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Displacement

Abstract

An attempt is made to present, with some semblance of unity, various representations
and notions of rigid body displacement. Topics touched on include • equivalence between
Euler parameters and real quaternions; homogeneity and norm, inversion and populating a
homogeneous rotation matrix by rote, • dual quaternions, the Study condition and multipli-
cation, • point, plane, octonian and subgroup transformation, • comparing planar mapping
conventions and • an appendix containing a Grassmannian demonstration of transformative
dual-adjoint equivalence and some simple examples using the general 8 × 8 transformation,
its adjoint to compute “reciprocals” and its inverse. It is believed that these are revealed for
the first time.

Introduction

Various treatments of rigid body motion have been carried out and these efforts span more than two
centuries of history. In this regard we cite Study, [9], Blaschke, [1], and Bottema and Roth, [2], and
the copious references included in these works. It is the intention here to relate familiar concepts
with some not so familiar in order to stimulate formulation and solution of important kinematic
problems, both new and old, using image space parameters. When applied with skill, Husty, [5,6,7],
Schröcker, [8] and Hayes, [3,4], this often leads to new results or to old ones, vastly simplified so as
to enhance computational efficiency and provide greater insight when tackling original problems
or investigating interesting “special cases”. In some ways this work develops ideas introduced
in Zsombor-Murray, [11]. Notwithstanding modern literature, that inevitably contains a review
of the underlying theory and effectively demonstrates important applications, there has been no
widespread acceptance of Study’s soma in the kinematics community. If nothing else piques the
reader’s interest he/she is invited to examine Fig. 4 and investigate the transformation of points,
planes, lines and screws using either the comprehensive 8 × 8 dual quaternion transformation
or its inverse. See if the adjoint transformation will generate the reciprocal screw. Below, for
convenience, we see from left to right dual quaternions* representing point, plane, line (expressed
with Plücker coordinates), a general screw and the screw that will be reciprocated by adjoint pre-
multiplication. Here and elsewhere (*) will be used to denote existence of additional explanation
in Notes, appended to the last section, Appendix. This is to answer criticism of sometimes
unconventional notation and notions used herein. The authors understand that their answers may
nevertheless fail to satisfy the inquisitors. Further dialogue will be necessary before it is decided
whether the former will burn or can be redeemed.
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1 Rotation

A quaternion is given by four numbers; a scalar and three imaginary mutually orthogonal vector
elements. The homogeneous four-tuple* qr represents the real -as opposed to dual- quaternion, a
rotation of the entire three dimensional frame, attached to some rigid body, about a fixed point
origin. It is shown conveniently normed, i.e., q2

r = 1, by its first metamorphosis (→) and its
second renders c0 = 1.

qr ≡


c0

c1i
c2j
c3k

 →


cos φ
2

cos α sin φ
2
i

cos β sin φ
2
j

cos γ sin φ
2
k

 →


1

cos α tan φ
2
i

cos β tan φ
2
j

cos γ tan φ
2
k

 (2)

Elements of the normed form are commonly called Euler parameters. Rotation is represented as
a single displacement of the rigid three-space. It is caused by right hand screw rotation* about
a fixed origin through angle φ. The fixed axis of rotation is specified by the positive sense unit
vector given by direction cosines of angles α, β, γ with respect to a fixed Cartesian reference
frame with principal axes x1, x2, x3. Dividing the normed form by cos φ

2
imposes a variable, non-

unit magnitude of sec φ
2

upon the quaternion. Multiple rotations, according to Euler parameter
specification, can be carried out by a succession of quaternion multipliers. The first to be imposed
is the rightmost*. The last is the leftmost. Multiplication convention requires that every element
of the multiplier pre-multiply every element of the multiplicand, subject to the following rules.

• i, j, k are mutually orthogonal vectors of unit imaginary magnitude (If one finds the term
“real” to be confusing when applied to an entity containing imaginary elements then assume that
qr stands for “purely-rotational”.), so

• i2 = j2 = k2 = −1 and the heterogenous products of these are
• ij = −ji = k, jk = −kj = i, ki = −ik = j.

Applying the conventions outlined above, the inverse of a quaternion q−1
r and the quaternion that

represents no displacement q0 are given by the following product.

qrq
−1
r = q−1

r qr = q0 ≡


c0

c1i
c2j
c3k




c0

−c1i
−c2j
−c3k

 =


c2
0 + c2

1 + c2
2 + c2

3

0
0
0

 ≡


1
0
0
0

 (3)
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The point transformation matrix given may be derived by setting up an arbitrary but judiciously
chosen set of four points, the origin and the three points that close the principal Cartesian axes,
and their rotationally transformed positions. Upon examining Fig. 1, that shows the circular
trajectories of points on a unit sphere and the axis triad, the latter four vectors are seen to be the
respective columns of matrix (4) below.

c2
0 + c2

1 + c2
2 + c2

3 0 0 0
0 c2

0 + c2
1 − c2

2 − c2
3 2(c1c2 − c0c3) 2(c1c3 + c0c2)

0 2(c2c1 + c0c3) c2
0 − c2

1 + c2
2 − c2

3 2(c2c3 − c0c1)
0 2(c3c1 − c0c2) 2(c3c2 + c0c1) c2

0 − c2
1 − c2

2 + c2
3

 (4)

Row and column indices give us the cues to remember and write the elements.
• The diagonal elements are easy; the sum of the squares of all coordinates first, then just c2

0

and c2
i are positive, where i is the row index.

• The other elements of row and column i = j = 0 are all zero.
• The off-diagonal elements have the form 2(cicj ± c0ck) where k 6= 0, i, j.
• To choose the sign (±) remember the “knight’s move” in chess. Start at the bottom middle

of the populated 3× 3 array and mark it (+). Move to i = 1, j = 3 and mark it (+) also.
• The other two elements above the diagonal are marked (−) and we note that these signs are

inserted skew-symmetrically beneath the diagonal.
• Geometric duality shows that the point rotation transformation matrix that results from

rotation of a Cartesian frame about its origin is identical to the matrix that rotates planes.

2 Dual Quaternions

A dual quaternion q, Eq. 5, represents a general displacement. Note* |ε| = 1 and ε2 = 0 and a is
the position vector of the displaced frame origin.

q = qr + qd = qr +
ε

2
aqr =


c0

c1i
c2j
c3k

 +
ε

2


0

a1i
a2j
a3k




c0

c1i
c2j
c3k

 =


c0

c1i
c2j
c3k

 +
ε

2


−a1c1 − a2c2 − a3c3)
(a1c0 + a2c3 − a3c2)i
(a2c0 + a3c1 − a1c3)j
(a3c0 + a1c2 − a2c1)k

 (5)

Homogeneous 8-vectors may represent rigid body displacement only if the product,

called the Study condition*, [c0 c1 c2 c3]


−a1c1 − a2c2 − a3c3

a1c0 + a2c3 − a3c2

a2c0 + a3c1 − a1c3

a3c0 + a1c2 − a2c1

 = 0 (6)

is satisfied and this is indeed the case.

Multiplication of dual quaternions is illustrated with the pair Q and q.

Q = Qr + Qd =


C0

C1i
C2j
C3k

 +
ε

2


D0

D1i
D2j
D3k

 , q = qr + qd =


c0

c1i
c2j
c3k

 +
ε

2


d0

d1i
d2j
d3k

 (7)
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Figure 1: Rotation Axis oR with Direction Numbers {3 : 3 : 4} Defining α, β, γ

where

qd =
ε

2


d0

d1i
d2j
d3k

 =
ε

2


0
a1i
a2j
a3k




c0

c1i
c2j
c3k

 =
ε

2


−a1c1 − a2c2 − a3c3

(a1c0 + a2c3 − a3c2)i
(a2c0 + a3c1 − a1c3)j
(a3c0 + a1c2 − a2c1)k

 (8)

Pre-multiplying q by Q produces the product Qq.

Qq =


C0c0 − C1c1 − C2c2 − C3c3

(C0c1 + C1c0 + C2c3 − C3c2)i
(C0c2 + C2c0 + C3c1 − C1c3)j
(C0c3 + C3c0 + C1c2 − C2c1)k



+
ε

2


C0d0 − C1d1 − C2d2 − C3d3 + D0c0 −D1c1 −D2c2 −D3c3

(C0d1 + C1d0 + C2d3 − C3d2 + D0c1 + D1c0 + D2c3 −D3c2)i
(C0d2 + C2d0 + C3d1 − C1d3 + D0c2 + D2c0 + D3c1 −D1c3)j
(C0d3 + C3d0 + C1d2 − C2d1 + D0c3 + D3c0 + D1c2 −D2c1)k

 (9)
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3 General Point Transformation

Before trying to reconcile dual quaternion multiplication with octonian transformation let us
examine the ordinary point transformation, [q]4, populated with elements of q, in Eq. 7.

[q]4 =


c2
0 + c2

1 + c2
2 + c2

3 0 0 0
c0d1 − c1d0 + c2d3 − c3d2 c2

0 + c2
1 − c2

2 − c2
3 2(c1c2 − c0c3) 2(c1c3 + c0c2)

c0d2 − c2d0 + c3d1 − c1d3 2(c2c1 + c0c3) c2
0 − c1 + c2

2 − c2
3 2(c2c3 − c0c1)

c0d3 − c3d0 + c1d2 − c2d1 2(c3c1 − c0c2) 2(c3c2 + c0c1) c2
0 − c2

1 − c2
2 + c2

3

 (10)

The general point transformation matrix Eq. 10 is derived in the same way as the planar displace-
ment transformations described in [11]. Using the origin and the absolute points that close the
three principal axes provides the necessary four convenient points.

1
0
0
0

 : λ


1
a1

a2

a3

 ,


0
1
0
0

 :


0

c2
0 + c2

1 − c2
2 − c2

3

2(c2c3 + c0c3)
2(c3c1 − c0c2)

 ,


0
0
1
0

 :


0

2(c1c2 − c0c3)
c2
0 − c2

1 + c2
2 − c2

3

2(c3c2 + c0c1)




0
0
0
1

 :


0

2(c1c3 + c0c2)
2(c2c3 − c0c1)

c2
0 − c2

1 − c2
2 + c2

3


With these four known transformations, 16 equations in 17 unknowns can be set up and solved
homogeneously. The unknowns are λ and the 16 matrix elements. It is not hard to show that
Eqs. 10 and 11 are identical.

[q] =


c2
0 + c2

1 + c2
2 + c2

3 0 0 0
a1(c

2
0 + c2

1 + c2
2 + c2

3) c2
0 + c2

1 − c2
2 − c2

3 2(c1c2 − c0c3) 2(c1c3 + c0c2)
a2(c

2
0 + c2

1 + c2
2 + c2

3) 2(c2c1 + c0c3) c2
0 − c1 + c2

2 − c2
3 2(c2c3 − c0c1)

a3(c
2
0 + c2

1 + c2
2 + c2

3) 2(c3c1 − c0c2) 2(c3c2 + c0c1) c2
0 − c2

1 − c2
2 + c2

3

 (11)

Now the reason Eq. 10, containing all eight dual quaternion elements, is preferable to Eq. 11, using
origin displacement vector a, becomes evident. To transform planes one uses the adjoint [q]A4 of
Eq. 10. Dividing it by (c2

0 + c2
1 + c2

2 + c2
3)

2 yields Eq. 12.


c2
0 + c2

1 + c2
2 + c2

3 d0c1 − d1c0 + c2d3 − c3d2 d0c2 − d2c0 + c3d1 − c1d3 d0c3 − d3c0 + c1d2 − c2d1

0 c2
0 + c2

1 − c2
2 − c2

3 2(c1c2 − c0c3) 2(c1c3 + c0c2)
0 2(c2c1 + c0c3) c2

0 − c2
1 + c2

2 − c2
3 2(c2c3 − c0c1)

0 2(c3c1 − c0c2) 2(c3c2 + c0c1) c2
0 − c2

1 − c2
2 + c3

3

 (12)

The transformed matrix retains the self-adjoint rotation core, matrix (4), the column j = 0 is
transposed to become the row i = 0 and the elements j 6= 0 in this new row have had a sign
reversal on their first two products, i.e., c0di − cid0 has become d0cj − djc0. Of course, respective
inverses are immediately available by transposing Eq. 10 to get an inverse plane transformation
and transposing Eq. 12 to get points to go back to where they came from. The adjoint of Eq. 11,
on the other hand, would sustain first row elements composed of ugly triple products, containing
some ai and elements of the 3× 3 rotation array.
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3.1 Octonian Transformation

Putting Eq. 10 and 12 together into the following single 8 × 8 array, matrix (13), provides the
pre-multiplier to transform the following column vector.

[x0 x1 x2 x3 X0 X1 X2 X3]
T

It contains four homogeneous point coordinates followed by four homogeneous plane coordinates,
all the elements of an entire dual quaternion that represents a displaced 3-space.

c2
0 + c2

1 + c2
2 + c2

3 0 0 0
c0d1 − c1d0 + c2d3 − c3d2 c2

0 + c2
1 − c2

2 − c2
3 2(c1c2 − c0c3) 2(c1c3 + c0c2)

c0d2 − c2d0 + c3d1 − c1d3 2(c2c1 + c0c3) c2
0 − c2

1 + c2
2 − c2

3 2(c2c3 − c0c1)
c0d3 − c3d0 + c1d2 − c2d1 2(c3c1 − c0c2) 2(c3c2 + c0c1) c2

0 − c2
1 − c2

2 + c2
3

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

c2
0 + c2

1 + c2
2 + c2

3 d0c1 − d1c0 + c2d3 − c3d2 d0c2 − d2c0 + c3d1 − c1d3 d0c3 − d3c0 + c1d2 − c2d1

0 c2
0 + c2

1 − c2
2 − c2

3 2(c1c2 − c0c3) 2(c1c3 + c0c2)
0 2(c2c1 + c0c3) c2

0 − c2
1 + c2

2 − c2
3 2(c2c3 − c0c1)

0 2(c3c1 − c0c2) 2(c3c2 + c0c1) c2
0 − c2

1 − c2
2 + c2

3


(13)

3.2 Reduction to the Planar Case

A planar transformation is obtained by setting c1 = c2 = d0 = d3 = 0. It uses displaced origin
coordinates (a1, a2), not pole position (a, b) as in [11]. There, for example, in Eq. 14, c0d1 − c3d2

becomes 2(X0X2 + X1X3) and c0d2 + c3d1 becomes −2(X0X1 −X2X3).



c2
0 + c2

3 0 0 0 0 0 0 0
c0d1 − c3d2 c2

0 − c2
3 −2c0c3 0 0 0 0 0

c0d2 + c3d1 2c0c3 c2
0 − c2

3 0 0 0 0 0
0 0 0 c2

0 + c2
3 0 0 0 0

0 0 0 0 c2
0 + c2

3 −c0d1 − c3d2 −c0d2 + c3d1 0
0 0 0 0 0 c2

0 − c2
3 −2c0c3 0

0 0 0 0 0 2c0c3 c2
0 − c2

3 0
0 0 0 0 0 0 0 c2

0 + c2
3





x0

x1

x2

0
X0

X1

X2

0


(14)

4 Conclusion

The transformation for planes was obtained, after taking some liberty, by computing and sim-
plifying the adjoint of the well-documented, [2,6,7], point transformation, Eq. 10. Note that in
[6] d = −d/2 for, apparently, cosmetic reasons. Then an 8 × 8 array was assembled with zero
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blocks to separate operations that act exclusively upon point and planar parts, respectively, when
multiplying an eight element vector. The adjoint of the entire array was carried out symbolically
and large common factors were eliminated. The inverse transformation was then obtained by
simple transposition. Detailed structure of these three versions is described explicitly in Fig. 3
and Fig. 4. Although considerable investigation remains to be done it is contended that these
operators are useful not only to write constraint equations wherein points and planes are dis-
placed but in the displacement of lines and in the extraction of so called reciprocal screws. E.g.,
the auto-transformation of the line leads to itself with a reversed sense of moment; obviously the
reciprocal if one considers the line to be a concentrated force with component magnitudes equal
to its direction numbers.
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5 APPENDIX

5.1 The Adjoint Matrix Is the Dual of Its Transformation

Three linearly independent points A, B, C form vertices of a triangle with respectively opposite
sides on lines a, b, c. These are specified by planar homogeneous coordinates, thus.

A{a0 : a1 : a2}, B{b0 : b1 : b2}, C{c0 : c1 : c2}, a{A0 : A1 : A2}, b{B0 : B1 : B2}, c{C0 : C1 : C2}

This is shown in Fig. 2. Using a singular, dummy point X{x0 : x1 : x2} successively on a, b, c,
the following Grassmannian top row determinant minor expansions produce the following homo-
geneous planar line coordinates.

a :

∣∣∣∣∣∣
x0 x1 x2

b0 b1 b2

c0 c1 c2

∣∣∣∣∣∣ ⇒ {b1c2 − b2c1 : b2c0 − b0c2 : b0c1 − b1c0} ≡ {A0 : A1 : A2}

b :

∣∣∣∣∣∣
x0 x1 x2

c0 c1 c2

a0 a1 a2

∣∣∣∣∣∣ ⇒ {c1a2 − c2a1 : c2a0 − c0a2 : c0a1 − c1a0} ≡ {B0 : B1 : B2}

c :

∣∣∣∣∣∣
x0 x1 x2

a0 a1 a2

b0 b1 b2

∣∣∣∣∣∣ ⇒ {a1b2 − a2b1 : a2b0 − a0b2 : a0b1 − a1b0} ≡ {C0 : C1 : C2}

Now examine the nonsingular matrices containing rows of these point and line coordinates. They
are duals of the same figure; a given triangle. The superscripts A and D stand for adjoint and
dual, respectively. The following sequence states this equivalence. a0 a1 a2

b0 b1 b2

c0 c1 c2

A

≡

 a0 a1 a2

b0 b1 b2

c0 c1 c2

D

≡

 A0 A1 A2

B0 B1 B2

C0 C1 C2

 ≡
 b1c2 − b2c1 b2c0 − b0c2 b0c1 − b1c0

c1a2 − c2a1 c2a0 − c0a2 c0a1 − c1a0

a1b2 − a2b1 a2b0 − a0b2 a0b1 − a1b0


Clearly, the last matrix in the sequence is the adjoint in terms of the two on the left populated by
homogeneous point coordinates aj, bj, cj where j = 0, 1, 2, is the column index. A word of caution.
An entirely different triangle is produced if one plots(

A1

A0

,
A2

A0

)
,

(
B1

B0

,
B2

B0

)
,

(
C1

C0

,
C2

C0

)
as point coordinates in the plane.

5.2 Adjoint Transformations

Below one sees some special auto-transformative cases. The point, plane and line undergo pre-
multiplication by their respective reciprocal dual quaternion, i.e., second matrices shown in Figs. 3
and 4. For the line c0 = d0 = 0, cj = p0j and di = pi+1,i+2, i taken modulo 3.
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A

a

Bb

C

c
X

X
X

Figure 2: Planar Simplex with Points and Lines



x0

x1

x2

x3

0
0
0
0


⇒



x2
0 − x2

1 − x2
2 − x2

3

x0x1

x0x2

x0x3

0
0
0
0


,



0
0
0
0

X0

X1

X2

X3


⇒



0
0
0
0

(X2
1 + X2

2 + X2
3 )X0

(X2
1 + X2

2 + X2
3 −X2

0 )X1

(X2
1 + X2

2 + X2
3 −X2

0 )X2

(X2
1 + X2

2 + X2
3 −X2

0 )X3


,



0
p01

p02

p03

0
p23

p31

p12


⇒



0
p01

p02

p03

0
−p23

−p31

−p12


To obtain the line transformation in its simplified form above one must substitute from the Plücker
condition. E.g., in the transformation of p23, −(p02p31 + p03p12) replaces p01p23.

5.3 Matrix Structure

In Fig. 3 “R”s refer to rotation matrix elements. These appear upside-down where that matrix has
been inverted (transposed). “T”s are the translation elements containing a sum of two differences
of products. These are written sideways where the first difference of products was negated (had
its sign reversed). All this is shown explicitly in Fig. 4.

5.4 Notes

5.4.1 8-Vector and Dual Quaternion

The five 8-element vectors in expression (1) on p.2 are set up so that they may be operated
upon by pre-multiplication with the general 8 × 8 transformations represented in Figs. 3 and 4
and that embed all elements of a dual quaternion displacement operator. The first contains the
homogeneous coordinates of a point. Blaschke [1] represents it as the Euclidean point

P ≡


1
0
0
0

 + ε


0
x1

x2

x3


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0 0 0 0

0000

0 0 0 0

0000
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0000

0 0 0 0

0000

0 0 0 0

0000
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0 0 0 0

0000

0 0 0 0

0000

0

0

0

0

0

0

0

0

0

000

000

000

Direct

Inverse

Adjoint

R

R

RR

R

RR

R

R

R

R

R R R

R

RRR

R R

R R R

RRR

R R R

R

R R R

RRR

R R R

RR R R

RRR

R R R

R

R R R

RRR

R R R

R

T T T

T

T

T

T

T

T

T T T

TTT

T
T

T

Keeping track is easy

This one is Eq. (13)

Figure 3: Block Structure of the Three Forms

Similarly, he represents the plane and line in homogeneous, radial Plücker in the case of the line,
coordinates. Note that the line in (1) on p.2 is in axial form.

Π ≡


0

X1

X2

X3

 + ε


X0

0
0
0

 , L ≡


0

p01

p02

p03

 + ε


0

p23

p31

p12


The fourth vector contains all eight non-zero elements to represent the pose of some entire rigid
body displaced from “home” position by some screw, admittedly a six-parameter entity. However
this is a homogeneous 8-dimensional vector representation of a 7-dimensional projective space in
which only those points on the quadric

x0X0 + x1X1 + x2X2 + x3X3 = 0

represent valid screw displacements. This reduces the 8-element dual quaternion to the necessary
six degrees of freedom. The fifth vector shows how the ci and di in the right hand expression in

10



Eq. 7 populate the 8-vector. Recall that the dual quaternion represents not only an operator -like
our 8× 8 matrices- but the pose of a displaced frame containing some rigid body.

5.4.2 Miscellany

• Indeed Blaschke [1] covers the principle of dual quaternion operators quite thoroughly but
the intention of this article is to make this accessible to English speakers and those who
prefer the familiarity of matrix-vector multiplications to the rules of manipulation implied
by dual quaternion algebra.

• Base vectors i, j and k are (redundantly) included in the quaternion 4-vector, Eq. 2, to
emphasize orthogonality among the last three elements often referred to as the vector part.
Furthermore the inner part of a quaternion product that includes ii = −1 6= 1 implies that
these base vectors must be of imaginary -not just unit- magnitude.

• Since a quaternion represents a homogeneous 4-vector, only the ratio among element mag-
nitudes is preserved. Though c2

0 + c2
1 + c2

2 + c2 = 1 represents a normed or unit quaternion
this condition is unnecessary in treating the projective space of pure rotations.

• When rotation angle is represented by a vector, radiating from a chosen point origin, one may
choose its magnitude to be proportional to the angle of rotation it represents. Furthermore
its direction gives the sense of rotation as that of a right-handed screw advancing in the
direction of the vector although the screw of rotation has no lead; does not advance. It is
senseless to ask about the hand of screw rotation of a car wheel without choosing an origin
somewhere on the axis.

• Of course quaternion multiplication is non-Abelian. This can be quickly demonstrated by
computing the difference between two quaternion binary products, one in the reverse order
to the other, thus. Notice that the offensive base vectors have been removed.

q− q′ =


c0

c1

c2

c3




c′0
c′1
c′2
c′3

−


c′0
c′1
c′2
c′3




c0

c1

c2

c3

 =


0

2(c2c
′
3 − c3c

′
2)

2(c3c
′
1 − c1c

′
3)

2(c1c
′
2 − c2c

′
1)


• The nature of the dual unit ε, where ε2 = 0, has received a number of simplistic “explana-

tions”, not repeated here, however a rigorous treatment was done by Study [10].
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Figure 4: Three Forms of Dual Quaternion Vector Transformation
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