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Abstract. Classical methods for measuring image motion by computer have concentrated on the cases of optical

flow in which the motion field is continuous, or layered motion in which the motion field is piecewise continuous.

Here we introduce a third natural category which we call optical snow. Optical snow arises in many natural situations

such as camera motion in a highly cluttered 3-D scene, or a passive observer watching a snowfall. Optical snow

yields dense motion parallax with depth discontinuities occurring near all image points. As such, constraints on

smoothness or even smoothness in layers do not apply. In the Fourier domain, optical snow yields a one-parameter

family of planes which we call a bowtie. We present a method for measuring the parameters of the direction and

range of speeds of the motion for the special case of parallel optical snow. We demonstrate the effectiveness of the

method for both synthetic and real image sequences.
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1. Introduction

It has been known for over half a century that opti-

cal flow is a strong cue for human visual navigation

(Gibson, 1950). Most studies of optical flow assume

that there is a unique velocity vector at each point in

the visual field (Koenderink, 1986; Barron et al., 1994).

This assumption is only valid over regions of the im-

age in which the depth map is continuous. In this paper

we introduce a new natural motion category that we

call “optical snow”. Optical snow is a generalization

of optical flow in which the assumption of local spatial

continuity of the motion field is abandoned.

Optical snow arises in many natural situations in

which an observer moves relative to a densely cluttered

3-D scene (see Fig. 1). An extreme example of optical

snow is that of falling snow seen by a static observer.

Snowflakes fall approximately vertically and the image

speed of each snowflake varies inversely with its dis-

tance from the camera. Because any image region may

contain the snowflakes visible at multiple depths, the

motion field will be discontinuous within that region.

A second natural example of optical snow is the motion

seen by an observer moving laterally past a cluttered

3D object such as a bush or through a cluttered scene

such as a forest. Any image region contains objects

such as leaves and branches at multiple depths and so

discontinuities in the motion occur in nearly every local

image region.

Despite the apparent complexity this new category

of motion, optical snow provides a rich set of vi-

sual cues about depth and 3-D spatial layout. People
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moving observer

Figure 1. Optical snow. Within each image patch there is a single

direction of motion, but a continuous range of speeds generated by

motion parallax. (a) A passive observer watches a snow fall. (b) The

camera/observer moves relative to a cluttered 3D scene.

observe falling snow and experience a rich sense of

depth. People also navigate easily through 3D cluttered

environments such as forests and grasslands. This in-

formal observation is supported by formal psychophys-

ical studies which show that human observers can judge

direction of heading accurately in a “cloud of dots” en-

vironment (Warren and Hannon, 1990). Interestingly,

the many kinds of animals that inhabit natural 3D clut-

tered environments include the rabbit, cat, bird, and

monkey.1These are among the most heavily studied an-

imals in the neuroscience of motion processing. Since

much of what is known about motion processing in

biological vision comes from experiments on these an-

imals, and since these animals are presumably special-

ized for optical snow as well as for optical flow, it makes

sense to investigate the computational problems of mo-

tion processing in optical snow. That is our goal in the

present paper.

1.1. Related Work

How is optical snow related to the two traditional cate-

gories of motion used in computer vision, namely opti-

cal flow and layered motion? We argue that these three

categories of motion can be related to each other on the

following 1D continuum. At one end of this continuum

is optical flow. The traditional assumption of optical

flow is that the image velocity is a piecewise continuous

function of position in the image (Barron et al., 1994).

In the middle of the continuum of models is layered

motion. Traditional layered models assume the veloc-

ity field of each layer is either constant (Fennema and

Thompson, 1979) or affine, that is, varies linearly with

image position (Waxman and Wohn, 1985; Wang and

Adelson, 1993; Darrell and Pentland, 1995; Sawhney

and Ayer, 1996; Black and Anandan, 1996). Lay-

ered models have been used to describe a small num-

ber of opaque objects in relative motion. They have

also been used for various types of motion trans-

parency, both for constant motion fields (Shizawa and

Mase, 1991; Bergen et al., 1992; Jepson and Black,

1993; Milanfar, 1996; Weiss, 1997) and for affine mo-

tion fields (Black and Anandan, 1996; Irani et al.,

1994; Ju et al., 1996). In the case of transparency, lay-

ered models do not assume that the velocity field is

smooth in the image, rather only that the velocity field is

smooth within each layer (Weiss, 1997). Optical snow

is found at the other extreme end of the 1D continuum

of models, where the number of motion layers would

have to be so high that any assumption of layers includ-

ing smoothness in layers would be inappropriate.

To reinforce these ideas, consider this 1D contin-

uum of motion models for a laterally moving observer.

For this example, assume the camera motion is hori-

zontal. If the scene contained a single smooth surface,

then the image motion would be continuous optical

flow in the horizontal direction. If the scene contained

a small number of surfaces, possibly transparent and

with different depths, then layered motion would result

with one surface per layer and with horizontal motion

in each layer. Examples are the standard flower gar-

den (Wang and Adelson, 1993; Darrell and Pentland,

1995) and SRI tree data set (Barron et al., 1994), and the

reflection-in-the-window transparency examples such

as in (Bergen et al., 1992). If the scene were densely

cluttered in 3D, for example with bushes or trees, then

optical snow would result. The velocity field would

contain a dense set of discontinuities, and the velocity

of each visible point would be horizontal. We empha-

size that a layered model would be inappropriate here

because the number of layers would be too high.

What can an observer infer about 3D structure in the

three cases? In each case, the horizontal laterally mov-

ing observer observes horizontal image motion. In the

case of optical flow, the observer could apply a smooth-

ness constraint and recover the velocity field with great

accuracy (Barron et al., 1994). In the case of layered

motion, the observer must reduce the space of allowable

motions (e.g. to affine models for each layer) in order to
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cope with depth discontinuities or with transparencies.

In the case of optical snow, the observer must abandon

layered models entirely. The only remaining constraint

is that the velocity vectors are restricted to a line in

velocity space, namely the horizontal line through the

origin.

Optical flow and layered motion analysis have re-

ceived much attention in the computer vision literature

and the computational goals of the problem and algo-

rithms for solving the problem have been defined and

developed. To our knowledge, optical snow has not

been studied before as a computational problem, de-

spite the fact that it is a common motion category in

nature and motions of this category give rise to rich

qualitative percepts in human vision. Our goal in this

paper is to provide the groundwork for analysis of op-

tical snow. We define the computational goal to be the

recovery of the parameters of the motion, namely the

set of velocities occurring an image region. As we will

describe later, the set of image velocities lies on a line in

velocity space. We will use this constraint to solve the

computational problem for a particular class of optical

snow motions that we call parallel optical snow. The

generalization to non-parallel snow will be addressed

in a subsequent publication.

1.2. Overview

Section 2 provides the background. We review the

image flow constraint equation and several previous

results about optical flow in the frequency domain.

Section 3 introduces optical snow. We show that it has

a characteristic “bowtie” pattern in the frequency do-

main. This generalizes a classical frequency domain

model for optical flow. Section 4 considers the specific

case of parallel optical snow in which all velocity vec-

tors in an image region are parallel. The algorithm and

experiments in the paper focus on this case. Section 5

discusses how the bowtie pattern is affected by occlu-

sions. Section 6 shows how to estimate the parameters

of optical snow for a given image sequence. A two stage

solution is presented: the first stage is to estimate the

direction of the motion. This corresponds to estimating

the axis of the bowtie. The second stage is to estimate

the range of speeds present in the motion. Section 7 an-

alyzes the aperture problem and shows how it is man-

ifest in optical snow. Some of the results of this pa-

per appeared in preliminary form in Langer and Mann

(2001, 2002) and Mann and Langer (2002).

2. Background: Motion in Frequency Domain

Analysis of image motion in the spatiotemporal fre-

quency domain has a long history in motion under-

standing research. Much of the analysis is based on the

motion plane property (Watson and Ahumada, 1985)

which states that an image pattern that translates with

a uniform image velocity produces a plane of energy

in the frequency domain.

The intuition behind the motion plane property is as

follows. If an image sequence is created by a translat-

ing a single image frame over time, say with velocity

(vx , vy), then each of the 2D spatial frequency compo-

nents of the single image frame itself travels with this

velocity. Each of these translating 2D sine waves pro-

duces a unique spatiotemporal frequency component in

the translating image sequence. Thus, the velocity vec-

tor (vx , vy) induces a specific relationship (see Eq. (5)

later) between the temporal frequency of the translat-

ing wave as seen at a pixel over time and the spatial

frequencies of the wave as seen at one time and over

all pixels.

The motion plane property may be formally de-

rived as follows. Let I (x, y, t) be a time varying im-

age. Assume that I (x, y, t) has been smoothed by a

low pass filter so that derivatives are well-defined. As-

sume the image is translating with velocity (vx , vy) =

(dx/dt, dy/dt), that is, assume

I (x, y, t) = I (x + vx dt, y + vydt, t + dt). (1)

From the image flow constraint equation (Horn and

Schunck, 1981), the velocity (vx , vy) is constrained by:

vx

∂ I

∂x
+ vy

∂ I

∂y
+

∂ I

∂t
= 0. (2)

To derive the motion plane property, we use the deriva-

tive property of Fourier transforms:

∫

∂ I (u)

∂u
e−2π i f udu = −2π i f

∫

I (u)e−2π i f udu.

(3)

Treating (vx , vy) as a constant, we apply Eq. (3) to

Eq. (2) which yields:

−2π i (vx fx + vy fy + ft ) Î ( fx , fy, ft ) = 0 (4)

where Î ( fx , fy, ft ) is the Fourier transform of

I (x, y, t). Equation (4) implies that

vx fx + vy fy + ft = 0 (5)
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whenever Î ( fx , fy, ft ) �= 0. That is, all motion energy

lies on the plane of Eq. (5). This is the motion plane

property.

Several methods for measuring translational image

motion (or constant optical flow) have been based on

this motion plane property. For example, frequency-

based optical flow methods recover a unique velocity

(vx , vy) in a local region of the image by finding the mo-

tion plane that best fits the 3D power spectrum of that

local region (Heeger, 1987; Grzywacz and Yuille, 1990;

Simoncelli and Heeger, 1998; Huang and Chen, 1995).

Methods for recovering layered transparent motion

have also used the motion plane property. These meth-

ods assume linear superposition of two or more mo-

tion planes in the frequency domain and attempt to re-

cover these planes for a given image sequence (Shizawa

and Mase, 1991; Milanfar, 1996). The model of optical

snow that we develop in the next section can be thought

of as a generalization of layered motion transparency,

in which the number of layers is very high.

3. Optical Snow

We begin the technical discussion of optical snow with

the following observation. The motion plane property

can be extended from the case of pure translation to

the case in which there is a one-parameter set of veloc-

ities within an image region. Suppose that each velocity

vector in an image region is of the form

(vx , vy) = (ux + ατx , u y + ατy) (6)

where {ux , u y, τx , τy} are constants and the parameter

α varies within the region. We may assume without

loss of generality that (τx , τy) is a unit vector and that

(ux , u y) is perpendicular to (τx , τy) (see Fig. 2).

Substituting Eq. (6) into Eq. (5) produces a one-

parameter family of planes in the frequency domain,

(ux + ατx ) fx + (u y + ατy) fy + ft = 0 (7)

where α is the free parameter. The central property of

our model of optical snow is the following.

Proposition 1. The one parameter family of motion

planes in Eq. (7) intersects at a common line that passes

through the origin (see Fig. 3).

Proof: Each of motion planes in Eq. (7) has a normal

vector (ux + ατx , u y + ατy, 1). These normal vectors

all lie on a line in the plane ft = 1. Let us call this line

Figure 2. Equation (6) defines a one-parameter family of velocites.

We assume without loss of generality that (τx , τy ) is a unit vector

and that (ux , u y ) is perpendicular to (τx , τy ).

Figure 3. The motion described by Eq. (7) results in a family of

planes in the frequency domain. The planes intersect at a line that

passes through the origin. We refer to this as a “bowtie” signature.

l. The line l, together with the origin, define a plane π

in the frequency domain. The vector perpendicular to

π is, by definition, perpendicular to each of the vectors

in l. Hence, the line from the origin in the direction of

this perpendicular vector must lie in each of the motion

planes.

Because the planes intersect at a common line, we say

that the family of planes has a bowtie signature and we

say the common line of the planes is the axis of the

bowtie.

Proposition 2. The axis of the bowtie is in the direc-

tion (−τy, τx ,
√

u2
x + u2

y).

Proof: The direction of the axis of the bowtie can be

computed by taking the cross product of any two of
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the normal vectors in l. Taking the two normal vectors

defined by α = {0, 1} yields

(ux , u y, 1) × (ux + τx , u y + τy, 1)

= (−τy, τx , uxτy − u yτx ).

The third component of the bowtie axis is obtained by

setting (τx , τy) to be a unit vector, and choosing its

direction such that (ux , u y) × (τx , τy) > 0.

3.1. Lateral Observer Motion

As illustrated in Fig. 1, optical snow arises naturally

when an observer moves laterally in a static 3D clut-

tered scene. The general equations of the image veloc-

ity field for an observer moving relative to an arbitrary

scene are presented in Longuet-Higgins and Prazdny

(1980) and Trucco and Verri (1998). Here we relate

these equations to optical snow by considering the spe-

cific scenario of lateral motion.

Assume a camera is moving through a static scene,

and let the instantaneous motion of the camera be repre-

sented by a translation vector (Tx , Ty, Tz) and a rotation

vector (�x , �y, �z). Suppose that the camera is mov-

ing near laterally, that is, the translation vector is near

perpendicular to the optical axis. Formally,

|Tz| 
 ‖(Tx , Ty)‖.

Following Lappe and Rauschecker (1993), we further

suppose that the camera can pan and tilt, but not roll,

that is,

�z ≈ 0.

When these two conditions hold and when the projec-

tion plane of the camera is at unit depth, the image

velocity field may be well-approximated by:

(vx , vy) = (−�y, �x ) +
1

Z
(Tx , Ty), (8)

where Z is the depth of the point visible at pixel (x, y).

The model of Eq. (8) ignores terms that are second

order in the image coordinates x, y. This is valid for

pixels that are within roughly ±20 degrees from the

optical axis.

The physical intuition behind Eq. (8) is that the cam-

era rotation generates a constant velocity component

(−�y, �x ) and the lateral translation generates a ve-

locity component that is in the direction of the transla-

tion and that has speed inversely proportional to depth.

Importantly, Eq. (8) has a general property that the set

of velocity vectors in the image lie on a line in veloc-

ity space, and thus is of the form of Eq. (6) discussed

earlier. This model holds regardless of the scene ge-

ometry, for example, whether the scene consists of a

single smooth surface or whether it is densely clut-

tered in 3D with depth discontinuities occurring nearly

everywhere.

3.2. Example: Lateral Observer Motion

with Tracking

A special case of Eq. (8) occurs when the image ve-

locities are parallel. Such parallel motion arises in two

natural cases:

(i) There is no camera rotation and so �x = �y = 0;

(ii) The image motion due to camera rotation is parallel

to direction of translation, that is, (−�y, �x ) is

parallel to (Tx , Ty).

An interesting and natural example of case (ii) occurs

when camera rotation is used to stabilize (i.e. track) a

particular surface patch at some depth Z ′ in the scene.

For this patch, the rotation component exactly cancels

the translation component for that surface patch (Lappe

and Rauschecker, 1993). For a point at depth Z �= Z ′,

image velocity will satisfy:

(vx , vy) =

(

1

Z
−

1

Z ′

)

(Tx , Ty) (9)

Note that near points (Z < Z ′) have image motion in

the opposite direction of distant points (Z > Z ′). Also

note that case (i) is just a special instance of case (ii)

in which the tracked point has depth Z ′ = ∞.

An important observation is that Eq. (9) is of the

form of Eq. (6) with

(ux , u y) = (0, 0), (τx , τy) = (Tx , Ty),

α = (1/Z − 1/Z ′).

That is, lateral observer motion with tracking produces

optical snow, but it is a special case of optical snow in

which all the velocity vectors are parallel. We refer to

this case as parallel optical snow. The remainder of the

paper addresses parallel optical snow only.
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4. Parallel Optical Snow

Parallel optical snow is a special case of Eq. (6) in which

the image velocities are all in the same direction,

(vx , vy) = (ατx , ατy).

From Eq. (7), it follows parallel optical snow produces

a bowtie of the form,

ατx fx + ατy fy + ft = 0. (10)

This bowtie has the following property. This property

will be the basis for the method we describe later in

Section 6.

Proposition 3. For parallel optical snow, the axis of

the bowtie lies in the ( fx , fy) plane and is in direction

(−τy, τx ) in that plane. The axis is perpendicular to the

direction of motion.

Proof: The proof here is special case of Proposi-

tion 1. From Eq. (10), we set ft = 0. This yields the

equation of a line in ( fx , fy) plane. This line passes

through the origin and, since (τx , τy) is perpendicular

to this line, (−τy, τx ) must be the direction of the line.

An alternative proof comes from Proposition 2. Since

the (ux , u y) vector is zero, the axis of the bowtie is in

direction (−τy, τx , 0).

In Section 6, we will use this property to show how

to recover the parameters of a bowtie from an image

sequence of parallel optical snow. Before doing so, we

present three examples of parallel optical snow and

their bowties.

4.1. Examples of Bowtie Pattern

For parallel optical snow, the axis of the bowtie lies in

the ( fx , fy) plane and hence we can parameterize this

axis with an angle θb. Define θb such that (cos θb, sin θb)

is the axis of the bowtie in the ( fx , fy) plane (see

Fig. 9(a)). Note that (τx , τy) = (−sin θb, cos θb) since,

from Proposition 3, (τx , τy) is perpendicular to the axis

of the bowtie. As an example, consider an image se-

quence in which the motion is vertical only. Since the

image velocities are of the form (0, α), it follows that

θb = 0 and so all the motion planes pass through the

fx axis.

To visualize a bowtie signature for a given image

sequence I (x, y, t), we compute the power spectrum

| Î ( fx , fy, ft )|
2 and repeatedly project the power spec-

trum orthographically onto a set of vertical planes,

cos θ fx + sin θ fy = 0 (11)

where θ ∈ [0, π ). For any fixed θ , we compute this

projection by summing the power along lines parallel

to (cos θ, sin θ ). If a bowtie exists, it should appear at

θ = θb.

To reduce image boundary effects in the Fourier

transform, we subtract the mean grey level value of

the entire sequence from each pixel and window the

sequence both in space and time by a Gaussian, prior

to computing the power spectrum. The standard devi-

ations σx , σy, σt of Gaussian were chosen so that the

width of I (x, y, t) was 6σ along each axis. The window

is applied for all image sequences.

4.1.1. Example 1: Falling Spheres (Synthetic Video).

A synthetic version of “falling snow” is shown in Fig. 4.

The scene consists of a set of spheres of constant 3-D

size, placed at random positions within a view volume.

The image sequence was generated using OpenGL by

moving a virtual camera upwards at a constant 3D

velocity.

The spheres were illuminated by collimated light

source that was parallel to the line of sight, to minimize

visible shadows. The scene was viewed in perspective.

The spheres had a radius of 0.2 units and were at depths

ranging from z = 8 to −8. The camera was at z =

10 and the field of view was 30 degrees. The image

sequence was created by moving the camera upwards

at a constant velocity Vy = 0.025 units/frame.

Figure 4. Synthetic “falling spheres” sequence. (a) XY slice of

sequence at first frame. (b) YT slice of sequence taken at rightmost

pixel column of (a). The data consists of 128 frames, each of which

is a 256 × 256 image.
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As the camera moves upward, the imaged spheres

move downward with speed inversely proportional to

their depths. Figure 4(a) shows one frame of the se-

quence (XY slice) and Fig. 4(b) shows a YT slice

(Adelson and Bergen, 1985). Multiple image speeds

are evident in Fig. 4(b) in the form of space-time bars

of multiple orientations (Bolles et al., 1987).

Figure 5 shows the projected power for several an-

gles θ . In this and subsequent figures, the axes have

range [−N/2 . . . N/2 − 1], where N is the image size

Figure 5. Projected power spectrum for falling sphere sequence

in Fig. 4. The bowtie is evident at θ = 0 where the direction of

projection is identical to the axis of the bowtie.

and [−T/2 . . . T/2 − 1], where T is the number of

frames in the sequence. To increase contrast, log en-

ergy is plotted. White corresponds to high values and

black corresponds to low values.

The projected power is plotted as a function of

( fθ , ft ) where the fθ axis is perpendicular to the di-

rection of projection and to the ft axis,

fθ ≡ cos

(

θ +
π

2

)

fx + sin

(

θ +
π

2

)

fy . (12)

A bowtie is clearly present in Fig. 5 when θ = θb =

0. As θ deviates from θb = 0, the bowtie gradually

diminishes.

Note that aliasing effects are visible in Fig. 5 when

θ = 0, that is, when the bowtie wraps around the bound-

aries of the plot. Aliasing is due to the edges of the

spheres which are represented with floating point ac-

curacy. For real image sequences, aliasing effects are

reduced because of optical blurring at the sensor level

prior to spatial sampling. An example is the following.

4.1.2. Example 2: Holly Bush (Real Video). Figure 6

shows two frames from a 128 frame sequence of a real

holly bush seen by a camera moving horizontally on a

sliding platform. Figure 7 shows the projected spectra

for various values of θ . The bowtie appears at θ = π/2

as expected because the motion is horizontal. Aliasing

effects are less severe than in the falling spheres of

Fig. 5.

4.1.3. Example 3: Tracking a “Snowflake” (Synthetic

Video). In Examples 1 and 2 above, the slopes of the

planes of the bowtie all have the same sign.2Example

3 shows how both positive and negative slopes are pos-

sible. Consider again the synthetic falling sphere se-

quence but now we rotate the virtual camera about the

x-axis direction as the camera translates in the y direc-

tion. The rotation is such that the optical axis passes

through a 3D point near the center of the view volume

in all frames, that is, the camera “tracks” this 3D point.

This corresponds to case (ii) of parallel optical snow

described in Section 3.2. Objects on the near side of

the tracked point have downward image velocity and

objects on the far side of the tracked point have upward

image velocity.

Figure 8 shows XY and YT plots as well as the

projected spectrum where the projection is along the

bowtie axis. In the YT plot, the slopes are positive for

the background objects and negative for the foreground

objects. In the projected bowtie, the speeds are both

positive and negative.
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Figure 6. Two frames from a real image sequence of a holly bush taken from a horizontally translating camera. Image sequence consists of

128 frames of size 240 × 256 pixels. Frames were padded with zeros to give 256 × 256 square images. Frames 21 and 61 are shown.

5. Occlusions

The bowtie model assumes linear superposition of

the motion planes. Strictly speaking this assumption

does not hold when occlusions are present as in

Examples 1–3. When an object is occluded, the power

of that object is spread outside of that object’s motion

plane. The bowtie data from Examples 1–3 suggest

that the bowtie signature is robust to occlusion effects.

In this section, we briefly discuss why. See Fleet and

Langley (1994) and Beauchemin and Barron (2000)

for further discussion of how occlusions affect a mo-

tion plane.

Consider an image sequence that contains a large

number of well-defined opaque objects, translating at

a range of image speeds such as in Examples 1 to 3.

We can partition the space-time volume of such an im-

age sequence into the set of space-time volumes of the

individual objects,

I (x, y, t) =
∑

i

Ii (x, y, t)χi (x, y, t),

where Ii (x, y, t) is the space-time intensity function of

the translating object i and χi (x, y, t) is a binary win-

dowing function that defines the space-time volume in

which object i is visible. Assume each object is opaque

so that the domains of the χi (x, y, t) are disjoint and

using Parseval’s relation, i.e.
∫

I (u)2du =

∫

Î ( f )2d f,

we see that the power spectrum of I (x, y, t) must be

equal to the sum of the power spectra of the space-time

volumes of the individual objects. Let us examine each

of these individual power spectra.

Assume object i is translating in the image with

velocity (vx , vy) and so Î i ( fx , fy, ft ) lies on a mo-

tion plane obeying Eq. (5). The Fourier transform

of Ii (x, y, t) χi (x, y, t) is the convolution product,

Îi ( fx , fy, ft ) ∗ χ̂ i ( fx , fy, ft ). The effect of the win-

dow χi (x, y, t) in the frequency domain is to blur the

motion plane. What is the width of the blurring kernel?

If object i is visible for a time duration � then,

by the Uncertainly Principle, the Fourier transform of

χi (x, y, t) has a temporal frequency width proportional

to �−1, and so the motion plane of object i is blurred

by a width proportional to �−1 in the ft direction. A

similar argument holds for the spatial domain. If object

i is visible over a distance � in the x or y directions,

then the motion plane is blurred by width proportional

to �−1 in the fx or fy directions, respectively.

The accuracy of the bowtie model thus depends on

the space-time durations over which the objects are vis-

ible. In Examples 1–3, most objects are visible over a

large number of frames and so the widths of the blurring

kernels are small. This is the reason why the blurring

of the motion planes has little effect on the bowtie sig-

nature. One could construct examples in which each

point on each object is visible for a small number of

frames only, and this gets one into the scope of “non-

Fourier” models used by visual psychophysists (Fleet

and Langley, 1994). Whether such optical snow mo-

tions produce a percept of motion to human observers

is not known. See Qian et al. (1994) for experiments

that address related questions, in the context of two

layer transparency.

6. Estimating the Motion

The visualization of the bowtie signature presented

in Section 4 suggests an algorithm for estimating the

parameters of a parallel optical snow motion. Recall
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Figure 7. Projected power spectrum for holly sequence in Fig. 6.

The bowtie signature appears at θ = π/2 which corresponds to hor-

izontal motion.

that θb is the direction of the axis of the bowtie (see

Fig. 9(a)). The algorithm consists of two stages. First,

estimate the angle θb. This yields the axis of the bowtie

and thus the direction (vx , vy) of the motion which is

perpendicular to the axis of the bowtie. Second, esti-

mate the range of speeds present in the motion.

6.1. Estimating the Direction

To estimate the direction θb, we sum the power in a

wedge of frequencies where the wedge is oriented at

Figure 8. A sequence similar to that shown in Fig. 4, except that

as the camera moves upwards, it rotates about the x-axis to “track” a

point near the center of the view volume. (a) XY slice. (b) YT slice.

(c) Bowtie signature (θ = θb = 0). Positive and negative speeds are

present.

an angle θ as in Fig. 9(b). The wedge is defined by a

constant slope vmax which is chosen by the user. This

slope corresponds to an upper bound on speeds that

are assumed to be present in the image sequence. For-

mally, we define W (θ ) to be the sum of all power in

frequencies ( fx , fy, ft ) that satisfy
∣

∣

∣

∣

ft

fθ

∣

∣

∣

∣

> vmax

T

N

where fθ was defined in Eq. (12), vmax is measured in

pixels/frame, N is the image width (in pixels) and T is

the number of frames in the sequence. The scaling fac-

tor T
N

is necesary when the number of pixels is different

than the number of frames in the sequence.

We further restrict the sum to frequencies satisfying

‖( fθ , ft )‖2 > τ

which removes frequencies with low fθ and ft . The

speed of such frequencies is poorly defined because of

quantization. This τ threshold “truncates” the wedge.

Before stating our next proposition, we observe

that W (θ ) has a 180 degree periodicity. We also ob-

serve that because I (x, y, t) is real, Î ( fx , fy, ft ) and



64 Langer and Mann

Figure 9. Parallel optical snow. (a) Bowtie signature in the fre-

quency domain. The axis of the bowtie is in the fx – fy plane. The

angle θb is measured from the x-axis. (b) Wedge used to estimate

the orientation of the bowtie. The power within the wedge reaches

a minimum when the wedge is aligned with the bowtie in (a) (i.e.,

θ = θb).

Î (− fx , − fy, − ft ) are complex conjugates and so the

power in the upper wedge is the same as the power in

the lower wedge.

Proposition 4. Suppose that power spectrum of an

image is a family of planes of the form of Eq. (10) and

that |(ατx , ατy)| < vmax for all α. Then, W (θ ) = 0

when θ = θb.

The proof follows directly from the definition of

W (θ ).

One caveat is that, when occlusions are present (re-

call Section 5), the motion planes are thickened slightly

and so the pre-conditions for Proposition 4 may not

hold exactly. In this case, a minimum of the function

W (θ ) occurs roughly but perhaps not exactly at θ = θb

and this minimum is non-zero.
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Figure 10. W (θ) for the synthetic sequence in Example 1. The min-

imum occurs at θ = 0◦ corresponding to vertical motion. The results

of ten runs are shown (dotted lines), along the the mean response

(solid lines) and error bars (at one standard deviation).

Analogous to the visualization of Section 4, we

compute W (θ ) for a given image sequence by rotat-

ing through angles θ at fixed angular increments.3

Figure 10 shows W (θ ) for the sequence in Example 1.

In this and subsequent experiments, we chose vmax =

8 pixels/frame (slope of 4, since N
T

= 2) and τ =

8 pixels. We show response curves for ten different se-

quences, as well as the mean curve and the error bars at

one standard deviation. Note that while there is some

variability in the response, W (θ ) has a well defined

minima at θ = 0◦.

Figure 11 shows the plot of W (θ ) for real data,

collected from the holly bush image sequence in

Example 2. As expected, there is a well-defined mini-

mum at θ = ±90◦, which corresponds to the horizontal

motion.
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Figure 11. W (θ ) for the holly sequence of Example 2. The mini-

mum occurs at θ = ±90◦, corresponding to horizontal motion.
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6.2. Estimating the Range of Speeds

In addition to estimating the motion direction, we also

may want to estimate the range of speeds within an im-

age region. The range of speeds is related to the range of

depths of visible surfaces in the region, and so it could

be used to estimate this range of depths. The range of

speeds could also be used to distinguish optical snow

from other classes of motion, such as frontoparallel

optical flow or a small number of discrete motion

layers.

The range of speeds can be estimated directly from

the projected power spectrum at the minimum of W (θ ),

by making a histogram of power in this projected power

spectrum as a function of speed. As a proof-of-concept

demonstration, we fit single Gaussian distribution to a

histogram and report mean and variance of the speeds.

More sophisticated models (e.g., a mixture of Gaus-

sians) may be used for discriminating optical snow

from motion with a finite number of layers.

Figure 12 shows two histograms of power as a func-

tion of speed. The plot in Fig. 12(a) is from the bowtie

of Fig. 5(a) (Example 1) and the plot in Fig. 12(b) is

Figure 12. Image power as a function of speed for Examples 1

and 3.

from the bowtie of Fig. 8 (Example 3). The histograms

of speeds in the two cases are approximately related by

a shift. This shift is due to the rotation of the camera

in Example 3 which adds an approximately constant

component to the image speed of each object (recall

Section 3.1). The mean speeds in (a) and (b) are ap-

proximately 1.0 and .14 pixels/frame, and the standard

deviations are approximately 1.3 and 1.5, respectively.

7. Aperture Problem

In many scenes, the objects are dominated by a par-

ticular orientation. For example, in a crowd scene or

a forest, the dominant orientation is vertical. When

the camera moves laterally relative to such a scene, the

measurable components of image velocity are in the

direction that is normal to the oriented structure. Clas-

sically, this is known as the aperture problem (Marr

and Ullman, 1981). How is this problem manifest in

optical snow?

The aperture problem can be expressed in terms

of Eq. (2) as follows. Let the spatial gradient of

the image intensities be parallel to a constant vector

(cos θn, sin θn) where the subscript n stands for “nor-

mal direction”. Formally, we are supposing that

(

∂ I

∂x
,
∂ I

∂y

)

(x, y, t) = g(x, y, t) (cos θn, sin θn) (13)

where I = I (x, y, t) and where g(x, y, t) is the mag-

nitude of the image gradient,

g(x, y, t) =

∣

∣

∣

∣

(

∂ I

∂x
,
∂ I

∂y

)∣

∣

∣

∣

.

Proposition 5. If the direction (cos θn, sin θn) of the

image gradient is constant over (x, y, t), then the max-

imum of W (θ ) occurs when θ = θn .

Proof: We use the derivative property of Fourier

transforms. Applying Eq. (3) to Eq. (13) yields

2π i Î ( fx , fy, ft ) ( fx , fy)

= ĝ( fx , fy, ft )(cos θn, sin θn).

For any ( fx , fy, ft ), if Î ( fx , fy, ft ) �= 0 then ( fx , fy)

is parallel to (cos θn, sin θn), i.e.

−sin θn fx + cos θn fy = 0. (14)
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Figure 13. If θn is the direction of the gradient of image intensities

for all points in the image sequence, then the power is restricted to

the intersection of the bowtie with the vertical plane of Eq. (14).

Thus, if the image gradient satisfies Eq. (13), then all

power in the frequency domain must lie in the plane of

Eq. (14). The geometry of the intersection of the bowtie

and the plane of Eq. (14) is illustrated in Fig. 13.

Recall the wedge detector from Fig. 9(b). When

θ = θn , the axis of the wedge lies in the plane. By

inspection, the plane must be entirely contained in

the wedge. Hence, a maximum of W (θ ) occurs when

θ = θn .

This is the aperture problem for optical snow. Let

us explore the aperture problem by examining a few

examples.

7.1.1. Example 4: Parallel Cylinders. Consider the

example of a 3D scene consisting of long parallel cylin-

ders like trees in a forest. Suppose these cylinders are

perpendicular to the optical axis of the camera so that

the cylinders are parallel in the image plane. Let θn be

such that (cos θn, sin θn) is normal to the axis of the

cylinders. The spatial gradient of intensities in the im-

age is thus in direction (cos θn, sin θn) and Eqs. (13)

and (14) hold. For example, if the trees are vertical in

the image then θn = 0◦ and fy = 0.

If the camera translates laterally through such a clut-

tered scene, optical snow results. From Proposition 1,

the minimum of W (θ ) occurs at θb. From Proposition

5, the maximum of W (θ ) occurs at θn . We emphasize

that there is no relationship between the angle θn and

the angle θb. The angle θn is normal to the cylinders and

the angle θb is the direction of the true image velocity.

Figure 14 shows W (θ ) for a synthetic video of such

cylinders. The scene is similar to that of Example 1

except now the objects are cylinders (of radius 0.2)

rather than spheres. The cylinders are tilted −30◦ from

the horizontal axis and so θn = 90◦ − 30◦ = 60◦.
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Figure 14. W (θ ) for vertically falling cylinders tilted at 30 degrees

from horizontal. The plot shows the average response over ten runs.

Note that W (θ ) is not a delta function. The reason is

that, for θ = θn , the plane containing the power lies

entirely in the wedge. But for nearby θ , the plane still

intersects the wedge, and there is power lying in this

intersection.

7.1.2. Example 5: Parallel Ellipsoids. A more gen-

eral synthetic case is a cluttered scene containing 3D

elongated ellipsoids. Suppose that the major axis of

each 3D ellipsoid is parallel to the image plane, and

assume the aspect ratios of axes are axes is m : 1 : 1

where m ∈ {1, 2, 4, 8}. Consider vertical camera mo-

tion as in Example 1.

Example 5 is just a generalization of Examples 1

and 4 in which the spheres or cylinders are replaced by

elongated ellipsoids. The major axis of the ellipsoids

plays the same role as the axis of the cylinders in Ex-

ample 4, namely we define (cos θn, sin θn) to be normal

to the major axis.

Figure 15(a) shows the functions W (θ ) for four such

scenes whose ellipsoids differ in aspect ratio. Each plot

shows the mean of W (θ ) over ten example sequences.

For each ellipsoid, the major axis is horizontal. Because

the motion is vertical, the minimum of W (θ ) is at 0◦.

Figure 15(b) shows the mean of W (θ ) when the major

axis of the ellipsoids is −30◦ from the horizontal. (This

tilt has no effect when the aspect ratio is 1.) Since θn

is perpendicular to the major axis, and since the major

axis is 30 degrees away from the horizontal direction,

we have θn = 90◦ − 30◦ = 60◦.

To understand these plots, recall Proposition 4 from

Section 6.1 which says that direction of motion is in-

dicated by the minimum of W (θ ). For ellipsoids with
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Figure 15. Plots of W (θ ) for sequences containing elongated ellip-

soids. The aspect ratios (y/x) are 1.0 (spherical), 2, 4, and 8. (a) Plots

of W (θ ) for vertically moving ellipsoid sequences, with horizontal

major axis. (b) Plots of W (θ ) when major axis is 30◦ from the hori-

zontal. The minimum of W (θ ) remains at 0◦, but the maximum shifts

as the aspect ratio increases. The plots show the average response

over ten sequences.

a large aspect ration m, the minimum is broad because

that power is concentrated about the normal velocity

direction. Because of the broad minimum, the true di-

rection of motion is difficult to estimate.4 By contrast,

the direction of the normal velocity is relatively well

defined by the maxima of W (θ ).

For the example of Fig. 15(b), when the aspect ratio

is one, the maximum of W (θ ) occurs at 90 degrees

which is 90 degrees away from the axis of the bowtie

for vertical motion. As the aspect ratio increases, the

position of the maximum of W (θ ) gradually shifts from

90◦ towards θn = 60◦.

Before moving to the next example, we note that hu-

mans observing these sequences of falling ellipsoids

can easily judge the correct (vertical) motion direc-

tion. As long as the endpoints of a long thin ellipsoid

are visible, human observers do not confuse the domi-

nant orientation of the ellipsoids with the true direction

of motion. Presumably the reasons are twofold. First,

strictly speaking, the pre-conditions of Proposition 5

do not apply to the ellipsoidal sequences since intensity

gradients are present at all orientations. Second, human

observers see ellipsoids and their boundaries. Despite

the occlusions, they can follow the true direction of mo-

tion from these boundaries. The remarks do not triv-

ialize the computational problem, of course. Finding

object boundaries in the presence of dense occlusion

in optical snow is an open and difficult computer vision

problem.

7.1.3. Example 6: A Real Forest. We next consider

a real scene containing oriented structure. An image

sequence of a densely treed scene was shot using a

Hitachi MPEG MP-EG10W camera pointing out a side

window of a forward moving car. The trees in the scene

were bare of leaves. Though the trunks of the trees

were vertical, visible branches of the trees appeared at

a range of angles. A single frame from the sequence is

shown in Fig. 16.

Figure 16. Two frames from an image sequence of a forested area

taken with a horizontally translating camera. Image sequence was

cropped to 128×128 pixels per frame. The cropped area is outlined.
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The camera produces images of size 352 × 240 at

30 frames/sec. A sequence of 128 frames was extracted

and converted to grey scale images. Each frame was

cropped to an area of 128 × 128 pixels (see outlined

region in Fig. 16).

Figure 17 shows the projected power for various

angles of θ . The bowtie signature is clearly visible

at θ = π/2. Figure 18 shows W (θ ). The minimum

occurs at ±90◦ which is as expected since the motion

is horizontal (θb = ±90◦). The maximum occurs at

approximately 0◦ since the dominant orientation is

vertical.

The width of the peak of W (θ ) at half-height is ap-

proximately 50 degrees and so the width of the valley

is 130 degrees. This broad minimum is due to the ver-

tical structure (tree trucks) which domanates the non-

vertical structure (branches) in the scene. If we com-

pare the plot in Fig. 18 with those in Fig. 15(a), we

see that a half-height peak-width of 50 degrees cor-

Figure 17. Projected power spectrum for forest sequence in Fig. 16. The bowtie signature appears at θ = π/2 which corresponds to horizontal

motion.

responds loosely to an effective aspect ratio of about

four.

To summarize, the above examples show that the

function W (θ ) provides both the direction of normal

velocity in the image and an estimate of the range of

spatial orientations in the image that are contributing

to the motion (the aperture problem). When a large

range of spatial orientations is indeed present, the

dominant direction of motion can be estimated by the

minimum W (θ ). When only a small range of spatial

orientations is present, the power spectrum does not

provide a good estimate of the true motion direction,

but rather could only provides an estimate of the normal

velocities.

8. Discussion

Our results in this paper broaden the analysis of im-

age motion to a new natural motion category which we
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Figure 18. W (θ ) for the forest sequence in Fig. 16. The minima occurs at ±90◦, corresponding to horizontal motion.

call optical snow. We concentrate on the case of par-

allel optical snow. We have presented an algorithm for

estimating the parameters of motion for this case. Par-

allel optical snow arises in many natural situations, for

example, tracking a stationary object as the observer

moves through a cluttered scene or a statinary observer

viewing falling snow.

One problem that is ripe for future work is how to

estimate the bowtie using methods that are more bio-

logically plausible, for example, methods based on lo-

cal space-time energy detectors. Such methods could

be derived from those of Heeger (1987), Fleet (1992),

Grzywacz and Yuille (1990), Simoncelli and Heeger

(1998), and Huang and Chen (1995) which estimate a

single motion plane in the frequency domain for the

case of constant translation optical flow. Indeed they

would generalize such methods, since a single motion

plane is just a bowtie whose range of speeds is lim-

ited to a single speed. Biologically plausible models of

layered motion transparency have been proposed e.g.

Zemel and Dayan (1999) and we expect similar algo-

rithms could be designed for optical snow as well.

With such algorithms in mind, the reader may be in-

clined to ask why we have presented an algorithm that is

based on a global Fourier analysis in the first place. The

answer is that we feel the optical snow problem is mo-

stly cleanly expressed using the Fourier transform.

As articulated by Marr (1982), it is important to

distinguish a computational problem from a particular

algorithm for solving the problem. The computational

problem that we posed and solved was to recover the

parameters of the bowtie pattern for parallel optical

snow. The bowtie pattern itself is derived from a natural

constraint, namely that lateral motion of an observer

relative to a cluttered scene yields velocity vectors that

lie on a line in 2D image velocity space. This constraint

relies neither on spatial continuity of the motion field

(as in optical flow), nor does it rely on smoothness in

layers (as in layered motion). It does not rely on any lo-

cal structure in the image whatsoever. Hence, a global

Fourier approach is natural way to pose and solve the

problem.

That said, we admit that the global Fourier algorithm

has significant limitations. For example, the algorithm

alone is unable to distinguish optical snow from other

motion categories such as optical flow or layered mo-

tion. When an observer moves laterally through a scene

that contains a single horizontal ground plane only,

the motion field is a continuous horizontal shear. An

affine model with a single layer would be the natural

choice here for processing the motion. But since all ve-

locity vectors are horizontal (and hence parallel) and a

range of speeds is present, the optical snow algorithm

would yield a correct answer as well. It would recover

the direction of motion and the range of speeds. It would

not recover, however, the systematic spatial relation be-

tween speed and image position which the affine model

would recover.

This last example illustrates the importance of se-

lecting an appropriate motion model to interpret a given
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sequence. This model selection problem is a poorly un-

derstood one. A solution to the problem would need to

incorporate many models of image motion, such as op-

tical flow, layered motion, optical snow, and other mo-

tion categories (Langer and Mann, 2001; Wildes and

Bergen, 2000; Davis et al., 2000). A solution would

also need to consider issues of motion segmentation

and grouping since different models might be appro-

priate at different regions of the image. Though the

challenges in this model selection problem are awe-

some and enormous, inevitably they must be faced if

we are to develop computer vision systems that can in-

terpret unknown raw motion sequence with a compe-

tence comparable to that of existing biological motion

systems.
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Notes

1. See the interesting discussion of the fox in the forest in Zucker

and Iverson (1987).

2. In both the input image sequences (Figs. 4 and 6) and the pro-

jected power spectra (Figs. 5 and 7) the vertical axis points down-

ward. According to this convention, both bowties are comprised

of planes with negative slopes.

3. For all of the experiments reported here W (θ ) was computed at 5

degree angular increments.

4. For these particular scenes, the true direction of motion could

be estimated by tracking individual ellipsoids. This is similar to

solving the aperture problem in classical optical flow by tracking

end points or corners of lines.
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