Tracking through optical snow
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Abstract. Optical snow is a natural type of image motion that results
when the observer moves laterally relative to a cluttered 3D scene. An
example is an observer moving past a bush or through a forest, or a
stationary observer viewing falling snow. Optical snow motion is unlike
standard motion models in computer vision, such as optical flow or lay-
ered motion since such models are based on spatial continuity assump-
tions. For optical snow, spatial continuity cannot be assumed because
the motion is characterized by dense depth discontinuities. In previous
work, we considered the special case of parallel optical snow. Here we
generalize that model to allow for non-parallel optical snow. The new
model describes a situation in which a laterally moving observer tracks
an isolated moving object in an otherwise static 3D cluttered scene. We
argue that despite the complexity of the motion, sufficient constraints
remain that allow such an observer to navigate through the scene while
tracking a moving object.

1 Introduction

Many computer vision methods have been developed for analyzing image mo-
tion. These methods have addressed a diverse set of natural motion categories
including smooth optical flow, discontinuous optical flow across an occlusion
boundary, and motion transparency. Recently we introduced a new natural mo-
tion category that is related to optical flow, occlusion and transparency but that
had not been identified previously. We called the motion optical snow. Optical
snow arises when an observer moves relative to a densely cluttered 3-D scene
(see Fig. 1).

Optical snow produces dense motion parallax. A canonical example of optical
snow is falling snow seen by a static observer. Although snowflakes fall vertically,
the image speed of each snowflake depends inversely on its distance from the
camera. Since any image region is likely to contain snowflakes at a range of
depths, a range of speeds will be present. A similar example is the motion seen by
an observer moving past a cluttered 3D object such as a bush. Any image region
will contain leaves and branches at multiple depths. But because of parallax,
multiple speeds will be present in the region.



moving observer

Fig. 1. Optical snow arises when a camera/observer moves relative to cluttered 3D
scene.

Optical snow is a very common motion in nature which makes it especially
relevant for computer vision models that are motivated by biological vision. An-
imals that are typically studied by visual neuroscientists include the rabbit, cat
and monkey. These animals inhabit environments that are densely cluttered,
for example, grasslands or forest. Since most of our knowledge of motion pro-
cessing in the visual brain of mammals is obtained from experiments done on
these animals, it is important to understand the computational problems of mo-
tion perception in the environments these animals inhabit, namely cluttered 3D
environments.

In earlier papers on optical snow[1,2], we developed a mathematical model of
the motion that extended the classical frequency domain analysis of Watson and
Ahumada [3]. In the present paper, we generalize that model to the case of non-
parallel optical snow, and we explicitly relate the model to classical equations of
motion of a moving observer of Longuet-Higgins and Prazdny [4]. Implications
for the problem of tracking are discussed.

2 Background

Previous research on image motion that uses the spatiotemporal frequency do-
main is based on the following motion plane property [3]: an image pattern that
translates with a uniform image velocity produces a plane of energy in the fre-
quency domain. The intuition behind the motion plane property is as follows. If
an image sequence is created by a translating single image frame over time, say
with velocity (vg,vy), then each of the 2D spatial frequency components of the
single image frame will itself travel with that velocity. Each of these translating
2D sine waves will produce a unique spatiotemporal frequency component in
the translating image sequence. The velocity vector (v,,vy) induces a specific



relationship (see Eq. 2 below) between the temporal and spatial frequency of
each translating component.

Formally, let I(z,y,t) be a time varying image that is formed by pure trans-
lation, so that

Iz, y, t) = I(x+vpdt, y+vydt, t+di) . (1)
Taking the Fourier transform, I(f,, fy, ft), one can show [3,2] that

j(fZ)fyaft) (v fo+vyfy+fi) = 0.

Thus, any non-zero frequency component of the translating image satisfies

Vg fotuvyfy+fr = 0. (2)

This is the motion plane property.

Several methods for measuring image motion have been based on this mo-
tion plane property. For example, frequency-based optical flow methods recover
a unique velocity (vg,vy) in a local patch of the image by finding the motion
plane that best fits the 3D power spectrum of that local patch [5-8]. The mo-
tion plane property has also been used by several methods that recover layered
transparency. These methods assume linear superposition of two or more motion
planes in the frequency domain and attempt to recover these planes for a given
image sequence [9, 10].

3 Optical snow

The motion plane property was originally designed for pure translation, that
is, for a unique image velocity (vg,v,). We observe that the property can be
extended to motions in which there is a one-parameter family of velocities within
an image region. Suppose that the velocity vectors in an image region are all
of the form (u, + & 7,uy + a 7;) where {uz,uy,7,,7y} are constants and the
parameter a varies between points in the region. We do not make any spatial
continuity assumptions about « since we are modelling densely cluttered 3D
scenes.

From Eq. (2), this one parameter family of image velocities produces a one-
parameter family of planes in the frequency domain,

(ug +a1y) fo + (uy+am) fy+fi =0 (3)

where « is the free parameter. This claim must be qualified somewhat because of
occlusion effects which are non-linear, but we have found that as long as most of
the image points are visible over a sufficiently long duration, the multiple motion
plane property above is a good approximation. See also [11, 12] for discussion of
how occlusions can affect a motion plane.

From the family of motion planes above, we observe the following:



Claim: The one parameter family of motion planes in Eq. (3) intersect at a
common line that passes through the origin in the frequency domain (fz, fy, ft)-
(see Fig. 2)

Proof: Each of motion planes in Eq. (3) defines a vector (uy +a 74, uy+a 7y, 1)
that is normal to its motion plane. These normal vectors all lie on a line in the
plane f; = 1. Let us call this line [. The line [, together with the origin, span a
plane 7 in the frequency domain. The vector perpendicular to 7 is, by definition,
perpendicular to each of the normal vectors in /. Hence, the line from the origin
in the direction of this perpendicular vector must lie in each of the motion planes.
This proves the claim.

We say that the family of planes has a bowtie pattern and we say the line
of intersection of the planes is the axis of the bowtie. The direction of the axis
of the bowtie can be computed by taking the cross product of any two of the
normal vectors in /. Taking the two normal vectors defined by a = {0,1} yields
that the axis of the bowtie is in direction (—7,, 75, usTy — TpUy)

Fig. 2. Optical snow produces a bowtie pattern in frequency domain.

In our previous papers [1,2], we considered the case that the axis of the
bowtie lies in the (f,, f,) plane, that is, (us,u,) is parallel to (7,,7,). In this
special case, there is a unique motion direction. We showed how a vision system
could recover the parameters of optical snow, namely how to estimate the unique
motion direction and the range of speeds « in the motion. In the present paper,
we investigate the more general case that (u,,uy) is not parallel to (7,,7y). As
we will see shortly, both the special case and the general case just mentioned
have a natural interpretation in terms of tracking an object in the scene.



4 Lateral motion

A canonical example of optical snow occurs when an observer moves laterally
through a cluttered static scene. One can derive an expression for the resulting
instantaneous image motion using the general equations of the motion field for
an observer moving through a static scene which are presented in [4, 13]. Let the
observer’s instantaneous translation vector be (T, T,,T,) and let the rotation
vector be (wj,wy,w,). Lateral motion occurs when the following approximation
holds:
T < (T Tl

In this case, the focus of expansion is well away from the optical axis. Similar to
[14], we also restrict the camera motion by assuming

w, =0,

that is, the camera may pan and tilt but may not roll (no cyclotorsion). These
two constraints reduce the basic equations of the motion field to

1
Z
where Z is the depth of the point visible at a given pixel. (We have assumed
without loss of generality that the projection plane is at z = 1.) The model of
Eq. (4) ignores terms that are second order in image coordinates x,y. These
second order terms are relatively small for pixels that are say +20 degrees from
the optical axis. Note that Eq. (4) is a particular case of optical snow defined
in the previous section, with constants (uz,uy) = (—wy,ws), (Te, 7y) = (Ts, Ty),
and 1/Z being the free parameter a.

(Vg,vy) = (~wy,wsz) + —(Tn,T),) (4)

5 Tracking an object

One common reason for camera rotation during observer motion is for the ob-
server to track a surface patch in the scene, that is, to stabilize it in the image
in order to better analyze its spatial properties. We assume first that the entire
scene including the tracked surface patch is static and only the observer is mov-
ing. Tracking a surface patch at depth Z' stabilizes the projection of the patch
on the retina by reducing its image velocity to zero. For this to happen, the
camera rotation component of the image motion must exactly cancel the image
translation component of that surface patch, that is, from Eq. (4),

1
-z
When the observer tracks a particular surface patch, scene points at other

depths will still undergo image motion. From the previous equation and Eq. (4),
the image velocity of a point at depth Z in the scene will be:

(o) = (5 = ;) (To.Ty).

(vg,vy) = (0,0) if and only if (—wy,ws) = (T, Ty)



Two observations follow immediately. First, if the observer is tracking a partic-
ular point in the scene then Eq. (4) implies that all velocity vectors in the image
will be in direction (T}, T},) and hence parallel.> We call this case of parallel op-
tical snow. Notice that parallel optical snow also arises when (—w,,w,) = (0,0)
which is the case of no camera rotation. In this case, the observer is tracking at
point at infinity.

The second observation is that a point in front of the tracked point (Z < Z')
will have image motion in the opposite direction of a point behind the tracked
point (Z > Z'). For example, consider walking past a tree while tracking a
squirrel that is sitting in the tree. Leaves and branches that are nearer than the
squirrel will move in the opposite direction in the image as those that are farther
than the squirrel.

The above discussion assumed the observer was tracking a static surface
patch in a static 3D scene. One natural way to relax this assumption is to allow
the tracked surface patch (object) to move in the scene, with the scene remaining
static otherwise, and to suppose the observer tracks this moving object while the
observer also moves. A natural example is a predator tracking its moving prey
[15]. In this scenario, the camera rotation needed to track the object may be
in a different direction than the camera’s translation component. For example,
the predator may be moving along the ground plane and tracking its prey which
is climbing a tree. In this case the translation component of motion (T, T)) is
horizontal and the rotation component of motion (—wy,w,) is vertical.

(b)

Fig. 3. (a) xyt cube of sphere sequence. (b) Projection of power spectrum in the direc-
tion of the axis of the bowtie. Aliasing effects (wraparound at boundaries of frequency
domain) are due to the “jaggies” of OpenGL. Such effects are less severe in real image
sequences because of optical blur [1,2].

3 Recalling the approximation of Section 4, this result breaks down for wide field of
views, since second order effects of the motion field become significant.



A contrived example to illustrate non-parallel optical snow is shown in Figure
3. A synthetic image sequence was created using OpenGL. The scene was a set
of spheres distributed randomly in a view volume. The camera translates in the
y direction so that (7,,T,,T;) is in direction (0,1,0). As the camera translates,
it rotates about the y axis so that (w,,wy,w;) is in direction (0,1,0) and the
rotation component of the image motion is in direction (1,0,0). In terms of our
tracking scenario, such a camera motion would track a point object moving on
a helix

(X(t),Y(t), Z(t)) = (rsint,t,r cost)

where 7 is the radius of the helix and ¢ is time.

For our sequence, the camera rotates 30 degrees (the width of the view
volume) in 128 frames. Since the image size is 256 x 256 pixels, this yields
(ug,uy) = (2,0) pixels/frame. Fig. 3(a) shows the xyt video cube [16] and Fig.
3(b) shows a summed projection of the 3D power spectrum onto a plane. The
projection is in the bowtie axis direction (1,0,1). The bowtie is clearly visible.

6 Future Work

One problem that is ripe for future work is to develop algorithms for estimating
the bowtie that are more biologically plausible than the one we have considered
which uses an explicit representation of the Fourier transform. To be consistent
with motion processing in visual cortex, a biologically plausible algorithms would
be based on the measurements of local space-time motion energy detectors [16].
Such algorithms could generalize current biological models for motion processing
such as [5, 7, 8] which assume a pure translation motion. These current algorithms
estimate the velocity of the pure translation motion in a space-time image patch
by combining the responses of motion energy detectors, and estimating a single
motion plane in the frequency domain.

Our idea for analyzing optical snow in this manner to estimate a bowtie pat-
tern rather than a single motion plane. Since a motion plane is just a bowtie
whose range of speeds collapses to a single speed, the problem of estimating
a bowtie generalizes the previous problem of estimating a motion plane. The
details remain to be worked out. However, biologically plausible models of lay-
ered motion transparency have been proposed already [17]. We expect similar
algorithms could be designed for optical snow as well.
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