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Abstract. Many methods for 3D reconstruction in computer vision rely
on probability models, for example, Bayesian reasoning. Here we intro-
duce a probability model of surface visibilities in densely cluttered 3D
scenes. The scenes consist of a large number of small surfaces distributed
randomly in a 3D view volume. An example is the leaves or branches on
a tree. We derive probabilities for surface visibility, instantaneous image
velocity under egomotion, and binocular half–occlusions in these scenes.
The probabilities depend on parameters such as scene depth, object size,
3D density, observer speed, and binocular baseline. We verify the cor-
rectness of our models using computer graphics simulations, and briefly
discuss applications of the model to stereo and motion.

1 Introduction

The term cluttered scene typically refers to a scene that contains many visible
objects [2, 18, 6] distributed randomly over space. In this paper, we consider a
particular type of cluttered scene, consisting of a large number of small surfaces
distributed over a 3D volume. An example is the leaves or branches of a tree.

Reconstructing 3D geometry of a cluttered scene is a very challenging task
because so many depth discontinuities and layers are present. Although some
computer vision methods allow for many depth discontinuities, such methods
typically assume only a small number of layers are present, typically two [28].

The goal of this paper is to better understand the probabilistic constraints of
surface visibilities in such scenes. We study how visibility probabilities of surfaces
depend on various geometric parameters, namely the area, depth and density of
surfaces. We also examine how visibility probabilities depend on observer view-
point. Such probability models are fundamental in many methods for computing
optical flow [24, 29, 19] and stereo[1, 3]. The hope is that the probability models
could be used to improve these methods, for example, in a Bayesian framework
by providing a prior on surface visibilities in 3D cluttered scenes.

2 Related Work

The probability models that we present are related to several visibility models
that have appeared in the literature. We begin with a brief review.
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The first models are those that describe atmospheric effects such as fog,
clouds, and haze [15] and underwater [22]. In these models, the size of each
occluder is so small and the number of occluders is so large that each occluder
projects to an image area much smaller than a pixel. This is the domain of
partial occlusion i.e. transparency [26]. This scenario may be thought of as a
limiting case of what is considered in this paper. Another interesting case for
which partial occlusion effects dominate the analysis is that of rain [5].

A second related model is the dead leaves model [11, 23] which consists of a
sequence of 2D objects such as squares or disks that are dropped into a 2D plane,
creating occlusion relationships. Here one is typically concerned with the distri-
bution of object boundaries and sizes [21, 20, 10, 17]. The key difference between
the dead leaves model and the one we present is that the dead leaves model
assumes 2D shapes that lie in the same plane i.e. dead leaves on the ground,
and thus assumes orthographic projection rather than perspective projection. In
the dead leaves model, there is no notion that shapes lying at greater depths
appear smaller in the image, as is the case considered in this paper of “living
leaves” in 3D space and viewed under perspective projection. While the dead
leaves model is sufficient for understanding certain aspects of visibility in 3D
cluttered scenes, for example, probability of surface visibility along a single line
of sight as a function of scene depth (see Sec. 3), it cannot describe other aspects
such as how visibility changes when the observer moves (Sec. 4 and 5).

A third set of related models consider both occlusion and perspective, and
combine geometric and statistical arguments (see two monographs [7, 30]). Such
models have been used in computer graphics in the context of hidden surface
removal [14] as well as for rendering foliage under ambient occlusion lighting [8].
Similar geometric and statistical reasoning has been used in computer vision for
planning the placement of cameras to maximize scene visibility in the presence
of random object occlusions[12].

3 Static monocular observer

The model developed here is based on several assumptions. First, the scene con-
sists of surfaces that are randomly distributed over a 3D view volume. Each
surface is represented by a particular point (e.g. its center of mass). The distri-
bution of these points assumed to be Poisson [4] with density η, which is the
average number of surface centers per unit volume. We assume that the density
η is constant over a 3D volume. We also ignore interactions between surface
locations such as clustering effects that may be found in real cluttered scenes
and the fact that real surfaces such as leaves cannot intersect.

According to the Poisson model, the probability that any volume V contains
k surface centers is

p(k surface centers in V ) = e−ηV (ηV )k

k!

and so the probability that there are no surface centers in the volume V is

p(no surface centers in V ) = e−ηV . (1)
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This last expression will be used heavily in this paper. Let’s consider two instan-
tiations of this model.

3.1 Planar patches

Suppose the surfaces are planar patches of area A such as in the first row of
Figure 1. What can we say about visibility in this case? The expected total area
of the surfaces per unit volume is ηA. If the surface normals of all patches were
parallel to the line of sight, then the expected number of surfaces intersected by
a unit line that is parallel to these surface normals would be ηA. (To see this,
imagine cutting a surface of area ηA into pieces of unit area and stacking them
perpendicular to the line.) The more general and interesting case is that the
surface normals are oriented in a uniformly random direction. In this case, it is
easy to show that the average number of surface intersections per unit length
line is reduced by a factor 1

2 , so the expected number of surfaces intersected by
a line of unit length is:

λ =
ηA

2
.

Using standard arguments about Poisson distributions[4], one can show that
the probability p(z)dz that the first visible surface is in depth interval [z, z +dz]
is:

p(z)dz = e−λz λdz.

The probability density p(z) = λe−λz is defined over z ∈ [0,∞]. Often, though,
we are interested in scenes whose objects are distributed over some finite volume
beyond some distance z0 from the viewer. In this case, the probability density is

p(z) = λe−λ(z−z0) . (2)

In computer graphics terminology, z0 is the distance to the near clipping plane.

3.2 Spheres

The mathematical model presented in Sec. 5 for binocular visibility will be easier
to derive in the case that the objects are spheres of radius R, so we consider this
case next. Consider an imaginary line segment with one endpoint at the viewer
and the other endpoint at distance z. In order for the 3D scene point at this
distance z to be visible from the viewer, no sphere center can fall in a cylinder1

whose radius is the same R as above, and whose axis is the line segment of length
z. Such a cylinder has volume

V = πR2z.

1 To be more precise, we would need to consider a capped cylinder [30], namely a
cylinder capped at both ends by two half spheres. However, the extra volume of the
capped cylinder has only a small effect on the model, and so we ignore this detail.
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As with the planar patch scene, if all surfaces lie beyond a distance z0, then the
cylinder that cannot contain any sphere centers has volume:

V = πR2(z − z0). (3)

In order for the first surface along the line of sight to be in the depth interval
[z, z + dz], two conditions must hold: first, the cylinder must contain no sphere
centers, and second, a sphere center must fall in a small volume slice πR2dz

capping the cylinder. From the above expression for V and from Eq. (1), the
probability that the first surface visible along the line of sight is in depth interval
[z, z + dz] is

p(z)dz = ηπR2e−ηπR2(z−z0) dz (4)

This model is the same as Eq. (2) where now for the case of spheres we have

λ = ηπR2.

We next present computer graphics simulations to illustrate this model.

3.3 Experiments

Scenes were rendered with the computer graphics package RADIANCE2 [9].
Each rendered scene consisted of a set of identical surfaces randomly distributed
over the rectanguloid

(x, y, z) ∈ [−4, 4] × [−4, 4]× [2, 8]

i.e. near and far clipping planes at z = 2, 8, respectively. The width of the field
of view was 30 degrees. Each rendered image was 512 × 512 pixels.

Results are presented for scenes consisting of either squares (planar surfaces)
or spheres. For both types of scene, three scene densities were used, namely η =
14, 56, 225 surfaces per unit volume. The object sizes for each of these densities
were chosen to be large, medium and small, such that the λ value was the same
over all scenes and so the theoretical p(z) curves are the same as well. Specifically,
for the sphere scenes, the radii were arbitrarily chosen to be R = 0.1, .05, .025.
The corresponding areas for the square scenes were 2πR2 which kept the λ values
the same for all scenes.

Figure 1 compares the model of p(z) in Eqs. 2 and 4 with the average his-
togram of visible depths from the RADIANCE Z buffer over ten scenes. For each
histogram, 15 bins were used to cover the depth range z ∈ [2, 8]. Standard errors
for each histogram bin are also shown.

For the scenes with larger values of R, the standard errors within each his-
togram are greater than for the scenes with small R values. To understand this
effect, consider for example the histogram bin for the nearest depth. The number
of pixels in that histogram bin depends on the number of sphere centers that

2 Unlike OpenGL, RADIANCE computes cast shadows which we will use later in the
paper to examine binocular half-occlusions.
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Fig. 1. Examples of rendered scenes consisting of squares or spheres distributed in a
view volume. The density and areas of the three scenes have the same λ and so the
expected visibility probabilities are the same. Histograms of depths from ten scenes and
standard errors in each histogram bin are shown and compared with the theoretical
model. The fits are excellent in each case. (See text.)
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are in the closest depth layer. When the surfaces are large and the density is
small, relatively few spheres will contribute to that bin, but each sphere that
does contribute will contribute a large number of pixels, hence larger variance.

A second observation is that the theoretical curves slightly overestimate the
probabilities, especially at nearest depth bin. The reason for the bias is that the
RADIANCE Z buffer gives z values in Euclidean distance from the observer –
as do Eqs. (2) and (4). However, as the surfaces are distributed in a rectangu-
loid whose boundaries are aligned with the viewer coordinate system, there are
slightly fewer surfaces at the smallest z values, since for example distance z = z0

falls in the view volume only at one point – where the optical axis meets the
near plane. Because the field of view is small, the bias is also small and so we
ignore it in the subsequent discussion.

4 Moving monocular observer

What happens when the observer moves, in particular, when the observer moves
laterally? What can be said about the probability of different image speeds
occuring? The key idea is that image speed depends on scene depth and, since
we have a probability density on depth, we can convert it to a probability density
on image speed.

Assume the projection plane is at depth z = 1 unit and the observer’s hor-
izontal translation speed is T units per second. The horizontal image speed vx

for a visible surface at depth z is

vx = −
T

z
(5)

and the units are radians per second. Following van Hateren [27], the probability
p(z) dz that the visible surface lies in the depth interval [z, z+dz] can be related
to the probability p(vx) dvx that a visible surface has image speed in [vx, vx+dvx]
as follows. Eq. (5) implies

dz = −
T

v2
x

dvx . (6)

To interpret the minus sign, note that an increase in depth (dz > 0) implies a
decrease in speed (dvx < 0). Combining Eq. (4) and (6) with

p(z)dz = p(vx)dvx

and defining v0 = T
z0

to be the image speed for a point on the near clipping
plane, we get

p(vx) =
ηπR2T

v2
x

e
−η(πR2T ( 1

vx
− 1

v0
))

. (7)

Figure 2 shows histograms of the image speeds, plotted from slow to fast
(corresponding to depths far to near). Note that the probability density p(vx)
is non-monotonic. While at first blush this may seem to contradict the depth
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histograms from Fig. 1, in fact it does not. We have binned the velocities in
uniform ∆v bins, but these do not correspond to the uniform ∆z bins.

Again note that the standard errors in the velocity histograms are greater
for the plot on the left, which corresponds to large objects (R large). The reason
is similar to what was argued for Fig. 1.

One final note is that if we define v′x ≡ vx

T
then

p(vx)dvx = ηπR2(
T

vx

)2e−η(πR2( T

vx
− T

v0
))

d
vx

T
= p(v′x)dv′x. (8)

Thus the observer speed T merely rescales the abscissa of the histogram. This
is intuitively what we might expect, for example, doubling the observer speed
doubles the image speed at each pixel.
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Fig. 2. Image speed histograms for the sphere scenes from Figure 1. Standard errors
decrease as R decreases i.e. from left plot to right. Data are similar for the square
scenes (not shown). The observer is moving at T = 0.1 space units per second and so
the velocities are in units of radians per second.

5 Binocular Half Occlusions

The velocities discussed in the previous section were instantaneous. When an
observer moves over a finite distance in 3D cluttered scenes, however, surfaces
can appear from and disappear behind each other at occlusion boundaries [13].
This problem also arises in binocular stereo, of course, and arguably is more
severe in stereo since the stereo baseline T is typically larger than the distance
moved by a moving observer between frames of a video sequence. In stereo this
appearance and disappearance phenomenon is know as binocular half-occlusion

[1, 3]. We now introduce a probability model for half occlusions in 3D cluttered
scenes.
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Consider the two cylinders Cl and Cr whose axes are the line segments joining
some point at depth z to the two eyes (see Appendix). Following similar reasoning
to case of spheres in Sec. 3.2, the point at depth z is visible to both eyes if and only
if neither cylinder contains a sphere center. Moreover, the conditional probability
that a point at depth z is visible to the right eye, given it is visible to the left
eye is:

p(z visible to right | visible to left) =
p(z visible to both eyes)

p(z visible to left)
.

Recalling Eq. (1) and noting that vol(Cr ∪ Cl) = vol(Cl) + vol(Cr\Cl), we get:

p(z visible to right | visible to left) =
e−η vol(Cl∪Cr)

e−η vol(Cl)
= e−η vol(Cr\Cl) (9)

We thus need an expression for vol(Cr\Cl). An exact expression is quite compli-
cated since it involves the intersections of two cylinders at a general angle. But
using arguments of a similar flavor as those used in [30, 14] we can derive the
approximation (see Appendix):

vol(Cr\Cl) ≈







π(2Rz
T

− z0)R
2 + 2z

T
R3, if z−z0

z
> 2R

T

RT (z−z0)
2

z
, otherwise.

This model is examined using computer graphics simulations and the same
scenes as before. To compute which points are visible to both eyes, the following
trick is used. Treating the viewing position as the left eye, two versions of each
scene are rendered: one in which the scene is illuminated by a point source from
the viewing position (left eye) and a second in which the scene is illuminated
by a point light source at the right eye’s position. Then pixels that have non-
zero intensity in both rendered images are visible to both eyes. Conditional
probabilities are estimated from the relative number of pixels at which the surface
is visible to both eyes versus the number visible just to the left eye.

Figure 3 compares the model of conditional probabilities with data obtained
from RADIANCE simulations. The distance between the eyes was T = 0.1
which corresponds to the radius of the spheres in the large sphere scenes. The
conditional probabilities are very well fit by the model. While this is not so
surprising for the sphere case – it merely verifies that our approximation for
vol(Cr\Cl) is good – it is somewhat surprising that the model should produce
a good fit for the squares case as well, as the model was derived under the
assumption that the scene consists of spheres.

Another interesting observation is that, for both λ and T fixed, the condi-
tional probabilities depend strongly on R, that is, on the size of the surfaces. For
the scenes with high-density and small-R objects, the conditional probability
falls off faster with z. That is, all other things (z, λ, T ) being equal, binocular
half occlusions are more common when the scene consists of smaller objects.
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Fig. 3. Conditional probabilities that a surface at depth z is visible to right eye, given
it is visible to left eye, for large (left), medium (middle), small (right) scenes.

6 Limitations

Here we discuss a few limitations of the model, which will be investigated in
future work when the model is compared to real imagery. One limitation is the
assumption of uniform density and size of objects. For example, the distribution
of leaves and branches on typical trees and shrubs is not uniform, e.g. leaves tend
to clump together near branches and the branch distribution itself is not uniform.
This issue has been studied, for example, by plant scientists who are interested
how light penetrates a tree canopy [25] and how the penetration depends on
geometric and statistical properties of the plant such as leaf area, orientation,
and branching factors [16].

A second limitation is that the model ignores partial occlusions which can
arise for example from the finite size of pixels. To account for partial occlusion,
we would need to modify the model slightly by considering an R-dilated cone
rather than an R-dilated ray, such that the solid angle of the cone is that of a
pixel. We claim that the difference between the two is insignificant for the case
we are considering in which the objects subtend a solid angle much greater than
that of a single pixel. However, in other cases in which the objects subtend a
much smaller visual angle (or in which the depth of field is small), we would
need to consider partial occlusions. Both of the above limitations are interesting
topics to explore in future research.
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Appendix

Figures 4 and 5 illustrate two configurations that must be considered for us to
calculate vol(Cl\Cr). In both cases, I only need to consider the parts of the
cylinder that are beyond z0 since by definition no sphere centers are present for
z < z0. The two cases are distinguished by whether the cross sections of the
cylinders (disks) overlap at depth z0.

If the two cylinders overlap at depth z0, then we approximate Cl\Cr to be
the new volume swept out by a cylinder of radius R if a viewer were to move
continuously from the left to right eye’s position.3 By inspection this swept

volume is RT (z−z0)2
z

, where the factor (z−z0)T
z

is the projection of the inter-
ocular distance T to the z0 plane.

z − z

2R

T

z
o o

Fig. 4. A point at depth z is visible to two eyes separated by a distance T if no sphere
centers lie in the cylinders whose axes join the point to the two eyes. Here we consider
the case that the two cylinders overlap at the clipping plane z = z0.

If the two cylinders do not overlap at depth z0, then there must be a minimal
depth z1 where the two cylinders overlap such that z0 < z1 < z. This is the
situation shown below. In this case we approximate Cl∪Cr by partitioning Cl\Cr

into two sets, namely the points in front of and beyond this depth z1, respectively.
For the points in front of z1, the volume within Cl\Cr is πR2(z1 − z0). Using
a similar triangle argument, we note z−z1

2R
= Z

T
, and with a little manipulation

3 This swept volume is a slightly overestimate of Cl ∪ Cr. It assumes the point at
depth z, which lies on the axis of the cylinders, is seen by all viewpoints in between
the left and right eye’s position.
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we can rewrite this volume as 2R3Z
T

. For the points beyond z1, we approximate
the volume within Cl\Cr using a similar idea as the case of Fig. 4. Now the two
cylinders are exactly tangent to each other at depth z1 so the distance between
their axes at this depth is 2R. we approximate the volume of Cl\Cr that lies
beyond z1 as the volume swept out by the cylinder, namely 2R

2 (z − z0). This is
a slight overestimate of the volume i.e. an approximation.

T

2R

z − zz
o z − z

o1 1

Fig. 5. Similar to Fig. 4 but now we consider the case that the two cylinders do not
overlap at the clipping plane z = z0, and that the overlap occurs starting at depth
z = z1 > z0.
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