Questions

1. Suppose we have a 1 D image and we take the local difference of intensities,

$$
D I(x)=\frac{1}{2}(I(x+1)-I(x-1))
$$

which give a discrete approximation to a partial derivative. Or suppose we take a local average operation:

$$
B I(x)=\frac{1}{4} I(x+1)+\frac{1}{2} I(x)+\frac{1}{4} I(x-1)
$$

Define each of these operations as a convolution.
2. (a) What is $D(x) * B(x)$?
(b) What is $D(x) * D(x)$?
(c) What is $B(x) * B(x)$?
3. Let

$$
I(x) * h(x)=-3 I(x+2)+4 I(x+1)+2 I(x-2)
$$

What is the function $h(x)$?
4. Let

$$
I(t) * f(t)=2 I(t)-3 I(t-1)+I(t-2)
$$

What is $f(t)$?
5. Prove the associative law for 1-D convolution,

$$
(f * g) * h=f *(g * h)
$$

You may assume that each of the three functions are defined over all the integers, but only have non-zero values over a finite range.
6. This question is for those of you who know some basic probability theory.

Suppose we have two independent random variables X and Y which can take integer values. Let the probabilities of X and Y be $f(X)$ and $g(Y)$, respectively. For example, the probability that $X=3$ is $f(3)$ and the probabilty that $Y=-2$ is $g(-2)$.
Express the probability $h(Z)$ for the random variable $Z=X+Y$ in terms of a convolution.
7. What is the result of convolving $f(x)$ with a shifted delta function

$$
f(x) * \delta\left(x-x_{0}\right)=?
$$

8. What is the result of convolving a 1D sine function with $h(x)$?

Hint: in the lecture notes, I showed the result of convolving a 1D cosine function with $h(x)$. Use a similar idea here.

Solutions

1. We have $D(x) * I(x)$ or $B(x) * I(x)$ where

$$
\begin{aligned}
& D(x)= \begin{cases}\frac{1}{2}, & x=-1 \\
-\frac{1}{2}, & x=1 \\
0, & \text { otherwise }\end{cases} \\
& B(x)= \begin{cases}\frac{1}{4}, & x=-1 \\
\frac{1}{2}, & x=0 \\
\frac{1}{4}, & x=1 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

2. (a) By the definition of convolution

$$
D(x) * B(x)=\sum D\left(x-x^{\prime}\right) B\left(x^{\prime}\right)
$$

So, for example, take $x=2$:

$$
(D * B)(2)=\sum_{x^{\prime}} D\left(2-x^{\prime}\right) B\left(x^{\prime}\right)=D(1) B(1)=-\frac{1}{2} \cdot \frac{1}{4}
$$

but all other terms are 0 . Take $x=1$:

$$
(D * B)(1)=\sum_{x^{\prime}} D\left(1-x^{\prime}\right) B\left(x^{\prime}\right)=D(1) B(0)=-\frac{1}{2} \cdot \frac{1}{2}
$$

but all other terms are 0 . Take $x=0$:

$$
(D * B)(0)=\sum_{x^{\prime}} D\left(-x^{\prime}\right) B\left(x^{\prime}\right)=D(-1) B(1)+D(1) B(-1)=\frac{1}{2} \cdot \frac{1}{4}-\frac{1}{2} \frac{1}{4}=0
$$

but all other terms are 0 .

$$
D(x) * B(x)= \begin{cases}\frac{1}{8}, & x=-2 \\ \frac{1}{4}, & x=-1 \\ -\frac{1}{4}, & x=1 \\ -\frac{1}{8}, & x=2 \\ 0, & \text { otherwise }\end{cases}
$$

Verify in Matlab by running conv([.5 0-.5], [.25, .5, .25])
(b)

$$
D(x) * D(x)= \begin{cases}\frac{1}{4}, & x=2,-2 \\ -\frac{1}{2}, & x=0 \\ 0, & \text { otherwise }\end{cases}
$$

To verify, in Matlab run conv([.5 0-.5], [. $50-.5]$)
(c)

$$
B(x) * B(x)= \begin{cases}\frac{1}{16}, & x=2,-2 \\ \frac{1}{4}, & x=-1,1 \\ \frac{3}{8}, & x=0 \\ 0, & \text { otherwise }\end{cases}
$$

To verify, in Matlab run conv([.25 .5 .25], [. 25 .5 .25]) Also, notice that the result sums to 1 , just as $B(x)$ sums to 1 .
3. The function $h(x)$ is

$$
h(x)= \begin{cases}-3, & x=-2 \\ 4, & x=-1 \\ 2, & x=2 \\ 0, & \text { otherwise }\end{cases}
$$

4. $f(0)=2, f(1)=-3, f(2)=1$. Or

$$
f(t)=2 \delta(t)-3 \delta(t-1)+\delta(t-2)
$$

5. All summations in the following are over ∞, \ldots, ∞.

$$
\begin{aligned}
(f * g)(x) * h(x) & =\sum_{x^{\prime}}(f * g)\left(x^{\prime}\right) h\left(x-x^{\prime}\right) \\
& =\sum_{x^{\prime}} \sum_{x^{\prime \prime}} f\left(x^{\prime \prime}\right) g\left(x^{\prime}-x^{\prime \prime}\right) h\left(x-x^{\prime}\right) \\
& =\sum_{x^{\prime \prime}} f\left(x^{\prime \prime}\right) \sum_{x^{\prime}} g\left(x^{\prime}-x^{\prime \prime}\right) h\left(x-x^{\prime}\right) \\
& =\sum_{x^{\prime \prime}} f\left(x^{\prime \prime}\right) \sum_{v} g(v) h\left(\left(x-x^{\prime \prime}\right)-v\right) \\
& =\sum_{x^{\prime \prime}} f\left(x^{\prime \prime}\right)(g * h)\left(x-x^{\prime \prime}\right) \\
& =(f *(g * h))(x)
\end{aligned}
$$

6. To calculate the probability that Z takes a particular value, say $Z=z$, we need to consider all ways in which X and Y can sum z. For any $X=x$, the value of Y must be $z-x$. But $X=x$ with probability $f(x)$ and $Y=z-x$ with probability $g(z-x)$. Since X and Y are assumed to be independent, the probability of the event $(X, Y)=(x, z-x)$ is $f(x) g(z-x)$. Thus, the probability for $\mathrm{Z}=\mathrm{z}$ must be

$$
h(z)=\sum_{x=-\infty}^{\infty} f(x) g(z-x)
$$

Thus, $h(z)=f * g(z)$, i.e. the convolution of f with g.
7. Let $g(x)=\delta\left(x-x_{0}\right)$.

$$
\begin{aligned}
f(x) * g(x) & =\sum_{u} f(x-u) g(u) \\
& =\sum_{u} f(x-u) \delta\left(u-x_{0}\right) \\
& =f\left(x-x_{0}\right)
\end{aligned}
$$

since the delta function has value 1 when $u=x_{0}$ and 0 everywhere else. Thus, convolving $f(x)$ with a shifted delta function just shifts $f(x)$ by the same amount as the delta function.
8.

$$
\begin{equation*}
h(x) * \sin \left(\frac{2 \pi}{N} k x\right)=\sum_{x^{\prime}=0}^{N-1} h\left(x^{\prime}\right) \sin \left(k \frac{2 \pi}{N}\left(x-x^{\prime}\right)\right) \tag{*}
\end{equation*}
$$

Recalling the trigonometry identity

$$
\sin (\alpha+\beta)=\sin \alpha \sin \beta+\cos \alpha \cos \beta
$$

we can expand the $\sin ()$ on the right side of $\left({ }^{*}\right)$,

$$
\sin \left(k \frac{2 \pi}{N}\left(x-x^{\prime}\right)\right)=\sin \left(k \frac{2 \pi}{N} x\right) \cos \left(k \frac{2 \pi}{N}\left(-x^{\prime}\right)\right)+\sin \left(k \frac{2 \pi}{N}\left(-x^{\prime}\right)\right) \cos \left(k \frac{2 \pi}{N} x\right)
$$

and so the right hand side of $(*)$ is just a sum of sine and cosine functions with variable x and constant frequency k, namely

$$
h(x) * \sin \left(k \frac{2 \pi}{N} x\right)=a \cos \left(\frac{2 \pi}{N} k x\right)+b \sin \left(\frac{2 \pi}{N} k x\right)
$$

where

$$
\begin{aligned}
a & =\sum_{x^{\prime}=0}^{N-1} h\left(x^{\prime}\right) \sin \left(k \frac{2 \pi}{N}\left(-x^{\prime}\right)\right) \\
b & =\sum_{x^{\prime}=0}^{N-1} h\left(x^{\prime}\right) \cos \left(k \frac{2 \pi}{N}\left(-x^{\prime}\right)\right)
\end{aligned}
$$

which are just the inner products of the N dimensional vectors $h(\cdot)$ with a cosine or sine of frequency k, respectively.

