Learning Legged Swimming Gaits from Experience

David Meger!, Juan Camilo Gamboa Higuera', Anqi Xu', Philippe Giguere? and Gregory Dudek!

Abstract— We present an end-to-end framework for realizing
fully automated gait learning for a complex underwater legged
robot. Using this framework, we demonstrate that a hexapod
flipper-propelled robot can learn task-specific control policies
purely from experience data. Our method couples a state-of-the-
art policy search technique with a family of periodic low-level
controls that are well suited for underwater propulsion. We
demonstrate the practical efficacy of tabula rasa learning, that
is, learning without the use of any prior knowledge, of policies
for a six-legged swimmer to carry out a variety of acrobatic
maneuvers in three dimensional space. We also demonstrate
informed learning that relies on simulated experience from
a realistic simulator. In numerous cases, novel emergent gait
behaviors have arisen from learning, such as the use of one
stationary flipper to create drag while another oscillates to
create thrust. Similar effective results have been demonstrated
in under-actuated configurations, where as few as two flippers
are used to maneuver the robot to a desired pose, or through
an acrobatic motion such as a corkscrew. The success of our
learning framework is assessed both in simulation and in the
field using an underwater swimming robot.

I. INTRODUCTION

In this paper, we study the task of learning swimming
controllers for the Aqua family of hexapod amphibious
robots [1], which employ six flexible flippers to generate
thrust. The task of coordinating the motion of multiple legs
for swimming is challenging due to high intrinsic dimen-
sionality and complexities that arise from hydrodynamics.
For example, the force generated by an oscillating hydrofoil
is due to the Karman street flow pattern, which is known
to be difficult to model [2], [3], [4]. Recent progress in
learning gaits for terrestrial legged robots has demonstrated
the benefits of data-driven approaches for handling similarly
complex problem aspects [5], [6], [7], [8].

This work represents the first leg controller for Aqua
to be based entirely on swimming experience from the
vehicle. Previously, the vehicle was driven using expert-
engineered swimming gaits [3] and motion controllers [9],
[10]. Adaptive methods were only demonstrated in simu-
lation [11]. The learned controllers produced by our system
(e.g., Figure[T) demonstrate effective swimming in a number
of novel ways not previously seen on this vehicle. This
includes dynamically altering the use of individual flippers
between stationary dragging and active propulsion, yielding
greater task efficiency. Various combinations of elementary
motions have been observed in policies for the same high-
level task, representing the flexibility of our approach. For

I Mobile Robotics Lab, School of Computer Science, McGill University
{dmeger, gamboa, angixu, dudek}@cim.mcgill.ca

2Département d’informatique et génie logiciel, Faculté de science et
génie, Université Laval philippe.giguere@ift.ulaval.ca

Fig. 1. A learned policy for a 6 flipper swimming task is executed within
the Gazebo simulation environment used to validate our approach. The task
learned was a 180° yaw (U-turn).

example, the task “U-turn”, has been executed by remain-
ing flat, by banking moderately, or by rolling completely
sideways. Furthermore, even when using a highly under-
actuated two-flipper configuration, we have demonstrated
successful learning of multiple acrobatic maneuvers in the
unconstrained underwater domain, which is a first for this
family of robots.

Our gait learning approach is based on a policy search
technique named PILCO (Probabilistic Inference for Learn-
ing Control) [12], which has recently been successfully
applied to many practical robotic systems. PILCO is capable
of optimizing control policies without specific knowledge
of the system dynamics, through the use of experience data.
However, both the practical learning performance and also its
computational cost are highly dependent on the task proper-
ties. To facilitate successful learning of acrobatic maneuvers
with our complex underwater robot, we have exposed its leg
control interface through an intuitive yet powerful family
of low-level motor controllers for swimming, which we call
periodic leg commands (PLC). We investigate both tabula
rasa learning, (i.e., learning without the use of any prior
system knowledge), and also informed learning, which is
endowed with some approximate system knowledge available
from a physics simulation of our platform. Additionally, our
implementation makes use of cloud-based computing to learn
tasks in parallel.

Following a brief survey of related work, Section [II]
describes our reinforcement learning (RL) solution for fabula
rasa learning of swimming controllers. Section [[V] presents
our experimental procedure. Empirical results of our method,
shown both in simulation and on the physical Aqua [1]
amphibious platform are described in Section [V}



II. BACKGROUND
A. Gait Learning

Gait optimization and discovery is a long-established and
well-studied research area. Works include the use of simu-
lated muscle actuators for legged walking, crawling and even
swimming, albeit for idealized entities [13]. Several authors
have considered gait learning for physical robots operating
on land [6], [7], [14], [15], [8]. Relatively few authors have
considered swimming gaits for real robots, with [16] being
an exception, which targeted a robot with simpler actuation
than our own. Although not strictly a learning technique,
one standard approach to gait synthesis in the water, as
well as on land, is the central pattern generator that can
be used to produce a constrained family of gaits [17]. A
major challenge to learning in the marine domain is the lack
of reliable ground truth due to the degraded RF and visual
sensing conditions [18].

In the experiments below, we evaluate the use of a
simulator to bootstrap learning on a real robot. This choice
is inspired by the recent success of demonstrations or direct
participation as effective aids for learning practical robotic
tasks [19], [20]. Additionally, numerous authors [21], [22],
[23] have demonstrated benefits from transfer of information
both forward and backwards between the learning procedures
of the simulated and real robots. The use of an inaccurate
analytical model to facilitate policy search approaches was
notably analyzed in [22].

B. PILCO

The PILCO method [12] has been capable of learning
controllers for systems ranging from 1-D inverted pendula
to unicycles and manipulators. It is a promising choice
for RL on physical platforms given its natural handling
of continuous states and controls, as well as the ability to
cope with high state dimensionality. As PILCO is a core
component of our system, we will briefly summarize its
algorithmic details here for completeness.

As with any policy search method, PILCO aims to deter-
mine policy parameters 6* that optimize task performance
measured as the expected loss over fixed-length episodes,
ZtTZOE[L(xt)]. L(x) is a loss function provided by the
system designer to specify the target task. Policy search
requires parameterized policies u = w(x,6), capable of
generating commands u based on state x. Countless policy
families are possible and we will describe our choices for
swimming below. PILCO is a model-based method, however
it does not require prior system knowledge to be provided.
Instead, data is used to learn a forward dynamics model. A
Gaussian Process (GP) is used to predict the distribution of
state changes A; = (x¢41 — X;) based on previous state and
control action: A; ~ GP (x4, uy).

PILCO estimates state (equivalently: loss) trajectories us-
ing an analytical approximation of the state distribution and
its derivatives after rolling out a policy for 7" time steps. This
allows the use of gradient-based search techniques over 6 to
evaluate potential parameters, without the need of additional

experience gathering on the target system. PILCO achieves
excellent data efficiency relative to existing methods. The
computational cost of the method scales with the amount
of experience, which has motivated our use of an efficient
control space encoding periodic behaviors, rather than direct
position control of each of our robot’s six actuators.

ITII. GAIT LEARNING METHOD

This section describes our end-to-end system for gait
learning. We implement episodic RL on our robot by cou-
pling its sensors and actuators to an RL control module.
This module accepts tasks from the user in the form of
loss functions. We disable all previously developed sensor-
based control and coordination modules, only providing the
lowest-level motor and sensing drivers that allow our learning
module to operate the vehicle. In each task episode, the
robot executes a control policy, which generates a periodic
leg command (PLC) based on the sensory state at every
time step. Over multiple episodes, experience data is used to
learn updated control policies for the task, and performance
improves to convergence. This section will continue by
describing each of the elements of our system in detail.

A. Swimming State Space

Our robot senses its state using an inertial measurement
unit (IMU), a pressure sensor to measure depth below the wa-
ter’s surface, and motor encoders to determine leg positions.
The data from these sensors forms the state-space, which is
denoted by x, at each time step. Notably, this is also the space
over which the user is able to define the loss (i.e., negative
reward) function, L(x). We have investigated two families of
loss functions in order to build up a dynamic set of motions
for our robot: static-angle, static-depth tasks that ask the
robot to achieve and stably maintain a target orientation; and
dynamic-angle, static-depth tasks that require the robot to
regulate its angular rate, such as a corkscrew. In this work we
do not consider positional feedback, although this data can
be readily incorporated in our solution when the swimming
robot is equipped with a sensor-based localization module.

B. Periodic Leg Commands

As mentioned above, accurate modeling of the higher-
order dynamics of legged swimming platforms remains an
intractable problem given the fluid dynamics involved. How-
ever, a number of heuristically useful low-level swimming
motions have been determined, through biological inspi-
ration [24] or other modeling techniques. These motions
include oscillation, spinning, and braking by statically op-
posing water flow. Inspired by previous work in learning
control primitives [25], we expose a naturally useful set of
low-level controls to the learning mechanism.

Specifically, we have developed a parameterized low-level
leg controller capable of producing a broad family of per-leg
motions that is general enough to allow variation to different
tasks, while allowing candidate solutions to be represented
succinctly. Periodic leg commands (PLC) encode position for
leg i, ¢;, as a function of time ¢, and command parameters



(a) Episode 1

(b) Episode 5

(c) Episode 10

Fig. 2. Three learning iterations on the simulator for task 6: knife-edge plus U-turn (180° yaw and 90° roll targets). The robot’s initial policy (left) does
not progress towards the goal. By learning iteration 5 (middle), the robot has reached the goal but overshoots slightly and loses roll stability. At iteration
10 (right) and beyond, the robot stably executes the motion — note that this task has been learned using only two out of six flippers for propulsion. The
robot starts each trial from the right-most pose in each panel and proceeds in the direction indicated by the red arrow.

u;: ¢; = PLC(t,u;). The PLC function is a sinusoid of the
form:

PLC(t,u;) = A; - sin(2m fit + ;) + b; (1)

where each command parameter vector, u;, contains ampli-
tude, A;, frequency, f;, phase, y;, and angular offset, b;.
Our low-level leg controller computes ¢;, and actuates leg
motion via feedback control on the motor encoders at a rate
of 1 kHz. The periodic nature of the PLC command space
means that a single u = [uy, ..., ug) vector will keep the legs
continuously in motion, until the next command is received.
This allows policies to be efficiently learned at a coarse time
scale, saving significant computational cost.

C. RBF Policies

We require a policy family that is able to map robot
states into PLC actions for each time step, and which is
parameterized to allow PILCO to perform loss optimization:
u = 7(x,0). We employ Radial Basis Functions (RBF) as
policies, which have the form:

m(x,0) = Ztm(x) 2)
vi(x) = exp (—;(x—ci)TA_l(x—ci)> 3)

The parameters of each RBF component are its center, ¢;, in
the sensor state space, and a corresponding weight, ¢;. In our
work, this RBF policy is obtained as the mean prediction of
a Gaussian Process regression, as in [26].

D. Loss Function

A human designer must create a loss function, L(z),
for characterizing a desired behavioral task to be learned.
This function can be defined arbitrarily in terms of the
state-space, thus allowing for a wide range of target tasks.

To ensure smoothness, we apply a unity minus Gaussian
function with width o centered at the specified goal. The cost
function width is an important factor in ensuring learning
convergence, and is set manually using design heuristics.

IV. EXPERIMENTAL METHODOLOGY

This section describes our approach for evaluating gait
learning performance on a number of sample swimming
tasks. We have implemented a realistic physics simulator
based on Gazebo, which enables exhaustive testing and
validation prior to deployment on real hardware. Learning
with PILCO has a high computational cost, and thus we
have implemented a cloud-based parallelization method in
order to effectively learn multiple tasks within a reasonable
time-frame. We investigate tabula rasa learning, (i.e., without
relying on prior system knowledge), as well as informed
learning that utilizes information transferred from a simu-
lator.

A. Sample Tasks

A broad range of gait learning tasks were explored during
our system evaluation, as can be seen as on our project pag
One sample task is displayed in Figure 2] For the purposes
of quantitative comparison, we restrict our focus to six fixed-
depth tasks:

1) U-turn: flat 180° yaw

2) Knife-edge: straight-ahead 90° roll

3) Belly-up: straight-ahead 180° roll

4) Fast corkscrew: forward clockwise rapid roll change

5) Slow corkscrew: forward anti-clockwise slow roll

change

6) Knife-edge plus U-turn: 180° yaw and 90° roll

We have executed learning for each of these tasks in
simulation using the vehicle’s full 6 flipper propulsion system
— a task consisting of 13 state and 12 control dimensions. One

]http: //www.cim.mcgill.ca/~dmeger/ICRA2015_GaitLearning/


http://www.cim.mcgill.ca/~dmeger/ICRA2015_GaitLearning/

sample learned trajectory can be viewed in the accompanying
video. To increase the challenge for our data-driven method
and reduce the state dimensions to allow for feasible exper-
imentation on real hardware, we have restricted the robot to
swimming with only its back two flippers for the quantitative
analysis shown below. This highly under-actuated scenario
requires precise control and coordination of the two available
control surfaces. Each two flipper task is specified in a 7-D
state space (3 angles, 3 angular rates, and depth). The policy
must produce four-dimensional control outputs consisting of
amplitude and offset for 2 legs. The phase and frequency
are not utilized. Tasks are executed for a fixed horizon of 15
seconds.

B. Parallelized Off-board Policy Search

Learning with PILCO is many times slower than real-
time for the swimming tasks that we consider on a typical
desktop workstation. This presents a practical problem, since
experiment time on the physical robot is expensive in terms
of power consumption and human labor. To minimize the
robot’s idle time, and make best use of the available re-
sources, we run multiple learning jobs in parallel on a cloud-
compute server. We achieve this through a data marshaling
architecture, depicted in Figure 3] As an episode finishes,
the experience data is transferred off-site and a remote
learning job is instantiated, all the while the robot moves
onto learning a subsequent task. When the remote learning
job is completed, the resulting policy is transmitted back
to the robot and the next episode for that learning task is
entered into a queue. We have learned up to 20 tasks in
parallel using this framework, allowing our robot to run
nearly continuously, despite the long learning cycles for each
task.

Experience data

<
<%

Off-site
Learning

Server

Learned Policy
Parameters v

Current task
index

Task
Marshalling

Learning
interface

Motor

Policy Commands

parameters for

TSensor data
current task

Gait

Controller

Fig. 3. A visual description of the basic elements in our parallelized off-
board policy search system.

C. Swimming Simulator

We have developed an underwater simulation environment
for the Aqua robot. This implementation includes a set
of plug-ins for the Gazebo simulator [27]. While Gazebo
provides dynamics simulation using existing physics engines,

such as ODE or Bullet, it does not simulate hydrodynamics
or thrust models for underwater vehicles. Similar to previ-
ous work in quadrotor UAV simulation [28], our plug-ins
augment the simulation environment with a hydrodynamics
model, a thruster model, and a module that emulates inter-
actions with the Aqua hardware.

We assume a static fluid and approximate the shape of
the Aqua robot body with a rectangular prism. We consider
linear and rotational drag, added mass, buoyancy and gravity,
following the description of these effects in [2]. Each leg is
assumed to be a rigid paddle for which we compute drag and
lift effects. These effects alone are not enough to simulate
the forces generated by an oscillating paddle due to their
non-linear dependence on turbulent flow patterns. We use
the average thrust model from [24], and provide a set of
parameters to tune the effects of paddle motion on the robot’s
body rotation [3].

Our simulator and physical robot share a common software
APIL. As a result, it is possible to learn policies using
reinforcement feedback from the simulator, following the
same protocol that is used on the real robot. That is, we
execute parameterized policies for fixed length episodes,
collect experience and learn improved policies with PILCO.
The control policies learned through this process share many
properties to those learned on the real robot. Figure |1| shows
one such policy, a 180° yaw turn, learned using reinforce-
ment through interaction with our simulation environment.

D. Transfer of Simulated Learning Information

The results of learning based on our simulator provide
valuable information with the potential to benefit the real
robot. Inspired by this intuition, we consider several informed
learning approaches that transfer information between the
simulator and the real robot. Each approach transfers one or
both of: (a) the control policy learned in the simulator as
an initial seed point for policy search on the real robot; and
(b) episodic experience from the simulator in place of, or to
augment, the usual random control experience that is used
to bootstrap the RL procedure.

We analyze several transfer techniques that use different
choices in steps (a) and (b). The potential choices in each
step are enumerated here for use later to present our results.
The bootstrap experience for learning can be produced with
the following methods:

o (EXP-REAL-RAND) executes random commands on
the real robot

o (EXP-SIM-RAND) executes random commands on the
simulator

o (EXP-SIM-ALL) collects all experience data available
in the simulator throughout a simulated learning pro-
cess, which includes both the random commands and
the commands of learned policies

o (EXP-MIXED-ALL) combines random commands exe-
cuted on the robot with the trace of simulated learning

The initial policy on the real robot is generated using one
of the following methods:



Task 1: U-turn

Task 1: U-turn

Task 1: U-turn

R-1 R-2 R-3 R-4 R-5 R-6 R-7 R-
(R)eal episodes

(a) Cumulative Loss

R2 R3 R4 R5 R6 R7
(R)eal episodes

(b) Yaw Angle

(2}
=] - = - e - -
5 'd 5| E L"k&__&.—&-‘_ 2 —180
ideal

© R-1 R-2 R-3 R-4 R-5 R-6 R-7 R—1R2 R-3 R-4 R-5 R-6 R-7 R1R2R3R4R5R6R7
» Task 2: Knife-edge Task 2: Knife-edge Task 2: Knife—-edge
8 15 2 180 / » S 1
.10 ° °
ENE i S oRAEEIIA
3 ideal 8 180 R R R R S 2 —180

R-1 R-2 R-3 R-4 R-5 R-6 R-7 R-1 R-2 R-3 R-4 R-5 R-6 R-7 R-1 R 2 R 3 R 4 R 5 R 6 R 7
» Task 3: Belly—up Task 3: Belly—up Task 3: Belly—-up
g 15 > / . : > - g - -
o 180 > 180f rfl j\-f‘
a @ o) /
= 12 :';/ ok = ..’_".--\-q-\,-.g.J ) < E 0-///
§ e & 180 R SR SRRRE S g -180 R I s SRR N

R-1 R-2 R-3 R-4 R-5 R-6 R-7 R-1 R-2 R-3 R-4 R-5 R-6 R-7 R-1 R-2 R-3 R-4 R-5 R-6 R-7
» Task 4: Fast corkscrew Task 4: Fast corkscrew Task 4: Fast corkscrew
2 15 > . . —~ 540 '
S g 180 g 360
é 12 > O\-/-“.-‘\f—-——\a-—-’:——- 1__2 188 / //-/
3 ideaI.—-—-—_—-—-—_ SN & _180"\

R-1 R-2 R-3 R-4 R-5 R-6 R-7 R-1 R-2 R-3 R-4 R-5 R-6 R-7 R-1 R-2 R 3 R 4 R 5 R 6 R 7
®» Task 5: Slow corkscrew Task 5: Slow corkscrew Task 5: Slow corkscrew
g 15 =) : : =) (/ : :
o 180 2 180
| [} [0}

o

= 12 ; [ --T-’-—(——lw—. Z/ 0 P-P-‘/(/"_
IS T _180 S _{80} % A b \ \ AN A
3 ideal > o«

R-1 R-2 R-3 R-4 R-5 R-6 R-7 R-1 R-2 R-3 R-4 R-5 R-6 R-7 R-1 R-2 R-3 R-4 R-5 R-6 R-7
o Task 6: Knife—edge plus U-turn Task 6: Knife—edge plus U-turn Task 6: Knife—edge plus U-turn
g 15 = >
9 2 180 : : :
- 10 g 7 / 7 T 1 3
g 5 ‘% = NMN‘:\_‘_‘_\.
3 ideal kS —180 2 -180 ST m e

R-1 R-2 R-3 R-4 R-5 R-6 R-7

(——-: task target) (R)eal episodes (-—-: task target)

(c) Roll Angle

Fig. 4. Tabula rasa learning trials for all 6 fixed-depth tasks. The target yaw and roll angles for each task are shown as dotted lines. For each task, five
initial episodes using random control actions (not shown) generated bootstrap experience, which does not bring the robot near to its goal. Learning then
starts and the robot’s state can be seen to converge to the target with increasing speed and stability as time progresses, which is reflected by reduced loss.
Task 5 (slow corkscrew) successfully learns to regulate the target yaw angle, but failed to achieve target roll rate.

¢ (POLI-RAND) is the default random initial policy based
on no prior experience

o (POLI-SIM-FROM-SIM) is a policy learned on the
simulator using purely simulated data

o (POLI-SIM-FROM-REAL) is the policy resulting from
(EXP-MIXED-ALL)

We now elaborate on two sample transfer techniques, to
provide further intuition. Firstly, the technique pairing (EXP-
REAL-RAND and POLI-RAND) is the tabula rasa learning
baseline. It involves bootstrapping from random command
data on the real robot and begins search from a randomized
policy setting. This technique does not make use of the
simulator at all.

In contrast, the technique labeled (EXP-MIXED-ALL
and POLI-SIM-FROM-REAL) is significantly different. It
entails: collecting a small amount of robot experience with
a random policy; using this data to bootstrap the process
of learning a policy for the simulator till convergence; and
finally bootstrapping with all experience, both simulated and
real, coupled with the best policy learned in the simulator to
perform learning on the real robot.

V. EXPERIMENTAL RESULTS

This section describes the results of learned underwater
swimming behaviors performed by the Aqua hardware plat-
form using our method. In all of the displayed results, PLC
commands were generated at a coarse rate of 1 Hz, demon-
strating the efficacy of our periodic representation. During
experimental sessions, as many as 20 tasks were learned
simultaneously through a cloud-computing implementation
of our parallelized off-board learning architecture.

A. Tabula Rasa

We carried out tabula rasa learning of all 6 tasks on the
real robot, with as little human input as possible. For each
task, the human designer specified solely the loss function
target. The initial policies used by the robot were produced
by sampling RBF centers and targets at random, which
resulted in highly ineffective initial swimming performance.
The quality of the swimming motions in subsequent trials is
entirely dependent on the success of the learning algorithm.

Figure [ depicts quantitative learning results for each of
the six tasks. Each sequence was bootstrapped with five
initial trials of random motion, which are not displayed. The



Fig. 5.
plus U-turn (180° yaw and 90° roll) during our experiments. Note that this
motion is being executed using only two flippers for propulsion.

The Aqua robot executes a policy learned for task 6 — Knife-edge

learning process then swiftly achieved low loss as state tra-
jectories converged to their targets with ever-increasing speed
and stability. Notably, tasks 1, 2, 3, and 6 employed static an-
gular targets, whereas tasks 4 and 5 (i.e., corkscrew motions)
required constant angular rates. Our results demonstrated that
both types of motions could be learned effectively.

Five out of the six tasks were learned with quality that
matched our previous human engineered controller within
seven iterations. This was quite noteworthy given that Aqua
learned to perform challenging swimming motions using
only two flippers (e.g., Figure [5), whereas previous con-
trol methods required actuating all six flippers. The slow
corkscrew task did not converge to satisfactory performance
within our experimental session, which may be due to our
experimental protocol introducing an unrecoverable error in
the dynamics model in one of the early learning iterations
for this task.

B. Informed Learning

We have evaluated the informed learning techniques pro-
posed in Section [[V-D] by implementing six approaches to
share policies and/or experience from our simulator with
the real robot. For each transfer method, we attempted to
learn four of our six swimming tasks: 1) U-turn, 3) belly-
up, 4) corkscrew, and 6) knife-edge plus U-turn. Learning
performance were averaged across tasks to compare the
effect of each transfer technique.

Qualitatively, our human operators reported several ben-
efits resulting in transferring policies from the simulator to
the real robot. The operators watched the execution of these
seed policies before deploying the robot in the water. This
allowed them to predict the initial motion of the real robot.
The perceived safety and comfort of human participants is
an interesting avenue for future study in this aspect.

Table [] summarizes the results of each informed learning
technique over the four tasks used in this analysis. There is
a noteworthy negative correlation between task performance
and the use of experience from the simulator to bootstrap

learning. This is likely due to the differences in the dynamics
models leading to less accurate GP predictions and state roll-
outs. We plan to investigate further calibration and more
sophisticated transfer learning approaches that may allow
simulated experience to be more fruitfully utilized by our
method in the near future.

VI. CONCLUSIONS

This paper presented a method that allows a hexapod robot
to learn to swim effectively based on its experience. We
built upon the powerful PILCO [12] method, and adapted it
for swimming tasks through the use of radial basis function
policies that generate periodic swimming commands at a
coarse timescale. In a fabula rasa manner, many tasks were
successfully learned by bootstrapping from random explo-
ration over controllers. The policies learned by our system
utilized substantially different flipper motion compared to
the hand-engineered controller used previously on our robot.
This success unlocks the potential for significant adaptation
to new tasks, and enables the robot to recover gracefully
from hardware failures.

Through the development in this work, we repeatedly
encountered a major shortcoming of PILCO, namely its long
learning run times. We have partially addressed this issue by
interleaving learning of multiple tasks using parallel com-
putation. We plan to further investigate gains in efficiency
that will allow more rapid adaptation to situations and the
dynamic changes common in underwater settings.

In future work, we plan to investigate the chaining of
multiple learned policy portions into longer trajectories in a
fashion that is adaptive to changes in the local environment.
We will also continue to explore methods that give human
operators the ability to influence the learning process.

ACKNOWLEDGMENT

We would like to acknowledge the NSERC Canadian Field
Robotics Network (NCFRN) for its funding support.

REFERENCES

[1] J. Sattar, G. Dudek, O. Chiu, I. Rekleitis, P. Giguere, A. Mills,
N. Plamondon, C. Prahacs, Y. Girdhar, M. Nahon, and J.-P. Lobos,
“Enabling autonomous capabilities in underwater robotics,” in Proc.
of the IEEE/RSJ Int. Conf. on Int. Robots and Systems (IROS), 2008.

[2] C. Georgiades, “Simulation and control of an underwater hexapod
robot,” Master’s thesis, McGill University, 2005.

[3] P. Giguere, C. Prahacs, and G. Dudek, “Characterization and modeling
of rotational responses for an oscillating foil underwater robot,” in
Proc. of IEEE/RSJ Int. Conf. on Int. Robots and Sys. (IROS), 2006.

[4] N. Plamondon, “Modeling and control of a biomimetic underwater
vehicle,” Ph.D. dissertation, McGill University, 2010.

[5] R. Calandra, N. Gopalan, A. Seyfarth, J. Peters, and M. Deisenroth,
“Bayesian gait optimization for bipedal locomotion,” in Learning and
Intelligent OptimizatioN (LIONS), 2014.

[6] J. Weingarten, M. Buehler, R. Groff, and D. Koditschek, “Gait
generation and optimization for legged robots,” in Proc. of the IEEE
Int. Conf. on Robotics and Automation (ICRA), 2002.

[7]1 S. Chernova and M. Veloso, “An evolutionary approach to gait learning
for four-legged robots,” in Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2004.

[8] E. Theodorou, J. Buchli, and S. Schaal, “Reinforcement learning of
motor skills in high dimensions: A path integral approach,” in Proc.
of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2010.



@ 15 @ 15
S S
Z 10 —~ 10
3 =)
E 5 E 5
© ideal © ideal
randrandrandrandrand S-1 S-2 S-3 S-4 S-5 R-1 R-2 R-3 R-4 R-5 randrandrandrandrand S-1 S-2 S-3 S-4 S-5 R-1 R-2 R-3 R-4 R-5
S 180F j / S 180F j /
o kel
] =
S 180 .\' : S&X_\_k\ _\_\_\__\ S _180 .\' [ :
randrandrandrandrandS-1 S-2 S-3 S-4 S-5 R-1 R-2R-3 R-4 R-5 randrandrandrandrandS-1 S-2 S-3 S-4 S-5R-1 R-2R-3 R-4 R-5
540 540
D 360t S 360f
=2 180;/ J =2 180;/ J- 71 TJ - -
E 0 /-/\_\r s E’ 0 ”’\-\f /5 7-- I—r’[-\r—r
DY Y | E E T S S S S S S N S SR S S gl NG
randrandrandrandrandS-1 S-2 S-3 S-4 S-5 R-1 R-2R-3 R-4 R- randrandrandrandrandS-1 S-2 S-3 S-4 S-5R-1 R-2R-3 R-4 R-5
Random / (S)im / (R)eal episodes (——-: task target) Random / (S)im / (R)eal episodes (——-: task target)
(a) Task 1: U-turn (180° yaw, 0° roll & pitch) (b) Task 3: Belly-up (180° roll, 0° yaw & pitch)
Fig. 6. Example learning trials for [(@)] U-turn and [(b)] belly-up tasks, via informed learning using the simulator with both the transfer of random and
learned experience (SIM-ALL), as well as the learned policy in simulation (SIM-FROM-SIM).
Transfer Setup | Seed Experience Initial Policy First-iteration Loss | Min Loss | Mean Loss | Max Loss
1 REAL-RAND RAND 7.84 5.11 8.22 8.70
2 SIM-RAND RAND 14.28 10.29 12.42 14.50
3 REAL-RAND SIM-FROM-SIM 13.61 10.26 12.88 14.42
4 REAL-RAND SIM-FROM-REAL 11.03 8.78 11.35 13.53
5 SIM-ALL SIM-FROM-SIM 13.72 11.35 12.62 13.72
6 MIXED-ALL SIM-FROM-REAL 11.78 8.50 10.80 12.48

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT TRANSFER TECHNIQUES, BASED ON CUMULATIVE LOSS PER LEARNING ITERATION (LOWER IS BETTER).

P. Giguere, Y. Girdhar, and G. Dudek, “Wide-speed autopilot system
for a swimming hexapod robot,” in Proc. of the Canadian Conf. on
Computer and Robot Vision (CRV), 2013.

D. Meger, F. Shkurti, D. C. Poza, P. Giguere, and G. Dudek, “3D
trajectory synthesis and control for a legged swimming robot,” in Proc.
of the IEEE Int. Conf. on Int. Robots and Systems (IROS), 2014.

A. German and M. Jenkin, “Gait synthesis for legged underwater
vehicles,” in Proc. of the Int. Conf. on Autonomic and Autonomous
Systems (ICAS), 2009.

M. P. Deisenroth and C. E. Rasmussen, “PILCO: A model-based and
data-efficient approach to policy search,” in Proc. of the Int. Conf. on
Machine Learning (ICML), 2011.

D. Terzopoulos, X. Tu, and R. Grzeszczuk, “Artificial fishes: Au-
tonomous locomotion, perception, behavior, and learning in a sim-
ulated physical world,” Artificial Life, vol. 1, no. 4, 1994.

N. Kohl and P. Stone, “Policy gradient reinforcement learning for fast
quadrupedal locomotion,” in Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA), 2004.

R. Tedrake, T. W. Zhang, and H. S. Seung, “Stochastic policy
gradient reinforcement learning on a simple 3D biped,” in Proc. of
the IEEE/RSJ Int. Conf. on Int. Robots and Systems (IROS), 2004.
K. H. Low, C. Zhou, and Y. Zhong, “Gait planning for steady
swimming control of biomimetic fish robots,” Advanced Robotics,
vol. 23, no. 7-8, 2009.

A. Crespi and A. J. Ijspeert, “Online optimization of swimming and
crawling in an amphibious snake robot,” IEEE Trans. on Robotics,
vol. 24, no. 1, 2008.

L. A. Torres-Méndez and G. Dudek, “Color correction of underwater
images for aquatic robot inspection,” in Energy Minimization Methods
in Computer Vision and Pattern Recognition. Springer, 2005.

A. Xu, A. Kalmbach, and G. Dudek, “Adaptive Parameter EXploration

[20]

[21]

(22]

(23]

[24]

[25]

[26]

(271

(28]

(APEX): Adaptation of robot autonomy from human participation,” in
Proc. of the IEEE Int. Conf. on Robotics and Auto. (ICRA), 2014.

J. Schulman, J. Ho, C. Lee, and P. Abbeel, “Learning from demon-
strations through the use of non-rigid registration,” in Proc. of the Int.
Symposium on Robotics Research (ISRR), 2013.

S. Barrett, M. E. Taylor, and P. Stone, “Transfer learning for rein-
forcement learning on a physical robot,” in Int. Conf. on Autonomous
Agents and Multiagent Systems - Adaptive Learning Agents Workshop
(AAMAS-ALA), 2010.

P. Abbeel, M. Quigley, and A. Y. Ng, “Using inaccurate models
in reinforcement learning,” in Proc. of the Int. Conf. on Machine
Learning (ICML), 2006.

M. Cutler, T. J. Walsh, and J. P. How, “Reinforcement learning with
multi-fidelity simulators,” in Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA), 2014.

N. Plamondon and M. Nahon, “Adaptive controller for a biomimetic
underwater vehicle,” Journal of Unmanned Vehicle Systems, 2013.

S. Schaal, “Dynamic movement primitives-a framework for motor
control in humans and humanoid robotics,” in Adaptive Motion of
Animals and Machines. Springer, 2006.

M. Deisenroth, D. Fox, and C. Rasmussen, “Gaussian processes for
data-efficient learning in robotics and control,” IEEE Trans. on Pattern
Analysis and Machine Intelligence (PAMI), 2014.

N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in Proc. of the IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), vol. 3, 2004.

J. Meyer, A. Sendobry, S. Kohlbrecher, U. Klingauf, and O. von
Stryk, “Comprehensive simulation of quadrotor UAVs using ROS and
gazebo,” in Simulation, Modeling, and Programming for Autonomous
Robots.  Springer, 2012, vol. 7628.



	INTRODUCTION
	BACKGROUND
	Gait Learning
	PILCO

	GAIT LEARNING METHOD
	Swimming State Space
	Periodic Leg Commands
	RBF Policies
	Loss Function

	EXPERIMENTAL METHODOLOGY
	Sample Tasks
	Parallelized Off-board Policy Search
	Swimming Simulator
	Transfer of Simulated Learning Information

	EXPERIMENTAL RESULTS
	Tabula Rasa
	Informed Learning

	CONCLUSIONS
	References

