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Abstract— We present MARE, an autonomous airboat robot
that is suitable for exploration-oriented tasks, such as inspection
of coral reefs and shallow seabeds. The combination of this
platform’s particular mechanical properties and its powerful
software framework enables it to function in a multitude of
potential capacities, including autonomous surveillance, map-
ping, and search operations. In this paper we describe two
different exploration strategies and their implementation using
the MARE platform. First, we discuss the application of an
efficient coverage algorithm, for the purpose of achieving
systematic exploration of a known and bounded environment.
Second, we present an exploration strategy driven by surprise,
which steers the robot on a path that might lead to potentially
surprising observations.
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I. INTRODUCTION

Exploring marine environments is a challenging task for
the robotics community. We address this challenge by in-
troducing MARE: Marine Autonomous Robotic Explorer.
MARE is a sea-worthy and collapsible airboat robot that can
carry out autonomous visual exploration of a given region
over an ocean or a lake. It is a differential-drive, air-propelled
vehicle equipped with a downward-pointing camera, as
shown in Fig. 1. Its chassis follows a catamaran hull design,
which makes it hydro-dynamically stable and also allows
it to accommodate heavy and voluminous payloads. Its air
propellers enable MARE to explore marine environments
with minimal disturbance to the water surface and the aquatic
life. These factors together make MARE a favorable choice
as a sea-worthy surface exploration platform, with numerous
application possibilities.

In this paper we discuss two different kinds of exploration
strategies. These techniques are described in the specific
context of the MARE platform within a marine environment,
although the algorithmic bases are general enough to be
deployed on a variety of different robotic platforms.

Given a map that indicates areas to be explored, we present
an efficient coverage system [1] for non-holonomic vehicles
that can produce a motion path that sweeps through the
entirety of the free space while ensuring minimal overlap.
While following this path, the robot takes images using
its downward-looking camera and employs an online sum-
marization strategy [2] to detect salient frames that are
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versity, Montréal, Canada. {yogesh, anqixu, bikram, malika,
florian, yiannis, dudek}@cim.mcgill.ca

The authors wish to thank Junaed Sattar, Chatavut Viriyasuthee, Jimmy
Li, Simon Norsworthy, and all members of the Mobile Robotics Lab for
their contributions to the MARE project.

Fig. 1. MARE is an autonomous airboat made from off-the-shelf compo-
nents, and is capable of exploring turbulent open water environments. Its
discreet air-propelled design and hydro-dynamically stable catamaran hull
structure make MARE suitable for long-term deployment in all types of
bodies of water. Since it has no moving parts in contact with water, MARE
can explore marine ecosystems while introducing minimal disturbance.

sufficiently different from previous observations. These key
images are stored within a dynamically updated image set,
which serves as a summary of the observed scenes during
the coverage-based exploration session.

In situations where we do not have a map of the region, or
if the environment to be explored is dynamically changing,
then a surprise-driven exploration strategy becomes more
suitable. Given a measure of surprise, the exploration task
can be formulated as choosing a motion heading that leads
to the observation of most surprising events. Since it is
impossible to compute the optimal solution to this problem
in an online setting, we instead propose a greedy online
exploration strategy.

To manage the execution of these exploration strategies
while automatically taking into account constraints such
as range of operation, wireless connectivity to home base,
and battery levels, we propose the use of a powerful soft-
ware framework and accompanied programming tool called
Graphical State Space Programming (GSSP) [3]. GSSP
allows the robot operator to program execution plans for
experiment sessions, where each plan can comprise of a set
of location-specific activities, different reactive behaviors, as
well as various failsafe mechanisms. The back-end counter-
part to this programming tool then regulates the prioritized
execution of these plan components in a structured manner
during field operations.

II. RELATED WORK

The development of Autonomous Surface Crafts (ASC),
such as our MARE platform, have been mostly restricted to
research domains, as opposed to the wide-spread commer-
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cialization of Autonomous Underwater Vehicles (AUV) [4].
This trend however has been changing recently with the
increasing scope of applications that are possible due to
the collaboration of ASCs with AUVs. ASCs can pro-
vide a local medium for long-range communication and
guidance support for navigation to the AUVs, since radio
frequency transmissions required for global referencing and
communication are significantly attenuated underwater [5].
GPS information for underwater vehicles is essential for
various oceanic applications such as fisheries stock assess-
ments, marine archeology, ecosystem monitoring, and habitat
characterization; a compilation of these applications can be
found in [6]. A notable system for cooperative localization
of an AUV using ASCs was achieved through the use of
acoustic modems [7]. Our long-term research objectives
share the desire of using the MARE platform to establish
a communication network between autonomous underwater
vehicles as well as unmanned aerial vehicles (UAV).

Surface crafts can also be used independently, either in
groups or individually, for applications such as surface water
sampling, hydrographic surveying, bathymetric mapping, and
harbor patrolling [5]. Benjamin et al. [8] addressed several
critical concerns when operating multiple ASCs, including
traffic management and obstacle avoidance.

Zhang and Sukhatme [9] designed a system where an
ASC interacts with a static sensor network for the purpose
of aquatic observation. The sensor network comprised of
static nodes that were spread across a region of interest
and established spatial coverage of the environment, while
an ASC navigating through the network complimented with
temporal coverage updates. The static nodes also provided
path guidance for the ASC to efficiently navigate through
and perform coverage of a given region. One shortcoming
of this approach however is that the static nodes need to
be distributed based on prior knowledge about locations of
interest, and thus do not account for any new interesting
events that may occur during the sampling phase. In contrast,
our surprise-driven exploration strategy enables our MARE
platform to autonomously survey a given region based on
the dynamic interestingness of local events.

In another application [10], a modified airboat robot was
used to collect surface water samples at various designated
points of interest. An extended Kalman filter was used for
localization of the ASC, in order to compute desired headings
towards the given waypoints.

Finally, a detailed study on the design developments of
ASCs over the last 15 years is provided in [4].

III. MARE PLATFORM

A. Hardware Design

The 1.6m× 0.6m× 0.6m body of our MARE platform
is based on an open catamaran hull design and is sufficiently
stable to operate within turbulent open water environments.
The collapsible wire-frame chassis design also facilitates
transportation, deployment, and maintenance. Propulsion is
achieved using two air propellers in a differential drive
configuration. This is favorable compared to conventional

Fig. 2. Our GSSP interface [3] allows the user to visually define regional
constraints (i.e. regions) and waypoints over different state variables. Blocks
of code, written in a standard computer language, can be attached to these
constructs, and are executed when the robot enters the respective region or
is sufficiently close to the corresponding waypoint.

rudder-based propulsion because our vehicle has no moving
parts in the water, which minimizes concerns of structural
damage due to corrosion, entanglement with marine plants,
and general disturbance to the environment. In addition,
differential drive can potentially allow in-place rotations,
although our robot currently behaves non-holonomically
due to hardware restrictions; these will be addressed in a
future hardware revision. The motor height is determined
computationally with considerations to the resulting negative
moment, water splash, and drag properties of our vehicle.

The motor controller is connected to a low-power net-book
computer, which is responsible for carrying out sensor data
processing, path planning, and high-level reasoning. MARE
is equipped with a GPS, an IMU and a downward-facing
camera as its primary sensors. Communication is achieved
wirelessly through multiple media channels: WiFi is used
to transfer high-bandwidth data such as a video stream in
short range operations; XBee is used for mid-range (e.g.
1 km) and low-bandwidth external control and signaling
purposes; and an analog transceiver provides emergency
manual control of the boat and has the longest signal range.
Sensors are powered through the net-book computer, whereas
the motors are powered separately using multiple lithium
polymer (LiPo) batteries. With our current configuration of
two discrete 4000mAh LiPo batteries, MARE can sustain
over 2 hours of continuous movement and activities.

B. Software Framework

We used a novel programming paradigm and associated
software tool, called Graphical State Space Programming
(GSSP) [3], to facilitate the process of specifying execution
plans for our MARE platform. An execution plan can contain
different components, including a sequence of waypoints
depicting a high-level trajectory through the environment, a
set of activities to be carried out at each location, and various
reactive behaviors which may be triggered at any time during
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(a) Obstacle map, cells, Eulerian circuit (b) Robot path during simulated coverage session (c) Corresponding coverage map

Fig. 3. Our terrain coverage approach [1] is demonstrated for a 200m × 200m region, where the underlying coral reef image is used for illustration
purpose only and is not to scale. In (a), obstacles are shown as darkened areas; white lines indicate cell boundaries resulting from the Boustrophedon
decomposition process; red lines and cell numbers outline the Eulerian circuit. (b) depicts the path taken by the vehicle during a simulated coverage session
at a depth of ∼ 15m and with minor current disturbances; the star denotes the starting location and the arrow indicates the average direction of current.
(c) shows the corresponding coverage map, which illustrates 0.24 percent areas with missed coverage and 59.93 percent areas with repeated coverage.
Missed coverage resulted due to strong currents, whereas repeated coverage were primarily caused by our curlicue corner-steering strategy.

the execution, such as failsafe measures. GSSP models all
of these components uniformly as conditional code blocks
that are triggered when certain conditions are satisfied. Code
blocks are written using a standard computer language, akin
to text-based programming using robot abstraction systems
and development environments such as [11] & [12]. On the
other hand, similar to graphical control interfaces such as
[13] & [14], waypoints and regional constraints (i.e. regions)
in GSSP are specified graphically over a topographical map
of the environment (or more generally, of the state space).
By combining textual programming with a graphical editor,
GSSP preserves the ability to use programming constructs
such as conditional statements, loops, and concurrent exe-
cution, while providing a natural visualization of the plan’s
components and execution flow within the state space.

As shown in Fig. 2, regions in GSSP consist of one-
sided or two-sided constraints applied to one or multiple
variables in the state space. GSSP also allows the user
to combine multiple regions using Boolean operators (i.e.
union, intersection, and negation), so as to define Boolean
regions. Whereas regions can be specified on any state
variable, waypoints on the other hand can only be defined
on writable state variables, which are parameters that the
robot’s actuators can affect.

Code routines, written in Python in the current GSSP ver-
sion, can be attached to any waypoint or region. An instance
of the code block will be executed when the state either
is sufficiently close to the respective waypoint, or satisfies
the corresponding regional constraints. GSSP allows code
instances from different satisfied waypoints and regions to
execute concurrently, and it handles resource conflicts using a
numerical priority scheme. This software framework can also
regulate arbitrary binary executables that are triggered from
within code blocks. These and other external applications
can further interact with GSSP’s internal components using
a rich network programming interface.

Since plans in GSSP are specified in a robot-independent
state space representation, they can be potentially deployed
on different robot platforms with minimal or no adjustments
needed. This abstraction layer also allows core AI routines,
such as the waypoint-based motion controller, to be imple-
mented internally in a modular manner.

IV. COVERAGE-DRIVEN EXPLORATION

Many applications require observations to be made uni-
formly over a region of interest. To achieve this the robot
must perform coverage, by collecting sensor data continu-
ously while following a path that sweeps through all non-
obstacle locations within the desired region. This type of
systematic exploration can be used to produce mosaic maps
of coral reefs for example, which allows marine biologists to
study these endangered ecosystems and investigate methods
for their preservation.

We have adapted an autonomous terrain coverage sys-
tem [1] for non-holonomic vehicles to our MARE platform.
This implementation is based on an optimal and complete
coverage algorithm [15] that produces a non-overlapping
trajectory which completely covers a known and bounded
environment while avoiding arbitrarily-shaped obstacle re-
gions, and also terminating at the starting position. Within
the marine domain, obstacles correspond to areas that we do
not wish to cover, such as sand patches for instance.

A. Theoretical Formulation

Given a binary obstacle map of the coverage regions,
the Boustrophedon Cellular Decomposition (BCD) tech-
nique [16] divides the free space into cells, which are in-
terconnected by critical points at obstacle corners. Cells and
critical points are stored respectively as edges and vertices
within a graph structure, which is processed through a linear
programming solution to the Chinese Postman Problem [17]
to generate a closed cyclic path known as the Eulerian circuit,
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as shown in Fig. 3(a). To ensure that the Eulerian circuit
traverses through every cell exactly once, some cells are
halved into non-overlapping sub-cells.

Following the ordering established by the Eulerian circuit,
a complete coverage trajectory is generated by concatenating
back-and-forth Seed Spreader motion paths [18] through
each cell. These piecewise linear paths consist of parallel
sweep lines that are uniformly separated by the footprint
width. When conducting visual coverage, the footprint width
should ideally correspond to the camera’s field of view, so
as to minimize the amount of overlap in the resulting images
and thus increase the efficiency of the coverage session.

B. Pragmatic Concerns

The quality of the generated path can be improved by
rotating the obstacle map prior to running the BCD algo-
rithm, which will affect the shapes of the resulting cells.
We can rotate the map to align the sweep line direction
along obstacle boundaries or along the distribution of the free
space. These two strategies are designed to elongate cells in
order to ensure that the resulting Seed Spreader trajectory
will contain long and straight paths while minimizing the
number of turns. This is especially useful for non-holonomic
robots such as our MARE platform, which in general exhibit
poor vehicular dynamics when turning.

In the presence of strong external disturbances such as
current and wind, we can alternatively rotate the obstacle
map to align sweep lines with the average direction of
disturbance. This ensures that the vehicle will not deviate off-
course significantly when traversing through the designated
path, since course deviations will prevent the camera from
covering certain areas (i.e. missed coverage) and also result
in repeated coverage of other areas.

Because non-holonomic vehicles cannot perform in-place
rotations, we must employ additional turning maneuvers
to ensure that the robot traverses through the designated
piecewise linear path. Our curlicue strategy steers the vehicle
in a circular orbit away from each turn to manually align
it with the upcoming line segment, as shown in Fig. 3(b).
Although this prolongs the total trajectory length, it is needed
to guarantee completeness of the coverage task.

V. SURPRISE-DRIVEN EXPLORATION

On many occasions, performing a complete coverage of a
region is not a suitable exploration approach. For instance,
consider the case when the environment is dynamic, or when
a map is unavailable, or when the region is simply too large
to be covered systematically in a time-limited setting. In
such scenarios, an active path planning technique, where
the robot’s heading is decided based on current and past
observations, is arguably more useful and efficient. Hence,
we propose an exploration strategy based on surprise.

Given a measure of surprise for an incoming observation,
we would like to find a trajectory for the robot which
maximizes the amount of surprise. We use Set Theoretic
Surprise to measure the novelty of an incoming observation,
and then using it to propose a greedy exploration strategy.

(Zt,L, Zt,R, Zt,C , Zt,O)← ExtractSubImage(Zt)
ξL ← ξ(Zt,L|S)
ξR ← ξ(Zt,R|S)
ξC ← ξ(Zt,C |S)
if ξL > max(ξR, ξC) then

TurnLeft()
else if ξR > max(ξL, ξC) then

TurnRight()
else

GoStraight()
S← UpdateOnlineSummary(S, Zt,O)

Algorithm 1: SURPRISEDRIVENEXPLORATION (S, Zt).
Decides the next step for the robot, given the current
observation and the current summary set.

A. Online Set Theoretic Surprise

Set Theoretic Surprise(STS) [2] is a non-parametric tech-
nique for quantifying the amount of surprise of an observa-
tion. STS has been shown to be suitable for online use [2].

At any given time, the robot maintains a set of summary
samples, which are representative of all the observations
made so far. These summary images not only capture mean
properties of the environment, but surprising elements as
well. For a new observation Zt, we define its surprise score
given the current summary S = {Si} as:

ξ(Zt|S) = min
i

d(Zt, Si). (1)

We update the summary if the surprise score of the
observation is greater than the threshold score γ, defined
as the mean score of the samples currently in the summary:

γ =
1

|S|
∑
i

min
j,j 6=i

d(Si, Sj). (2)

We could either allow the summary size to grow, resulting
in a summary which scales with the complexity of the data,
or we could trim the summary to keep it of a constant size,
by removing the summary sample with lowest surprise score
given all the other summary samples.

Broder et al. [19] named the strategy of picking new
samples above the mean or median score computed from
previous picks as “Lake Wobegon” hiring strategies 1. This
strategy has been used by companies like Google and Gen-
eral Electric (GE) to hire a continuous stream of employees.

B. Exploration Strategy

Given a new observation and the current summary, Algo-
rithm 1 defines a simple strategy to choose the new heading
direction of the robot. At each time step, we obtain an image
from the current location, and then extract four sub-images
from it: top-left(Zt,L), top-right(Zt,R), top-center(Zt,C), and
center(Zt,O). We compute the surprise score of each of the
three top sub-images using Eq. 1, and then decide the robot’s

1Named after the fictional town “Lake Wobegon”, where according to
Wikipedia “all the women are strong, the men are good looking, and all the
children are above average.” [19]
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Fig. 4. Summary generated by our MARE platform as it explored a coral reef. (a) shows the surprise score (depicted as the blue line) of a new observation
given the images in the summary set at that time. The dotted red line indicates the picking threshold γ. Each time the surprise score exceeds the picking
threshold, the system chooses the current image and replace it with one of the images in the summary set. The picking event is depicted using blue dots.
(b) shows the evolution of the summary set over time. Each row corresponds to an instance of the summary set, and hence the final row consists of the
final summary set. The initial summary set shows very low diversity, although diversity increases as MARE explores the environment further.

heading based on these three scores. If the surprise score for
Zt,L is greater than the other two, then the robot turns left; if
the surprise score for Zt,R is greater than the other two, then
the robot turns right; otherwise it moves forward along the
current heading. The observation summary is updated only
using the center image Zt,O.

C. Image Representation

We use the Bag of Words representation of an image [20],
where each image is represented by a histogram of frequency
counts of visual words appearing in it.

Instead of using an offline vocabulary, we employ a
dynamic online vocabulary that allows for new words to be
automatically incorporated in the current vocabulary[21].

We use the Kullback-Leibler (KL) divergence metric to

compute the distance between two word histograms h1&h2.
KL divergence is not symmetric and hence is not a true
distance metric, although it can be made into a distance
metric by defining the distance as:

d(h1, h2) = dKL(h1||h2) + dKL(h2||h1), (3)

where the function dKL(·||·) computes the KL divergence
between the two distributions.

VI. RESULTS

A. Surprise-Driven Exploration

Preliminary results for our online surprise-driven explo-
ration strategy are shown in Fig. 4. We used a constant sum-
mary size of 8 images in order to facilitate the visualization
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of the results. Fig. 4(b) illustrates the evolution of the images
in the summary set over time, where each row corresponds
to an instance of the summary set and the last row consists
of the final summary. We observe that initially the summary
set has very low diversity; however, as time progresses, the
samples in the summary set increase in their diversity. The
final set of summary images depicts different coral species,
and in particular the last image shows a diver who swam
under the boat, which was correctly captured as an extremely
surprising event by our summarizer.

Fig. 4(a) shows the progression of the surprise score,
denoted by the blue line, of a new observation given images
in the summary set at each time instance. The dotted red
line illustrates the picking threshold γ. Whenever the surprise
score exceeds the picking threshold, one of the images in the
summary set is replaced with the current image. The picking
event is indicated by the blue dots.

B. Coverage-Driven Exploration

Fig. 3(b) depicts a simulated coverage session over a coral
reef region. As result of using our curlicue corner-steering
strategy, the vehicle was forced to move over obstacle regions
as well as previously covered cells. In the latter case, one
potential heuristic to improve performance can be to switch
to a greedy waypoint-based turning method whenever the
curlicue orbits will result in redundant and repeated coverage.
Nevertheless, for the presented obstacle configuration, our
curlicue motion controller resulted in only 0.24 percent
missed coverage, whereas steering the vehicle purely using a
greedy waypoint controller following the ideal coverage path
produced 0.72 percent missed coverage.

The coverage map in Fig. 3(c) indicates thin gaps of
missed coverage between consecutive sweep lines. These
areas resulted because the simulated current force constantly
pushed the vehicle off-course while it was following the
sweep lines. One potential method to address this issue is
to dynamically reduce the footprint width during coverage
based on the observed external conditions. The optimal
trade-off point between the amount of missed coverage and
repeated coverage will depend on the requirements of each
specific application domain.

VII. CONCLUSION AND FUTURE WORK

We have presented the Marine Autonomous Robotic Ex-
plorer (MARE), a novel autonomous robotic airboat with
desirable mechanical properties that makes it a suitable
platform for exploration-based tasks in both closed and open
water environments. MARE is highly configurable and can
also carry application-specific sensor payloads, making it
an efficient platform choice in many applications, including
autonomous surveillance, coral reef exploration, and coor-
dination between homogeneous as well as heterogeneous
robotic systems.

We have presented two different exploration strategies us-
ing MARE. The first strategy aimed at systematically cover-
ing a given region in its entirety, whereas the second strategy
was driven by the goal to find surprising observations in a

potentially large or highly dynamic environment. Both of
these techniques have uses in a variety of applications such
as mapping, surveillance, and search operations.
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