contrast to this work, places em-
phasis on finding category boundaries or cut scenes almost
independent of their absolute number and without regard for
positional data. For example, Ngo et. al. [10] first modelled
the video as a complete undirected graph, and then used the
normalized graph cut algorithm to partition the video into
different clusters.

III. SURPRISE

A. Set Theoretic Surprise

Itti and Baldi [5] formally define Bayesian surprise in
terms of the difference between posterior and prior beliefs
about the world. They showed that observations which lead
to high Kullback-Leibler(KL) divergence [11] between pos-
terior and prior visual appearance hypothesis are very likely
to attract human attention.

The relative entropy or KL divergence between two prob-
ability mass functions p(x) and q(x) is defined as:

dKL(p‖q) =
∑
x∈X

p(x) log
p(x)
q(x)

. (1)

KL divergence can be interpreted as the inefficiency in
coding a random variable from distribution p, when assuming
its distribution to be q.

In this paper we represent surprise with the symbol ξ.

ξ = dKL(posterior‖prior). (2)

Instead of modelling the properties of the world with a
single distribution, we propose to maintain a set of local
hypotheses, each corresponding to an observation sample in
the summary set [12]. This set of distributions can then be
interpreted as the prior hypothesis of the properties of the
world. Using a set of distributions to model the properties
allows us to model worlds with arbitrary complexity, by
simply increasing or decreasing the size of the summary set.

Similarly, to measure the surprise of a given observation,
we model the posterior using the set containing all the
observations in the summary and the given observation. Now,
analogous to Bayesian surprise, we would like to measure the
distance between these two distribution sets. The Hausdorff
metric provides a natural way to compute distance between
two such sets. For two sets A,B, the Hausdorff distance
between the sets is defined as

dH(A,B) = max
{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
}
. (3)

However, since the prior and posterior hypothesis sets only
differs by one element (the given observation), the surprise
of a given observation Z given the summary set S = {Si}
is:

ξ(Z|S) = inf
i
ξ(Z|Si) (4)

We call this measure of surprise “Set Theoretic Surprise”.
Each observation can be represented using a variety of

descriptors depending on the sensors used. If dr(Zi, Zj) is
the normalized distance between two observations Zi, Zj
using descriptor r, then we define surprise:

ξ(Zi|Zj) = max
r
dr(Zi, Zj). (5)

In this paper, the observations are in the form of an
image and the associated geographic location. We use “bag-
of-words” representation to describe the image. Sivic and
Zisserman [13] have proposed this model, in which each
image is described as a histogram of word counts. To
build the vocabulary, we extract SURF [14] features from
a subsampling of all the images in the observation set, and
then cluster them using k means algorithm to get 1000 words.
The normalized frequency count of these SURF words in an
image are then assumed to be their respective descriptions.
We use KL divergence to measure the distance between two
different word distributions.

To measure distance in terms of geographic location, we
simply take Euclidean distance between the coordinates.

Surprise ξ(Z|S) can be interpreted as the amount of
information gained in observing Z. Given the set of all the
observations Z = {Zi}, ideally we would like to choose a
summary set S = {Si} such that the mean surprise

ξ̄(Z|S) =
1
|Z|
∑
i

ξ(Zi|S), (6)

and max surprise

ξ̂(Z|S) = max
i
ξ(Zi|S), (7)
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are both low.
A summary with low ξ̄ implies that it captures the mean

properties of the world well. A summary with low ξ̂ implies
that it captures the outliers well. In the following section, we
will describe three different sampling techniques to choose
samples in the summary set.

IV. SAMPLING STRATEGIES

We are given a set of observation Z and number of desired
samples k in the summary set S. Goal is to come up with a
set of observations called summary set S ⊂ Z, |S| = k, such
that the ξ̄ and ξ̂ are low.

The first strategy focuses purely on picking outliers by
repeatedly picking the samples farthest form the samples in
the summary. The second strategy focuses on minimizing the
mean surprise. The third strategy finds a balance between the
previous two approaches.

A. Extremum Summaries

Algorithm 1 presents a simple greedy approach to the
summary problem. Here k is the number of desired samples
in the summary set, Z is the set of input observations, and
S is the set of observations in the summary. This algorithm
has O(|Z|2) computational complexity.

The algorithm repeatedly picks samples which have max-
imum surprise score, given the samples already in the sum-
mary. To initialize the summary set S, we propose to use the
sample farthest away from the mean of the dataset.

This algorithm is essentially picking samples at the corners
of the high dimensional manifold formed by the samples in
the description space.

S← {Sinit}
repeat

Zmax ← argmax
Zi∈Z

ξ(Zi|S)

S← S ∪ {Zmax}
Z← Z \ Zmax

until |S| ≥ k
return S

Algorithm 1: EXTREMUMSUMMARY (Z|k). Computes
a summary as a subset of input samples Z, by greedily
picking the samples with maximum surprise.

This algorithm is good at picking outliers, however, with
a large enough summary size it approximates uniform sam-
pling of the description space. This is shown in Fig 2.

B. kMedoids Summaries

The kMedoids clustering algorithm is similar to kMeans,
with difference that kMedoids uses one of the input samples
to designate the cluster centres. The algorithm minimize the
distance between these cluster centres and other points within
the cluster. Hence, if we use the surprise function described
in (5) as the distance function for kMedoids, the cluster
centres then correspond to a summary which minimizes the
mean surprise ξ̄.

C. Summaries Using Set Cover Methods

The task of selecting samples in the summary set can
also be modelled as an instance of the classical Set Cover
Problem.

We define the cover of an observation Z to be all the set
of all observations that are only surprising up-to a surprise
threshold ξT :

C(Z|ξT ) = {{Zj} : ξ(Zj |Z) < ξT } . (8)

Similarly we define the cover of a summary set S:

C(S|ξT ) =
⋃
Si∈S

C(Si|ξT ). (9)

Our goal now is to find the minimal set of samples S,
which cover the entire terrain. This is essentially an instance
of the classical Set Cover problem with |Z| elements in the
universe and |S| sets which span the universe. Fig. 3 shows
an example of an instance of the Set Cover problem.

Fig. 3. An instance of the Set Cover problem. Goal is to find the
smallest number of sets, which span all the elements. In this example, set
{Z4, Z5, Z6, Z7} is the smallest set of sets which cover all the elements
in the universe.

Set Cover is known to be NP-hard [15]. Hence we use a
greedy strategy to pick our samples.

S← {Sinit}
repeat

Zmax ← argmax
Zi∈Z

∣∣C({Zi} ∪ S|ξT ) \ C(S|ξT )
∣∣

S← S ∪ {Zmax}
Z← Z \ Zmax

until
∣∣C(S|ξT )

∣∣
|Z| < γ

return S
Algorithm 2: γ-COVERSUMMARY (Z|ξT , γ). Computes
a summary as a subset of all observations Z, given the
surprise threshold ξT , by greedily picking the observa-
tions with maximum cover. We stop when the coverage
ratio is more than γ.

Algorithm 2 greedily picks Zmax ∈ Z which provides
maximum additional cover, and then adds it to the summary
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Fig. 2. Summaries for Noisy Datasets. When the data has little noise (row 1), we see that all algorithms perform similarly. When some noisy samples are
added to the same data(row 2), both extremum summary algorithm and kCover(γ = 1.0) favour picking these outliers. However, by lowering γ, we can
make kCover immune to noise and perform similar to kMedoids. Mean vs Max surprise plots shown are averages for 100 randomly generated datasets
from the same distribution. The dataset shown above is one specific example.

set S. Algorithm stops when the coverage ratio exceeds the
parameter γ. Setting coverage parameter γ = 1 implies
that the algorithm stops when the summary covers all the
observations. Lower values of γ can be used for higher
noise tolerance, however at the cost of increased likelihood
of missing a truly surprising sample.

To initialize the summary set, Sinit is chosen to be the
sample with smallest mean distance to other samples.

The number of samples in the summary obtained using
this greedy strategy, is guaranteed to be no more than
OPT log |Z|, where OPT is the number of sets in the
optimal summary set [16].

Often times we do not have a way of estimating a good
value for the surprise threshold ξT . Instead, we can fix the
size of the summary k, and then find the smallest value of
ξT that gives us the desired coverage ratio.

Using Algorithm 3, we can hence define ξT as:

ξT (k) = min
ξT ′
{S = K-COVERSUMMARY(Z|k, ξT ′),∣∣C(S|ξT ′)

∣∣
|Z|

≥ γ

}
.

(10)

Algorithm 3 greedily picks k summary samples which
provide maximum combined cover for the summary set. This
problem of finding the optimal set of samples with maximum
cover is known as the Max k Cover problem. Max k Cover,
like Set Cover is also known to be NP-Hard, and the greedy
approach to this problem approximates the optimal solution
to within a ratio of 1− 1/e [17].

V. EVALUATION

We tested the summarization strategies presented in this
paper on datasets collected by different classes of vehicle
moving outdoors. We evaluate the summaries based on their

S← {Sinit}1

repeat2

Zmax ← argmax
Zi∈Z

∣∣C({Zi} ∪ S|ξT ) \ C(S|ξT )
∣∣

3

S← S ∪ {Zmax}4

Z← Z \ Zmax5

k ← k − 16

until k > 07

return S8

Algorithm 3: K-COVERSUMMARY (Z|k, ξT ). Computes
a summary of size k, given the surprise threshold ξT by
greedily picking samples with maximum cover.

mean and max surprise scores. A good summary should have
both low mean and low max surprise scores.

A. R2 Ring Dataset

In Fig. 2, we shows 200 samples generated randomly
around a circle in R2. We then add 8 extra samples from a
different distribution, representing the outliers. This dataset
allows us to visualize the difference between the three
proposed strategies clearly.

In Fig. 2(row 1), we see that when when there is little
noise , and size of the summary is large (k = 16), all
algorithms perform similarly, with kCover(γ=1) having the
lowest max surprise, and both kCover(γ=0.9) and kMedoids
having lowest mean surprise.

Fig. 2(row 2) shows result of adding outliers to this
dataset. We see that the kCover(γ=1) and the extremum
summaries look similar and both sample the outliers and
the mean samples well. The kCover(γ=1) and the kMedoids
summary on the other hand completely ignore the outliers.
As a result they have high max surprise and low mean
surprise.
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(a) Extremum Summary (b) kCover(γ=1.0) Summary (c) kMedoids Summary

(d) Extremum Summary (e) kCover(γ=1.0) Summary (f) kMedoids Summary

(g) Mean vs Max Surprise

Fig. 4. Street View Dataset. Three different summaries are show. Extremum summary algorithm focuses on finding the outliers and results in low max
surprise. Most images are of unique buildings which are rare in the dataset, but are extremely different in appearance from everything else. The kMedoids
algorithm produces a summary with no outliers and low mean surprise. The kCover algorithm has in-between characteristics and produces a summary
with low mean and max surprise. It contains some of outliers which exist in the extremum summary(5 → 9, 9 → 13, 10 → 11, 12 → 8, where a → b
implies image #a matches with image #b), while not ignoring the samples representing the mean appearance. See text for a more detailed discussion.

B. Aerial View Dataset

The aerial view(AV) dataset contains 847 images taken by
a GPS equipped unmanned aerial vehicle(UAV). The images
in this dataset were transmitted over an analog channel before
being captured digitally. As a result, some of the images in
the AV dataset are noisy due to temporary signal losses, and
interference with on board electronics and power lines. This
results in the dataset having many undesirable outlier images.

Fig.5(a) highlights the problem of using a noise sensitive
algorithm such as the extremum summary algorithm on noisy

data. Since the extremum summary algorithm favours picking
outliers, the summary generated contains several images with
visible noise related artifacts, and at least one image with
complete loss of signal. However due to the constraints
imposed by geographic data, it still manages to get good
geographic coverage as shown in the map in Fig 5(b). The
map shows location of each image in the summary. We see
that images 3,4,5 and 7 correspond to the four corners of the
map, which is the behaviour expected from the extremum
summary algorithm.
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(a) Extremum Summary (b) Extremum Summary

(c) kCover(γ = 1.0) Summary (d) kCover(γ = 1.0) Summary

(e) kCover(γ = 0.9) Summary (f) kCover(γ = 0.9) Summary

(g) Mean vs Max Surprise

Fig. 5. Aerial View Dataset. This dataset contains images which were captured as a UAV takes off from a field, flies over over water, beaches and
buildings, and lands. Images were transmitted over an analogue channel, and hence contains noise due to interference. (a) Extremum summary algorithm
prefers picking outliers and hence prefers picking noisy images (#1,3,4), or images at the geographic corners (#3,4,5,7). Image 6 is of grass, taken just
before the landing. (c) The kCover summary algorithm with γ = 1.0 is forced to choose summary picks which cover all samples including the noisy
samples, but not necessarily pick them. Hence, it mitigates the effect of noise, while not completely eliminating it. We see the inclusion of some obvious
outliers like image #7. (e) The kCover algorithm with γ = 0.9 does a good job of ignoring these outliers completely, and presents a clearer picture of
what was observed during flight: ocean(#5), beaches(#2,7), buildings(#4,6), fields(#1,8). See text for a more detailed discussion.

Fig.5(c) shows images form the kCover summary with
coverage ration γ=1. Qualitatively we see that it provides
a much better representation of the environment than the
extremum summary. However, coverage ratio γ=1 implies
that every sample in the observation set must be covered by
a summary sample. The algorithm is therefore forced to pick
image 7, which is the result of a temporary signal loss, and
is not representative of the environment.

Fig.5(e) show the kCover summary with γ = 0.9. We
see that the algorithm is able to ignore the noisy samples,
and produces a navigation summary with good geographical
and visual coverage. We see that all major features of the

environment: ocean, beach, buildings, fields, and trees, are
represented in the summary. The kMedoids algorithm pro-
duces a summary very similar to the kCover(γ=1) summary.
We do not show it this paper due to space constraints.

C. Street View Dataset

The street view(SV) dataset contains 1255 geo-tagged
images of a city centre, subsampled from the data originally
collected by Google Inc., for their street view application.
Unlike the AV dataset, SV dataset has negligible noise.

Fig. 4(d) shows the summary generated by the extremum
summary algorithm which favours picking outliers or the
corner samples. Upon closer inspection, it seems that many
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of the selected images correspond to images of building
with different repetitive patterns, completely occupying the
camera’s field of view. Such images would be represented by
histograms with a sharp peaks at different locations, when
using the bag-of-words representation of an image. As a
result, the KL divergence between these images is very high,
and hence, they are favoured by the extremum summary
algorithm.

Fig. 4(f) shows the summary produced by the kMedoids
algorithm. Compared to the images in the extremum sum-
mary, the images in the kMedoids summary will not have a
peaky bag-of-words histogram. The images in the summary
do not contain repetitive patterns and represented by many
different visual words. As a result, the selected images share
visual properties with many other images in the dataset, and
are good candidates for characterizing the mean appearance
of the environment.

Fig. 4(e) show the summary generated using the kCover
algorithm. Using kCover with γ = 1.0 is a good choice
for this dataset because there is negligible noise in the
dataset, and hence the outliers correspond to truly surprising
observations. The summary produced by kCover does not
completely ignore the outliers, and nor does it only pick
samples representing the mean. It finds a good balance
between lowering the mean and max surprise. This is shown
by the plot in Fig. 4(g). The kcover summary has some of
the outliers from extremum summary, while still having some
images which are more representative of the environment.

VI. CONCLUSION

A navigation summary is a synopsis of observations made
by a robot on a trajectory. These observations can come
from any sensors. In this paper we focus on summarizing
observation data in the form of images captured by a robot,
and its location.

We pose the problem of generating navigation summaries
as a sampling problem. Three different strategies for picking
the summary samples were proposed.

We demonstrate the difference between these strategies
by experimenting with different datasets, and find that the
kCover summary algorithm with the right coverage ratio
parameter, performs at least as good or better than the
kMedoids or the extremum summary algorithm, in several
different scenarios. The performance of a summary was
measured in terms of its mean and max surprise score
measured over all the observations.

In general, we find that the extremum summary algorithm
focuses on picking outliers. These outliers could be gen-
uinely interesting samples like in the case of street view
dataset , or they could correspond to undesirable noisy
samples like the ones present in the aerial view dataset.

On the other hand, the kMedoids summary algorithm
focuses on picking samples representing the mean properties
of the environment. These summaries could be useful if the
dataset is simple and lacks and interesting outliers.

Using the kCover algorithm, we can produce summaries
which finds a balance between representing outliers and the

mean properties of the environment. The desired coverage
ration parameter γ allows us to tune out noise in the case
that the dataset is full of undesirable outliers.

In future we hope to look at the extending this work
in several different directions. We would like to use these
navigation summaries for planning exploration strategies for
a mobile robot. Second, we would like to compare the sum-
maries generated by the algorithms presented with human
generated summaries. Third, we would like to incorporate
the use of more sensors and image descriptors to enhance
the surprise function.
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